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Abstract
Current design standards and recommendations incorporate the nominal stress system for assessing the fatigue strength capac-
ity of load-carrying cruciform (LCX) joints with the fillet welds and failing from the weld root. Thus far, bending-loaded 
joints have not been addressed in these standards. The aim of the present study is to investigate the fatigue performance of 
LCX joints subjected to cyclic axial and bending loads. Firstly, fatigue test data sets of such joints subjected to axial loading 
and bending loads in the adjoined plate component are extracted from the literature, and statistical analyses are carried out 
to evaluate the fatigue strength capacity using the nominal weld stresses (NWSs). Secondly, experimental fatigue tests are 
carried out on LCX joints made of ultra-high-strength steel (UHSS) grade using constant amplitude loading and subjected 
to combined axial and bending load to study the load interaction effects on the fatigue strength capacity. The results showed 
that the FAT36 detail category for the weld root failures is applicable for bending-loaded joints when applying NWSs calcu-
lated on the basis of effective throat thickness of weld and assuming linear-elastic stress distribution over the joint section. 
The effective notch stress analyses showed unconservative results for the tested joints, when applying FAT225 design curve 
with the reference radius of rref = 1.0 mm.
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1 Introduction

In fillet weld joints subjected to cyclic loads at the adjoined 
plate component, i.e., load-carrying T-joints or load-carry-
ing cruciform (LCX) joints, the infusible weld root acts as 
an initial crack for the fatigue crack propagation. Therefore, 
the weld root fatigue strength is amongst the most important 
fatigue design criteria in such joints. In the fatigue design 
of LCX joints, weld sizing and groove preparation, share of 
secondary bending stresses, and post-weld treatments are 
the key factors influencing fatigue strength capacity and 
failure location [1–5]. The analytical approach, referring to 
the nominal stress approach, is an elementary but efficient 

method for assessing weld root fatigue strength capacity — 
the nominal weld stresses (NWSs) can be calculated using 
the load components at the adjoined plate members. How-
ever, current design codes and standards [6–9] cover the 
analytical model only for the fillet-welded LCX joints sub-
jected to axial loads, and far too little attention has been paid 
to LCX joints subjected to bending loads.

Ghafoori-Ahangar and Verreman [10] evaluated the 
fatigue strength of LCX joints made of stainless steel grades 
under three-point bending and Mori et al. [11, 12] fatigue-
tested LCX joints made of a mild structural steel grade. In 
both studies, the ligament size (weld size and penetration) 
was found as an important factor influencing the weld root 
fatigue performance under bending. Nevertheless, no pro-
posals were given in these studies for applying NWSs in 
fatigue strength assessments. Meanwhile, great efforts have 
been done to verify the fatigue analysis methodologies for 
assessing the weld root failures of cruciform joint using vari-
ous local approaches, such as effective notch stress (ENS) 
concepts [13–15], structural stress approaches [16–18], 
notch stress intensity factor (NSIF)-based peak stress method 
[19], and strain energy density method [4, 20], and applying 
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the theory of critical distance (TCD) [14, 21]. Although the 
local approaches can provide substantial improvement in the 
accuracy of fatigue assessments, the nominal stress method 
is still widely used in engineering and important at least for 
preliminary analyses.

To the authors’ knowledge, an analytical model for 
bending-loaded LC fillet weld joints has been suggested 
in the upcoming revision of the Eurocode 3 (EC3) fatigue 
design standard, aiming on the introduction of the analytical 
model in the upcoming revision of the EN 1993–1-9 stand-
ard [6]. Nevertheless, this model still lacks experimental 
validation, and this work aims to verify different models 
for assessing weld root failures using NWSs. In a previous 
work [22], an analytical method, different to the new model 
proposed in the final draft of the new revision of EC3, parts 
1–9 [6], for calculating NWSs under bending loading, was 
proposed using the limited number of experimental fatigue 
test data. The results showed in accordance with the FAT36 
design curve applied in association with the nominal stress 
approach. In the proposed model, the NWSs are calculated 
using a linear-elastic stress distribution over the joint sec-
tion. Despite of these encouraging results, more experimen-
tal verifications for the findings are needed. In addition, the 
prior experimental and numerical investigations have indi-
cated that the crack growth path starting from the weld root 
in the axial loading is different in axial loading to the behav-
ior in the bending loading — for the bending-loaded joints, 
the crack path is curved at the leg section, while for the 
axially loaded joints, crack path is more straight and turns 
10–20 °C towards the throat section, as also demonstrated in 
Fig. 1 by numerical and experimental results. Similar differ-
ences in crack paths for joints under axial and bending loads 
have been also demonstrated in previous works dealing with 
LCX joints with root failures; see, e.g., [10–12, 23]. Based 
on the crack propagation analysis, the different crack paths 
can be explained by the stress field at the weld root, and 
the crack path corresponds to the maximum principle stress 
direction. Due to these differences, the interaction of axial 
and bending loads cannot be considered by the superposition 
principle to calculate NWSs under combined cyclic axial 

and bending loads, and the interaction effects should be stud-
ied more in detail. For instance, Anami et al. [24] found that 
an additional 25% bending stress to axial membrane stress 
did not majorly decrease the fatigue strength capacity of LC 
joints compared to the joints subjected to pure axial loading.

