Skip to main content
Log in

Enhancing the Hydrogen Embrittlement Resistance of Medium Mn Steels by Designing Metastable Austenite with a Compositional Core–shell Structure

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Deformation-induced martensite transformation from metastable retained austenite is one of the most efficient strain-hardening mechanisms contributing to the enhancement of strength-ductility synergy in advanced high-strength steels. However, the hard transformation product (often \(\alpha^{\prime}\)-martensite) and the H redistribution associated with phase transformation essentially decrease materials’ resistance to hydrogen embrittlement. To solve this fundamental conflict, we introduce a new microstructure architecting strategy based on an accurately design of core–shell compositional distribution inside the austenite phase. We employed this approach in a typical medium Mn steel (8 wt.% Mn) with an ultrafine grained austenite-ferrite microstructure. We produced a high Mn content (15–16 wt.%) in the austenite shell region and a low Mn content (~ 12 wt.%) in the core region, through a thermodynamics-guided two-step austenite reversion treatment. During room-temperature deformation, the austenite core transforms continuously starting from a low strain, providing a high and persistent strain-hardening rate. The transformation of Mn-rich austenite shell, on the other hand, occurs only at the latest regime of the deformation, thus effectively inhibiting the nucleation of H-induced cracks at ferrite/deformation-induced martensite interfaces as well as suppressing their growth and percolation. This step-wise transformation, tailored directly targeted to protect the hydrogen-sensitive microstructure defects (interfaces), results in a significantly enhanced hydrogen embrittlement resistance without sacrificing the mechanical performance in hydrogen-free condition. The design of compositional core–shell structure is expected to be applicable to, at least, other multiphase advanced high-strength steels containing metastable austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.K. Lee, J. Han, Mater. Sci. Technol. 31, 843 (2014)

    Google Scholar 

  2. R.L. Miller, Metall. Trans. 3, 905 (1972)

    CAS  Google Scholar 

  3. K. Steineder, D. Krizan, R. Schneider, C. Béal, C. Sommitsch, Acta Mater. 139, 39 (2017)

    CAS  Google Scholar 

  4. S.S. Sohn, K. Choi, J.H. Kwak, N.J. Kim, S. Lee, Acta Mater. 78, 181 (2014)

    CAS  Google Scholar 

  5. Z. Dai, H. Chen, R. Ding, Q. Lu, C. Zhang, Z. Yang, S. van der Zwaag, Mater. Sci. Eng. R-Rep. 143, 100590 (2021)

    Google Scholar 

  6. Q. Han, Y. Zhang, L. Wang, Metall. Mater. Trans. A 46, 1917 (2015)

    CAS  Google Scholar 

  7. B. Sun, Y. Ma, N. Vanderesse, R.S. Varanasi, W. Song, P. Bocher, D. Ponge, D. Raabe, Acta Mater. 178, 10 (2019)

    CAS  Google Scholar 

  8. S. Lee, B.C. De Cooman, Metall. Mater. Trans. A 44, 5018 (2013)

    CAS  Google Scholar 

  9. P. Jacques, Q. Furnémont, A. Mertens, F. Delannay, Philos. Mag. A 81, 1789 (2001)

    CAS  Google Scholar 

  10. P.J. Jacques, Curr. Opin. Solid State Mat. Sci. 8, 259 (2004)

    CAS  Google Scholar 

  11. Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Acta Mater. 84, 229 (2015)

    CAS  Google Scholar 

  12. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, D.K. Matlock, Metall. Mater. Trans. A 42, 3691 (2011)

