Skip to main content
Log in

Dislocation Source and Pile-up in a Twinning-induced Plasticity Steel at High-Cycle Fatigue

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Dislocation behaviour of a twinning-induced plasticity (TWIP) steel subjected to high-cycle fatigue tests is investigated in the present study. Grain boundaries are the important sources of dislocation generation during fatigue tests, contributing to the increase in dislocation density. Continuous emission of dislocations from grain boundaries is observed in many grains. Inclusions can sustain large dislocation pile-ups at the inclusion interfaces, leading to a high stress concentration and therefore acting as potential sites of microcrack nucleation. In contrast, annealing twin boundaries are relatively weak boundaries for dislocation pile-ups. When the number of dislocations in a pile-up is large, dislocations can crossover twin boundaries and glide inside the annealing twins. The stress concentration at the twin boundary is relatively low so that twin boundaries could not act as the sites for microcrack initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. O. Bouaziz, H. Zurob, M. Huang, Steel. Res. Int. 84, 937 (2013)

    CAS  Google Scholar 

  2. S.G. Lee, B. Kim, M.C. Jo, K.M. Kim, J. Lee, J. Bae, B.J. Lee, S.S. Sohn, S. Lee, J. Mater. Sci. Technol. 50, 21 (2020)

    Article  Google Scholar 

  3. M.C. Jo, J. Yoo, M.C. Jo, A. Zargaran, S.S. Sohn, N.J. Kim, S. Lee, J. Mater. Sci. Technol. 43, 44 (2020)

    Article  Google Scholar 

  4. O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16, 1391 (2000)

    Article  Google Scholar 

  5. S. Allain, J.P. Chateau, O. Bouaziz, Mater. Sci. Eng. A. 387–389, 143 (2004)

    Article  Google Scholar 

  6. H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, P.J. Jacques, Acta Mater. 58, 2464 (2010)

    Article  CAS  Google Scholar 

  7. S.J. Lee, J. Kim, S.N. Kane, B.C.D. Cooman, Acta Mater. 59, 6809 (2011)

    Article  CAS  Google Scholar 

  8. B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142, 283 (2018)

    Article  Google Scholar 

  9. X.J. Wang, X.J. Sun, C. Song, H. Chen, S. Tong, W. Han, F. Pan, Acta Metall. Sin. -Engl. Lett. 32, 746 (2019)

    Article  CAS  Google Scholar 

  10. W. Song, T. Ingendahl, W. Bleck, Acta Metall. Sin. -Engl. Lett. 27, 546 (2014)

    Article  CAS  Google Scholar 

  11. O. Bouaziz, S. Allain, C. Scott, Scr. Mater. 58, 484 (2008)

    Article  CAS  Google Scholar 

  12. O. Bouaziz, Scr. Mater. 66, 982 (2012)

    Article  CAS  Google Scholar 

  13. Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, H. Gao, Nat. Commun. 5, 3580 (2014)

    Article  Google Scholar 

  14. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)

    Article  CAS  Google Scholar 

  15. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)

    Article  CAS  Google Scholar 

  16. Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6, 10143 (2015)

    Article  CAS  Google Scholar 

  17. Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Nat. Commun. 8, 14390 (2017)

    Article  CAS  Google Scholar 

  18. Z.Y. Liang, Y.Z. Li, M.X. Huang, Scr. Mater. 112, 28 (2016)

    Article  CAS  Google Scholar 

  19. Z.C. Luo, M.X. Huang, Scr. Mater. 142, 28 (2018)

    Article  CAS  Google Scholar 

  20. Z.C. Luo, M.X. Huang, Scr. Mater. 178, 264 (2020)

    Article  CAS  Google Scholar 

  21. A.S. Hamada, L.P. Karjalainen, J. Puustinen, Mater. Sci. Eng. A 517, 68 (2009)

    Article  Google Scholar 

  22. T. Niendorf, C. Lotze, D. Canadinc, A. Frehn, H.J. Maier, Mater. Sci. Eng. A. 499, 518 (2009)

    Article  Google Scholar 

  23. X. Wang, Z.Y. Liang, R.D. Liu, M.X. Huang, Mater. Sci. Eng. A. 647, 249 (2015)

    Article  CAS  Google Scholar 

  24. A.S. Hamada, L.P. Karjalainen, A. Ferraiuolo, J. Gil Sevillano, F. de las Cuevas, G. Pratolongo, M. Reis, Metall. Mater. Trans. A. 41, 1102 (2010)

  25. A.S. Hamada, L.P. Karjalainen, Mater. Sci. Eng. A. 527, 5715 (2010)

    Article  Google Scholar 

  26. Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater Sci. 57, 1 (2012)

    Article  CAS  Google Scholar 

  27. K. Lu, L. Lu, S. Suresh, Science 324, 349 (2009)

    Article  CAS  Google Scholar 

  28. J.P. Hirth, J. Lothe, Theory of Dislocation (Wiley, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyuan Liang or Mingxin Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Liang, Z., Lin, L. et al. Dislocation Source and Pile-up in a Twinning-induced Plasticity Steel at High-Cycle Fatigue. Acta Metall. Sin. (Engl. Lett.) 34, 169–173 (2021). https://doi.org/10.1007/s40195-020-01176-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01176-z

Keywords

Navigation