The aim of the present study is to collect the fatigue test 
data to evaluate the applicability of the proposed models 
for calculating NWSs in bending-loaded LCX joints, i.e., 
the force-pair model suggested by the working group of the 
EC3 revision, and the model proposed by the authors in their 
prior investigation; see Sect. 2. Furthermore, experimental 
fatigue tests are carried out for the LCX joints made of S960 
UHSS grade to investigate the interaction of axial and bend-
ing loading. The specimens are fabricated with angular pre-
misalignment to introduce secondary bending stress with 
the degree of bending (DOB = σb/(σm + σb), where σb and 
σm are the bending and membrane stress, respectively, at the 
plate component) of DOB = 0.25 and DOB = 0.6. This part 
of the study is described in Sect. 3. Section 4 introduces the 
analysis of ENSs of LCX joints at the weld root, which are 
obtained under different load components using numerical 
finite element (FE) modeling with the reference radius of 
rref = 1.0 mm [26, 27].

2  Overview on existing experimental 
fatigue test data

2.1  Axial loading

Axial fatigue tests are usually easier to perform, and on the 
other hand, bending loads are regarded to produce higher 
fatigue strength than axial loads. Therefore, fatigue design 
S–N curves have been established using fatigue test data 
of axial loads [28, 29]. For weld root failures in LC joints, 
FAT36 or FAT40 (depending on the throat thickness to plate 
thickness, a/t, ratio) is widely provided in design guidelines, 
and NWS range can be formulated simply (see also Fig. 2a) 
assuming welds with equal throat size:

where ΔF is the unit force range (force/length), aeff is the 
effective throat thickness, and Δσm is the membrane stress 
at the plate component. In the prior investigation [22], frac-
ture mechanics-based analysis showed that the weld root 
fatigue strength improvement gained by weld penetration 
refers to external throat thickness summed with weld pen-
etration depth, p (see also dimensions shown in Fig. 2b) in 
the axially loaded cruciform joints. Based on this observa-
tion, the NWS under the axial loading could be obtained 
based on the following equation:

(1)Δ�w,m =
ΔF

2aeff
=

Δ�mt

2aeff
,

Fig. 1  Fatigue fracture paths from the weld root in the LCX joints 
subjected to axial and bending loads, determined by an experimental 
fatigue test (left) and a numerical crack growth analysis (right) [25]
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Rohani Raftar et al. [13] re-evaluated the fatigue test data 
of LC joints with the weld root failures and evaluated the 
fatigue strength with the ENS approach using various radii. 
Applying the extracted data, Fig. 2 presents the fatigue test 
data in terms of the NWSs applying both ligament sizes 
— effective weld throat thickness (aeff) and external weld 
throat thickness summed with weld penetration (a + p) as 
per Eqs. (1) and (2). It is worth mentioning that the extracted 
data only comprises data sets in which weld sizes and pen-
etrations were reported (e.g., by macrographs) to correctly 
account for the ligament sizes in the calculation of NWSs. 
Studies, in which only the external throat thicknesses were 
reported, were excluded from this analysis. The S–N data 
analyses were carried out using the standard statistical 
evaluation procedure [7], i.e., S as an independent (known) 
variable, and N as a dependent (unknown) variable, using 
both a fixed slope parameter (m = 3), and free curve fitting 
(mfree) due to the high number of data points extracted for 
the analysis. The characteristic design curves were obtained 
as follows:

where the characteristic factor k is:

and C is the fatigue capacity (characteristic (char) with a 
survival probability of Ps = 97.7% or, mean, Ps = 50%), Stdv 
is the standard deviation, and n is the number of data points.

(2)Δ�w,m =
ΔF

2(a + p)
=

Δ�mt

2(a + p)
.