    CAS  Google Scholar 

  13. J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao, Scr. Mater. 63, 815 (2010)

    CAS  Google Scholar 

  14. H. Luo, H. Dong, M. Huang, Mater. Des. 83, 42 (2015)

    CAS  Google Scholar 

  15. J. Han, J.H. Nam, Y.K. Lee, Acta Mater. 113, 1 (2016)

    CAS  Google Scholar 

  16. C. Shao, W. Hui, Y. Zhang, X. Zhao, Y. Weng, Mater. Sci. Eng. A 726, 320 (2018)

    CAS  Google Scholar 

  17. B. Sun, W. Krieger, M. Rohwerder, D. Ponge, D. Raabe, Acta Mater. 183, 313 (2020)

    CAS  Google Scholar 

  18. J. Zhang, M. Huang, B. Sun, B. Zhang, R. Ding, C. Luo, W. Zeng, C. Zhang, Z. Yang, S. van der Zwaag, H. Chen, Scr. Mater. 190, 32 (2021)

    CAS  Google Scholar 

  19. L. Cho, Y. Kong, J.G. Speer, K.O. Findley, Metals 11, 358 (2021)

    Google Scholar 

  20. H.K.D.H. Bhadeshia, ISIJ Int. 56, 24 (2016)

    CAS  Google Scholar 

  21. J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, D.W. Suh, Acta Mater. 60, 4085 (2012)

    CAS  Google Scholar 

  22. T.P. Perng, M. Johnson, C.J. Altstetter, Acta Metall. 37, 3393 (1989)

    CAS  Google Scholar 

  23. M. Koyama, Y. Abe, K. Saito, E. Akiyama, K. Takai, K. Tsuzaki, Scr. Mater. 122, 50 (2016)

    CAS  Google Scholar 

  24. T. Hojo, M. Koyama, N. Terao, K. Tsuzaki, E. Akiyama, Int. J. Hydrog. Energy 44, 30472 (2019)

    CAS  Google Scholar 

  25. A. Pundt, R. Kirchheim, Ann. Rev. Mater. Res. 36, 555 (2006)

    CAS  Google Scholar 

  26. B. Sun, W. Lu, B. Gault, R. Ding, S.K. Makineni, D. Wan, C.H. Wu, H. Chen, D. Ponge, D. Raabe, Nat. Mater. 20, 1629 (2021)

    CAS  Google Scholar 

  27. D. Raabe, C.C. Tasan, E.A. Olivetti, Nature 575, 64 (2019)

    CAS  Google Scholar 

  28. M.A.V. Devanathan, Z. Stachurski, J. Electrochem. Soc. 111, 619 (1964)

    CAS  Google Scholar 

  29. ISO 17081:2004(E), ISO, Switzerland (2004)

  30. J. McBreen, L. Nonis, W. Beck, J. Electrochem. Soc. 113, 1218 (1966)

    Google Scholar 

  31. X. Wan, G. Liu, R. Ding, N. Nakada, Y.W. Chai, Z. Yang, C. Zhang, H. Chen, Scr. Mater. 166, 68 (2019)

    CAS  Google Scholar 

  32. A. Turk, G.R. Joshi, M. Gintalas, M. Callisti, P.E.J. Rivera-Díaz-del-Castillo, E.I. Galindo-Nava, Acta Mater. 194, 118 (2020)