(3)logC = logNf + mlogΔ�,

(4)Cchar = Cmean − k ⋅ Stdv,

(5)k = 1.645 ⋅

�

1 +
1
√

n

�

,

2.2  Bending loading

As discussed in Sect. 1, weld root fatigue strength capacity 
under the plate out-of-plane plate bending loading has not 
been extensively studied in prior investigations. However, 
through experimental verification, the use of linear-elastic 
stress distribution over the joint section was proposed [22], 
and NWS can be calculated as follows (Fig. 3a):

where ΔM is the plate moment range, c is the distance from 
the neutral axis to weld root (= w/2), I is the section modu-
lus, and w is the infusible weld root length. The experimen-
tal results evaluated using the proposed equation showed 
correspondence with the FAT36 design curve [22]. A sim-
pler model, corresponding to the force pair acting at the 
welds, provides uniform stress over the weld size at the 
transverse leg section (Fig. 3b). To the authors knowledge, 
this model has been suggested for calculating NWSs in the 
bending-loaded joints in the new EC3 1–9 revision as per 
the final draft [43] and related working group discussions. 
When employing the force-pair model, the NWS is com-
puted as follows:

where ΔFw is the unit force range at the weld (force/length, 
as the weld stress is independent of the weld length in the 
case of continuous fillet weld). It is worth mentioning that 
for the fatigue design purposes, zero weld penetration 
should be assumed, i.e., w = t and a = aeff. However, Eqs. 
(6) and (7) for the bending loads, as well as Eqs. (1) and (2) 

(6)

Δ�w,b =
ΔMc

I
=

Δ�b
t2

6

w

2

(w+2aeff )
3
−w3

12

=
Δ�bt

2w

6w2aeff + 12waeff
2 + 8aeff

3
,

(7)Δ�w,b =
ΔFw

aeff
=

ΔM

aeff
(

aeff + w
) =

Δ�bt
2

6aeff
(

aeff + w
) ,

Fig. 2  Fatigue test data (see 
Appendix Table 6) of axially 
loaded LCX joints evalu-
ated using the nominal stress 
approach (m = 3) — NWSs cal-
culated based on the a effective 
throat thickness and b external 
weld throat thickness and weld 
penetration, data from [3–5, 12, 
17, 22, 24, 30–42]
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for the axial loads, are applied to evaluate the fatigue test 
results, and it is conservative to consider the weld penetra-
tion (results in lower stresses and fatigue strengths). This 
is important particularly in the bending-loaded joints. To 
evaluate the applicability of these two proposals, experi-
mental data is acquired from the published literature data, 
and data plots with the obtained scatter bands, together 
with the S–N curves, have been presented in Fig. 3 for 
both models. Table 1 summarizes the results of the statis-
tical analyses for both axially loaded and bending-loaded 
LCX joints, showing the fatigue strengths and scatter range 
indexes obtained using both a fixed slope, m = 3, and free 
slope, mfree.

3  Experiments

3.1  Materials

The study continues the experimental work carried out 
in [22] with new tests on the interaction loads, and thus 
S960MC UHSS grade with the plate thickness of t = 9 mm 
was chosen for this study. The welded joints were prepared 
with gas metal arc welding (GMAW) using a strength-
matching filler metal, Böhler Union X96 [44, 45] (nominally 
under-matching). The chemical composition and mechanical 
properties of the studied materials have been presented in 
Tables 2 and 3, respectively.

Fig. 3  Fatigue test data (see 
Appendix Table 7) of bending-
loaded LCX joints evalu-
ated using the nominal stress 
approach (m = 3) — NWSs 
calculated based on the (a) 
linear-elastic stress distribution 
over the joint section and (b) 
force pair system, data from 
[10–12, 22, 23]
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Table 1  Summary on the results of the statistical analysis carried out for the fatigue test data of LCX under axial and bending loading in the 
nominal stress system (see also Figs. 2 and 3)

Loading 

type
NWS model

Fig. m = 3 mfree

FAT50%

(MPa)

FAT97.7%

(MPa)

Tσ
(-)

m FAT50%

(MPa)

FAT97.7%

(MPa)

Tσ
(-)

Axial

aeff 2a 68 39 2.27 2.35 58 30 2.62

a + p 2b 66 39 2.17 2.40 57 31 2.44

Bending

elastic 3a 53 38 1.56 2.90 46 33 1.53

force-

pair
3b 75 53 1.62 2.80 56 39 1.66

aeff

a p

+
–

∆σw,b

+

–

∆σw,b
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3.2  Specimens

The specimen shape and dimensions have been presented 
in Fig. 4. To introduce bending stresses, an angular mis-
alignment of 2–4 °C to the transverse plate was applied at 
both sides. The specimens were prepared using a single-pass 
robotic GMAW in the horizontal vertical (PB) position [46] 
with the welding parameters presented in Table 4 and with 
two different weld throat thicknesses (nominally, a = 3 mm 

and a = 5 mm). The welds W1/W4 had slightly lower weld 
throat thickness than the welds W2/W3 (in both #1 and 
#2 cases, controlled by adjusting travel speed) in order 
to produce fatigue failures to this side of the joint (strain 
gages were attached to this side; see Sect. 3.3). The inter-
pass temperature was less than 50 °C. The weld toes were 
treated with the high-frequency mechanical impact (HFMI) 
treatment to improve the weld toe fatigue capacity and thus 
ensure that the weld root is in the fatigue-critical location 
of the joints. The run-on and run-off widenings shown in 
Fig. 4 were sawed, machined, and, eventually, ground to 
flush before fatigue testing. A total number of 12 specimens 
were tested, and Table 5 summarizes the test matrix.

3.3  Test setup and measurements

The fatigue tests were carried out using a 150 kN servo-
hydraulic fatigue test machine using constant amplitude 
loading with an applied stress ratio of R = 0.1, Fig. 5. To 
measure the bending effect and straightening of specimens 
due to the axial loading (geometrically nonlinear behavior), 
each specimen was equipped with two strain gages posi-
tioned at the side W1-W4 at which expected fatigue failure 
occurs due to the smaller weld throat thickness compared 
to the side W2-W3. The strain gages (0.6 mm grid size) 

Table 2  Chemical composition 
of the studied materials (wt%)

*Undiluted weld metal

Material Type C Si Mn P S Cr Ni Mo Cu Nb N

S960 MC Maximum 0.12 0.25 1.30 0.02 0.01
Measured 0.097 0.20 1.09 0.008 0.001 1.13 0.38 0.191 0.033 0.001 0.005

Union X96 Nominal* 0.12 0.8 1.9 0.45 2.35 0.55

Table 3  Mechanical properties 
of the studied materials

Material Type Proof strength 
Rp0.2 (MPa)

Ultimate strength
Rm (MPa)

Ultimate 
elongation
A (%)

Impact tough-
ness KV (temp.) 
(J)

S960 MC Nominal 960 980–1250 7 27 (− 40 °C)
Measured 1041 1210 11 65 (− 40 °C)

Union X96 Nominal 930 980 14 80 (+ 20 °C)
47 (− 50 °C)

a3/a5

a3/a5

a4/a6

a4/a6

W1

W4

W2

W3

#1 #2
#1 #2

αpre

αpre = 2-4°

(see Table 5)

Fig. 4  Shape and dimensions of the test specimens and welding 
sequence (weld IDs are denoted with “W”)

Table 4  Welding parameters of 
the test specimens

1 In accordance with EN 1011–1 [47] using thermal efficiency factor of 0.8 for GMAW

Case a
(mm)

Weld ID Current 
I
(A)

Voltage 
U
(V)

Travel 
speed vtravel
(mm/s)

Wire feed rate 
vwire
(m/min)

Heat input Q1

(kJ/mm)

#1 3 W1, W4 280–290 26.3–26.4 9.5 12.5 0.64
4 W2, W3 280–290 26.3–26.4 7.0 12.5 0.87

#2 5 W1, W4 280–290 26.3–26.4 6.5 12.5 0.94
6 W2, W3 280–290 26.3–26.4 5.5 12.5 1.11
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were positioned at the hot-spot distance (0.4t) from the 
weld toe.

After the fatigue tests, the weld geometries (aeff and infu-
sible weld root length w) were obtained from the fractured 
specimens. A Hexagon Romer 3D laser scanning system 
was applied to determine the point clouds from the frac-
tured surfaces, and the cross-sectional weld geometries were 
determined, as illustrated in Fig. 5b.

3.4  Results

Figure 6 presents the fatigue test results in terms of the 
nominal stress system. Results of individual tests have been 
presented in Appendix Table 8 and Fig. 12. Although robotic 
GMAW was applied in the preparation of the specimens, 
minor variation in the resulting DOBs in the tested series 
was found. The interaction of axial and bending loads is 
considered by the superposition principle, and the NWSs 
are calculated as follows:

(8)Δ�w = Δ�w,m + Δ�w,b,

where Δσw,m and Δσw,b are calculated based on Eqs. (1) and 
(6). By using this principle, it can be seen that although at 
the plate components have high amount of bending stress, 
the NWSs are dominated by the axial loading — the share 
of Δσw,b from the total NWS Δσw is quite minor, only 15% at 

Table 5  Fatigue test matrix 
(detailed values for each fatigue 
test have been presented in 
Appendix Table 8 and Fig. 12)

Series Specimen IDs αpre
(°)

Case a
(mm)

DOB =
Δ�b

Δ�m+Δ�b

n

1 S96_LCX_1–4 2 #1 3 0.25–0.31 4
2 S96_LCX_5–8 4 #1 3 0.55–0.58 4
3 S96_LCX_9–12 2 #2 5 0.18–0.25 4
4 S96_LCX_13–16 4 #2 5 0.34–0.43 4

Fig. 5  a Fatigue test setup and 
b 3D laser-scanned fractured 
surfaces with the obtained weld 
geometries (throat thickness a, 
effective throat thickness aeff, 
infusible weld root length w)

(a)
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2D line
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w
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Fig. 3a
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Ahola et al. [22]
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FAT50% = 52 MPa
FAT97.7% = 42 MPa
Tσ = 1.32

Fig. 6  Fatigue test data plots and results of statistical analysis using 
NWSs
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the maximum in the case of DOB = 0.6 (see also the details 
from Appendix Table 8 and Fig. 12).