    CAS  Google Scholar 

  33. X.G. Wang, L. Wang, M.X. Huang, Acta Mater. 124, 17 (2017)

    CAS  Google Scholar 

  34. G. Han, J. He, S. Fukuyama, K. Yokogawa, Acta Mater. 46, 4559 (1998)

    CAS  Google Scholar 

  35. L. Zhang, Z. Li, J. Zheng, Y. Zhao, P. Xu, C. Zhou, X. Li, Int. J. Hydrog. Energy 38, 8208 (2013)

    CAS  Google Scholar 

  36. B. He, Materials 13, 3440 (2020)

    CAS  Google Scholar 

  37. Y. Ma, B. Sun, A. Schökel, W. Song, D. Ponge, D. Raabe, W. Bleck, Acta Mater. 200, 389 (2020)

    CAS  Google Scholar 

  38. R. Ding, Z. Dai, M. Huang, Z. Yang, C. Zhang, H. Chen, Acta Mater. 147, 59 (2018)

    CAS  Google Scholar 

  39. H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, H. Dong, Acta Mater. 59, 4002 (2011)

    CAS  Google Scholar 

  40. P. Wen, B. Hu, J. Han, H. Luo, J. Mater. Sci. Technol. 97, 54 (2022)

    CAS  Google Scholar 

  41. X. Zhang, G. Miyamoto, T. Kaneshita, Y. Yoshida, Y. Toji, T. Furuhara, Acta Mater. 154, 1 (2018)

    Google Scholar 

  42. H. Dong, Y. Zhang, G. Miyamoto, H. Chen, Z. Yang, T. Furuhara, Scr. Mater. 188, 59 (2020)

    CAS  Google Scholar 

  43. S.J. Lee, S. Lee, B.C. De Cooman, Scr. Mater. 64, 649 (2011)

    CAS  Google Scholar 

  44. S. Lee, S.J. Lee, B.C. De Cooman, Scr. Mater. 65, 225 (2011)

    CAS  Google Scholar 

  45. N. Nakada, K. Mizutani, T. Tsuchiyama, S. Takaki, Acta Mater. 65, 251 (2014)

    CAS  Google Scholar 

  46. A. Turnbull, R.B. Hutchings, Mater. Sci. Eng. A 177, 161 (1994)

    CAS  Google Scholar 

  47. E. Owczarek, T. Zakroczymski, Acta Mater. 48, 3059 (2000)

    CAS  Google Scholar 

  48. P. Tsong-Pyng, C.J. Altstetter, Acta Metall. 34, 1771 (1986)

    Google Scholar 

  49. A.R. Troiano, Trans. ASM 52, 54 (1960)

    Google Scholar 

  50. S. Lynch, Corros. Rev. 30, 105 (2012)

    CAS  Google Scholar 

  51. Y. Mine, N. Horita, Z. Horita, K. Takashima, Int. J. Hydrog. Energy 42, 15415 (2017)

    CAS  Google Scholar 

  52. I.J. Park, S.M. Lee, H.H. Jeon, Y.K. Lee, Corros. Sci. 93, 63 (2015)

    CAS  Google Scholar 

  53. S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, R.O. Ritchie, Acta Mater. 57, 4148 (2009)

    CAS  Google Scholar 

  54. T.M. Park, H.J. Kim, H.Y. Um, N.H. Goo, J. Han, Mater. Charact. 165, 110386 (2020)

    CAS  Google Scholar 

  55. W. Krauss, S.K. Pabi, H. Gleiter, Acta Metall. 37, 25 (1989)

    CAS  Google Scholar 

  56. M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Acta Mater. 70, 174 (2014)

    CAS  Google Scholar 

  57. J. Kadkhodapour, A. Butz, S.Z. Rad, Acta Mater. 59, 2575 (2011)

    CAS  Google Scholar 

  58. I. Pushkareva, C.P. Scott, M. Gouné, N. Valle, A. Redjaïmia, A. Moulin, ISIJ Int. 53, 1215 (2013)

    CAS  Google Scholar 

  59. G. Krauss, Mater. Sci. Eng. A 273–275, 40 (1999)

    Google Scholar 

Download references

Acknowledgements

H. Chen acknowledges financial support from the National Natural Science Foundation of China (Nos. 51922054, U1860109 and U1808208) and the National Key Research and Development Program of China (2022YFE0110800). Z.G. Yang acknowledges financial support from the National Natural Science Foundation of China (No. 52171008). B. Sun acknowledges financial support from the National Natural Science Foundation of China (No. 52275147).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binhan Sun or Hao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Sun, B., Yang, Z. et al. Enhancing the Hydrogen Embrittlement Resistance of Medium Mn Steels by Designing Metastable Austenite with a Compositional Core–shell Structure. Acta Metall. Sin. (Engl. Lett.) 36, 1059–1077 (2023). https://doi.org/10.1007/s40195-022-01483-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-022-01483-7

Keywords

Navigation