4  Numerical analysis

4.1  Finite element modeling

SCFs were determined in the ENS system [27, 48] using the 
reference radius of rref = 1.0 mm as per the current recom-
mendations. 2D plane strain element models with quadrilat-
eral elements with linear order (124 elements over the 360 °C 
circumference corresponding to an element size of 0.05 mm 
in the tangential direction) were employed in the FE analysis 
[49]. The analyses were carried out using the following:

i) Axial loading (DOB = 0)
ii) Bending loading (DOB = 1)
iii) Combined axial and bending loading corresponding to 

the loading in the fatigue tests (DOB = 0.18–0.58)

Figure 7 presents a typical FE model used in the analyses. 
In all cases, 1 MPa unit loading was applied in the model 
(top fiber stress, σtop = 1 MPa). The bottom fiber (σbottom) 
stress was as follows:

4.2  Effective notch stress concentrations

Figure 8 presents the results of FE analyses showing the SCF 
for the axial (DOB = 0), bending (DOB = 1), and combined 
axial and bending loading in different series. The SCFs, 
Kt(rref = 1.0 mm), are presented with respect to the top fiber 
stress at the plate:

(9)�bottom = (1 − 2DOB)�top

where σens,root is the ENS at the weld root, determined from 
the FE model using maximum principal stress criterion. A 
clear drop in the SCF was found when the DOB is increased 
for the evaluated LCX joints with aeff/t = 0.4–0.6. Actually, 
for the DOB = 1, the SCFs are below 1.0, indicating that 
the crack growth from the weld root failure is not even the 
critical fatigue failure mechanism. In the present study, the 
HFMI treatment was employed to increase the fatigue capac-
ity of weld toes, and thus the failures occurred at the weld 
root and also in the case of high share of bending stress in 
the series 2. Figure 9 exemplifies the SCF as a function of 
DOB and indicates the location for the maximum SCF, i.e., 
Kt,max.

4.3  Fatigue strength assessments using 
the effective notch stress system

Employing the SCFs presented in Sect. 5.2, the S–N data 
plots in terms of the ENS system have been presented in 
Fig. 10. The FAT225 design curve shows unconservative 
assessment for the LCX joints tested in this study. Mean-
time, the re-evaluated ENS design curve (FAT168), evalu-
ated in [13] for LCX joints failing from the weld root, shows 
higher accuracy with the results of this study as the obtained 
design curve for the joints was  FAT97.7% = 157 MPa. The 
scatter range index was even higher for the ENS system than 
that of the nominal stress system (see Fig. 6). The results 
of this study, supported by the findings in [13], indicate 
that FAT225 does not always provide conservative fatigue 
assessment for the weld root failures in cruciform joints, 
and lower FAT class should be used for evaluating root 
failures.

5  Discussion

The present study investigated the fatigue strength of LCX 
joints with fillet welds subjected to axial tension, bending, 
and combined axial and bending loads with DOB = 0.2–0.6 
and failing from the weld root. The fatigue test data was 
extracted from the published literature to statistically evalu-
ate the fatigue strength capacity of these joints under dif-
ferent load configurations employing nominal stress con-
cept and NWSs at the weld section in regard to the recent 
proposals. Experimental fatigue tests were carried out on 
the LCX joints made of S960 UHSS grade, continuing the 
experimental work published in [22]. The specimens were 
fabricated with the intentionally produced angular misalign-
ment to induce secondary bending stress to the joint and thus 
investigate the combined axial and bending loads.

(10)Kt =
�ens,root

�top

,

σtop

σbottom

Fig. 7  Finite element model used in the SCF analyses
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5.1  Fatigue design recommendations 
for the nominal stress system

The fatigue test data of LCX joints subjected to the axial 
loading was evaluated employing the nominal stress system, 
applying effective throat thickness, and external throat thick-
ness summed with weld penetration as a basis for the cal-
culation of NWS at the throat section. The statistical analy-
ses (see Sect. 2.1) revealed that no major difference in the 
fatigue strength capacity was found  (FAT97.7% = 38 MPa for 
both cases), although 5% lower scatter range was obtained 
using the NWS calculated on the basis of a + p. Due to the 
limited availability of fatigue test data of LCX joints with 
weld penetration and failing from the weld root, no further or 
decisive conclusions can be drawn regarding the most appli-
cable model for calculating NWSs in axially loaded LCX 
joints. In addition, the free slope parameter for the extracted 
data was lower than the recommended m = 3 (Table 1). A use 
of steeper slope parameter would decrease the conservatism 
at the low cycle regime, but on the other hand, m = 3 seems to 
follow the worst fatigue test data points, as it can be seen from 
Fig. 2. Moreover, the bending test results (Fig. 3 and Table 1) 
showed slope parameters closer to m = 3, and thus equal fixed 
slope parameter for both axially and bending-loaded joints 
is justifiable. Further experimental studies should be carried 
out to evaluate the weld penetration effects on the fatigue 
strength capacity. However, it is worth mentioning that an 
increasing weld penetration significantly favors the weld toe 
failures in LCX joints, as also found in [15].

Based on the statistical analysis of fatigue test data points 
extracted from the literature, a model in which the NWSs at 
the throat section are calculated based on the effective throat 
thickness and assuming linear elastic stress distribution over 
the joint section is proposed based on this study, different to 
the model recommended by the EC3 (or the final draft of the 
new revision [43]). This proposal is based on the three key 
findings:

• The use of linear elastic stress in the NWSs results in the 
similar design curve to axially loaded LCX joints, i.e., 
 FAT97.7% = 38 MPa was obtained. These results are also 
in line with the design curve of FAT36 (or FAT40) rec-
ommended currently in the design codes and standards.

• The use of linear elastic stress in the NWSs resulted in 
slightly lower scatter range index (Tσ = 1.56) compared 
to the NWSs calculated based on the force-pair system 
(Tσ = 1.64). However, the S–N curve analysis was based 
on the limited number of specimens (n = 59), and this 
finding could be supported by additional fatigue test data.

• The experiments conducted on the LCX joints made of 
S960 steel grade showed that when using the linear elastic 
stress distribution, the DOB = 0, DOB = 1, and combined 
axial and bending tests fall into a same scatter band. This 

simplifies the fatigue assessments, as different DOBs can 
be evaluated using a single S–N fatigue design curve.

The proposed models were established and verified based 
on the effective throat thickness. Without groove prepara-
tion, no weld penetration is assumed in fatigue design, and 
Eqs. (6) and (7) receive the following forms (as Eq. (12) 
originally presented by EC3 revision [43]):

In addition to the fatigue test data extracted from the lit-
erature, fatigue tests were carried out for the combined axial 
and bending loading to investigate the interaction loads. The 
fatigue tests of this study, as well as those tested in the previ-
ous study for the same S960 UHSS grade under axial and 
bending loads (Fig. 6), showed that mean fatigue strength did 
not reach the mean fatigue strength of the extracted data. In 
addition, the weld penetration was accurately obtained from 
the failed specimens, and thus the evaluation NWS is more 
conservative (giving lower stress ranges) than in the extracted 
data sets in which the actual weld penetration was approxi-
mated based on the given values and macrographs. An 
increased notch sensitivity for high-strength materials [50] 
might potentially explain the decrease in the fatigue strength 
capacity, as the previous experimental works tended to focus 
on testing mild steels. Nevertheless, the characteristic design 
curve, FAT36, was still conservative for these results.

5.2  Weld sizing in the interacting axial and bending 
loads

The results obtained for the pure axial and bending loads 
indicate that an increasing DOB decreases the fatigue crit-
icality of the weld root in comparison with the weld toe 
failures. The interaction of axial and bending loading is 
dominated by the membrane stress, as also indicated by the 
ENS analyses. An increasing DOB diminishes the SCF at 
the weld root (when stress at the top fiber is regarded as a 
reference for the notch stress, see Fig. 9). This observation is 
in line with the prior study undertaken by Anami et al. [24] 
in which they found negligibly small effect of 25% increase 
of bending stress from the membrane stress on the fatigue 
strength capacity. The ENS concept provided unconserva-
tive results when employing the FAT225 design curve and 
reference radius of rref = 1.0 mm. This finding is in line with 
the previous works carried out for the LCX joints under axial 
loading and failing from the weld root [13].

(11)Δ�w,b =
ΔMc

I
=

Δ�bt
3

6t2a + 12ta2 + 8a3
,

(12)Δ�w,b =
ΔFw

A
=

Δ�bt
2

6a(a + t)
,

739Welding in the World (2022) 66:731–744



1 3

As presented in Fig. 9, an increasing DOB decreases the 
SCF at the weld root and thus favors fatigue failures originat-
ing from the weld toe. To prevent weld root fatigue failures, 
an important fatigue design step in fillet-welded LCX joints 
is the weld sizing [13, 15]. Figure 11 presents appropriate 
throat thickness to plate thickness (a/t) ratios resulting in 
weld toe and weld root failures when employing the nomi-
nal stress and ENS concepts. The color-filled areas describe 
the region, for both nominal stress and ENS systems, where 
fatigue failures expectedly occur at the weld root; meanwhile, 
the unfilled areas describe the region with expected toe fail-
ures. In this observation, no weld penetration is considered 
as per the conventional design assumption [51], i.e., w = t. 
The nominal stress system does not consider the a/t ratio in 
fatigue assessments (unless FAT40 is employed for a/t ≤ 0.3 
[7]), and thus the computational result is independent of this 
ratio. FAT36 and FAT63 were considered as the detail cat-
egories for the weld root and weld toe failures, respectively. 
As a result, weld stress range Δσw can be 57% of the top fiber 
stress. In the ENS concept, computational result is not com-
pletely identical for all plate thicknesses (rref/t ratio varies) — 
in this observation, a plate thickness of t = 10 mm was chosen 
for the FE analyses. The throat thickness gradually increased 
from 0.025 to 0.05a/t steps to find the point at which the 
weld toe and root have identical SCFs. However, it is worth 
mentioning that the results in Fig. 11 are computationally 
obtained critical locations for expected failure locations in 
LCX joints, and further experimental tests should be carried 
out on cruciform joints with both toe and root failures to 
verify these findings and applicability of different methods 
to evaluate the critical location of the joint.

The results in Fig. 11 confirm the above-discussed aspects 
related to the root criticality of LCX joints under bend-
ing loads. The differences between the ENS and nominal 
stress systems, particularly with high DOB values, can be 
explained by the differences in the stress concentrations at 
the weld toe — the increasing DOB decreases notch SCF 
at the weld toe due to the symmetric joint configuration, 
as also found in [52]. Meanwhile, the nominal stress sys-
tem accounts for the top fiber stress regardless of the DOB, 
although higher fatigue strength can be expected for the weld 
toe failures under bending loading [22].

6  Conclusions

The present study investigated the fatigue strength charac-
teristics of LCX joints with fillet welds and failing from the 
weld root under the axial and bending loading. Experimental 
fatigue test data was extracted from the literature and supple-
mented with new experimental tests conducted on the S960 
UHSS joints subjected to the combined axial and bending 
loading. The experimental findings were supported by the 
numerical analyses employing the ENS concept to evalu-
ate weld root capacity. Based on the results and subsequent 
analyses, the following conclusions can be drawn.

• In the nominal stress system, a use of linear elastic stress 
distribution over the joint section in bending resulted in 
the agreement with the characteristic design curve for the 
axially loaded LCX joints and current design recommen-
dations, i.e., FAT36 provides feasible results in fatigue 
assessments without overconservatism. When assuming 
force-pair system (which is under consideration by the 
working group revising EC3), higher fatigue class should 
be used for bending loads to avoid redundant conservatism 
in fatigue assessments. The results obtained using the force-
pair system provided a good agreement with the axial data 
in terms of the mean fatigue strength capacity but resulted 
in a higher characteristic design curve  (FAT97.7% = 54 MPa) 
than the FAT36 detail category for the weld root failures.

• In general, bending loading has negligibly low effect 
of the weld stresses in the joints with the combined 
axial and bending loading. Consequently, considera-
tion of bending stresses does not play a major role in the 
fatigue assessment of such joints. In the bending-loaded 
LCX joints with low a/t or aeff/t ratios, or in the joints 
enhanced with the post-weld treatments, however, the 
weld root capacity can be an important fatigue design 
criteria, and this study proposed a model for assessing 
fatigue strength of such joints.

• The ENS concept with the FAT225 characteristic design 
curve does not provide conservative assessment for the 
weld root failures in LCX joints.
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Appendix 1 Details for the extracted fatigue 
test data series

Table 6  Fatigue test data series 
for axially loaded (A) joints

1 Gas metal arc welding (GMAW), shield metal arc welding (SMAW), flux-cored arc welding (FCAW), gas 
tungsten arc welding (GTAW). 2Not specified/given

Ref fy /Rp0.2 (MPa) t (mm) aeff /t R Process1

Loading type Base material Filler

[40] A 315 2 16 0.35 0.4 GMAW
[40] A 315 2 16 0.48 0.4 GMAW
[40] A 315 2 16 0.47 0.4 GMAW
[40] A 315 2 16 0.59 0.4 GMAW
[40] A 315 2 16 0.38 0.4 GMAW
[41] A 413 485 9 0.53 0 SMAW
[41] A 397 485 20 0.48 0 SMAW
[42] A 315 510 16 0.53 0 GMAW
[42] A 315 510 16 0.53 0.75 GMAW
[4] A 693 2 12 0.46 0.1 2

[4] A 693 2 12 0.45 0.1 2

[4] A 693 2 12 0.41 0.1 2

[4] A 693 2 12 0.52 0.1 2

[4] A 693 2 12 0.41 0.1 2

[4] A 693 2 12 0.36 0.1 2

[24] A 325 2 22 0.32 0 GMAW
[24] A 325 2 22 0.5 0 GMAW
[30] A 292 2 16 0.37 0 Laser-GMAW
[31] A 356 460 10 0.55 0 FCAW 
[31] A 356 460 10 0.55 0.5 FCAW 
[31] A 595 550 10 0.64 0 FCAW 
[32] A 345 2 12 0.56 0.1 MCAW 
[33] A 392 565 28 0.29 0.05 GMAW
[33] A 392 494 28 0.36 0.05 GMAW
[33] A 554 491 24 0.35 0.05 GMAW
[12] A 362 2 15 0.28 0.5–0.75 FCAW 
[12] A 362 2 15 0.38 0.5–0.75 FCAW 
[34] A 534 407 16 0.45 0.05 GMAW
[34] A 534 665 16 0.42 0.05 GMAW
[34] A 534 407 16 0.66 0.05 GMAW
[34] A 534 665 16 0.5 0.05 GMAW
[34] A 534 407 16 0.71 0.05 GMAW
[34] A 534 665 16 0.65 0.05 GMAW
[35] A 306 2 16 0.4 0.1 SMAW
[36] A 744 2 16 0.56 0.2 GMAW
[37] A 395 530 14 0.43 0.5 GMAW
[17] A 345 2 10 0.5 0.1 SMAW
[3] A 297 425 6 0.33 0 GTAW 
[3] A 297 425 6 0.48 0 GTAW 
[3] A 297 425 6 0.55 0 GTAW 
[3] A 297 425 6 0.62 0 GTAW 
[38] A 250 2 10 0.71 0 2

[39] A 1100 930 9 0.52 0.1 GMAW
[22] A 960 930 8 0.5 0.1 GMAW
[5] A 370 2 8 0.71 0.5 2

741Welding in the World (2022) 66:731–744



1 3

Appendix 2 Results of the experimental 
fatigue tests

Table 7  Fatigue test data series 
for bending-loaded joints

1 Three-point bending (3B), four-point bending (4B). 2Not specified/given

Ref fy /Rp0.2 (MPa) t (mm) aeff /t R Process

Loading  type1 Base material Filler

[11, 12] 4B 362 2 18 0.21 0.5–0.8 FCAW 
[11, 12] 4B 362 2 18 0.27 0.5–0.8 FCAW 
[10] 3B 620 765 33 0.44 0.1 GTAW 
[10] 3B 620 765 33 0.35 0.1 GTAW 
[10] 3B 620 395 33 0.35 0.1 GTAW 
[22] 4B 960 980 9 0.5 0.1 GMAW
[23] 2 264 300 16 0.28 0 SMAW
[23] 2 240 300 32 0.26 0 SMAW
[23] 2 264 300 16 0.26 0 SMAW
[23] 2 240 300 32 0.33 0 SMAW

Table 8  Fatigue test data points

1 Unsuccesful fatigue test, error in welding preparation (not included in the analyses). 2Failure from the side 
W2-W3 (geometries for these welds). 3Unsuccesful fatigue test, error in welding preparation (DOB = 0)

ID aeff,W1 aeff,W4 w ΔF Δσm Δσm,w Δσb Δσb,w Δσw Nf

(mm) (mm) (mm) (kN) (MPa) (MPa) (MPa) (MPa) (MPa) (cycles)

S96_LCX_1 4.7 4.8 6.7 45.0 83.3 78.4 34 4.6 82.9 257,820
S96_LCX_2 4.7 5.0 6.6 54.0 100.0 92.7 35 4.6 97.3 209,323
S96_LCX_3 5.0 4.9 6.3 67.5 125.0 113.8 50 6.4 120.2 172,766
S96_LCX_4 4.9 5.0 6.4 36.0 66.7 60.2 29 3.7 63.9 712,009
S96_LCX_5 4.5 5.1 6.9 45.0 83.3 78.0 109 14.6 92.5 396,423
S96_LCX_61 5.4 5.5 7.2 36.0 66.7 55.0 86 9.0 64.0 433,679
S96_LCX_7 4.7 5.0 6.8 67.5 125.0 116.2 172 22.8 139.0 127,717
S96_LCX_8 4.7 5.0 7.1 54.0 100.0 92.9 122 16.1 108.9 166,218
S96_LCX_9 5.8 5.8 6.8 67.5 125.0 97.2 38 3.5 100.8 350,642
S96_LCX_10 5.4 5.4 7.4 54.0 100.0 83.3 33 3.5 86.8 684,011
S96_LCX_112 6.3 6.1 6.9 85.5 158.3 115.1 35 2.8 117.9 175,737
S96_LCX_12 5.3 5.8 7.2 63.0 116.7 94.4 43 4.3 98.8 419,363
S96_LCX_13 6.3 6.4 6.2 63.0 117 83.2 62 4.8 88.0 395,378
S96_LCX_143 5.8 5.6 6.6 72.0 133.3 105.7 0 0 105.7 333,382
S96_LCX_15 5.7 5.8 6.8 85.5 158.3 123.3 82 7.7 130.9 169,437
S96_LCX_16 6.2 6.1 6.0 54.0 100 72.87 76 6.2 79.0 529,913
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