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Abstract
A recommendation for the application and fatigue assessment of the HFMI post-treatment was published by the IIW in 2016.
Recently, the therein recommended HFMI design curves in case of constant amplitude loading (CAL) were validated involving
test data with different base material yield strengths, increased plate thicknesses, and elevated load ratios. Continuative to this
previous work, this paper focuses on the fatigue assessment of HFMI-treated steel joints under variable amplitude loading (VAL).
Four test data sets including randomly distributed VAL and a sufficient amount of tested specimens to ensure a statistically
verified assessment are investigated. It is shown that an application of the recommended equivalent stress range approach and a
further comparison of the test results to the design curves under CAL lead to a conservative fatigue assessment if the recom-
mended value of the specified damage sum of D = 0.5 is used. Furthermore, an increased value of D = 1.0 still maintains a
conservative design as presented in the study. Based on this work involving the analysed data sets, it can be concluded that the
recommended procedure is well applicable and a conservative fatigue design is facilitated.
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1 Introduction

The fatigue strength of welded steel joints is generally inde-
pendent of the base material’s yield strength, see IIW recom-
mendation [1]. The application of post-weld-treatment tech-
niques, like the HFMI treatment, is well applicable in order to
utilize the lightweight potential of high-strength steel mate-
rials [2]. Guidelines for the fatigue assessment [3] under both
constant (CAL) [4] and variable amplitude loading (VAL) [5],

as well as for quality assurance [6], are developed and pub-
lished as IIW recommendation for the HFMI treatment [7].

Recently, the applicability of this guideline for the fatigue
strength assessment of HFMI-treated steel joints under CAL
incorporating increased yield strengths, R-ratios, and plate
thicknesses is validated by numerous fatigue tests data sets,
see [8, 9]. In case of VAL, Palmgren [10] and Miner [11]
proposed a linear damage accumulation, whereas a damage
sum D of D = 0.5 is conservatively recommended in [1, 7].

In [12], a study including medium- and high-strength steel
joints tested under VAL shows that the real damage sum Dreal

exhibits a value of 1/3 <Dreal < 3 for most of the analysed
data. In case of fluctuating mean stress states, even a lower
damage sum of D= 0.2 is investigated in [13], which is also
noted in [1]. In order to assess the fatigue strength under VAL
utilizing the recommended fatigue design values in [1], an
equivalent stress range Δσeq can be calculated, see Eq. 1.

Δσeq ¼
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Thereby, D is the specified damage sum, Δσi is the stress
range and m is the slope above the knee point of the S/N-
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curve, Δσj is the stress range and m′ is the slope below the
knee point of the S/N-curve, ni is the number of load cycles
applied atΔσi, nj is the number of load cycles applied atΔσj,
andΔσL is the stress range at the knee point of the S/N-curve.
For VAL, it is assumed to use m′= 2·m − 1 instead of the
value of m′ = 22 applicable for CAL [1, 14]. Previously pub-
lished studies [15–18] demonstrate that the specified damage
sum D for such post-weld-treated steel weld joints varies be-
tween 0.2 and 1.0, which maintains a validation of the recom-
mended procedure for a fatigue assessment of HFMI-treated
mild- and high-strength steel joints given in [7]. Therefore,
this paper focuses on the applicability of the equivalent stress
range approach considering specified damage sums in order to
validate the fatigue assessment of HFMI-treated steel joints up
to a nominal yield strength of fy = 1100 MPa of the base
material.

2 Test data

In Table 1, the VAL fatigue test data [19–21] used for the
validation in this paper is presented. Focus is laid on test data,
which includes randomly distributed VAL as well as a suffi-
cient amount of tested specimens to ensure a statistically ver-
ified assessment. All cyclic experiments are performed under
uni-axial loading at a load ratio of R = 0.1 (with tensile mean
stress) or R = − 1 (without mean stress). Two different load
spectra, namely straight line or Gaussian distribution, are in-
corporated. Thereby, the straight line spectrum exhibits a

shape exponent of ν = 1 and the Gaussian spectrum a value
of ν = 2.6, both with H0 = 2·105 load cycles, see Eq. 2 [22].
Further details to VAL fatigue tests are provided in [23].

ln Hi ¼ 1− Δσi=Δσmaxð Þν½ �⋅ln H0 ð2Þ
where Hi is the cumulative frequency of load cycles for Δσi,
H0 is the block size, and ν is the shape exponent.

Detailed information about the weld specimen geometries,
mechanical properties of the base material, HFMI treatment
and the VAL testing procedure is given in each reference. In
this study, the presented fatigue test data points of each refer-
ence are taken as basis for a further evaluation of the equiva-
lent stress range and a final comparison with the recommend-
ed fatigue design curve given by the IIW recommendation for
the HFMI treatment [7]. Thereby, only the effect of the in-
creased base material strength is considered and no further
influences, such as an increased plate thickness or R-ratio,
need to be taken into account. These further effects are vali-
dated in [8, 9] for HFMI-treated steel joints under CAL as
aforementioned.

3 Results

3.1 Fatigue test results under CAL and VAL

The fatigue test results of data set no. 1 are shown in Fig. 1
depicted with the maximum nominal stress range. The

Table 1 Overview of fatigue test data sets

Data set Reference Specimen type Yield strength (MPa) Plate thickn. (mm) R-ratio (−) Load spectrum

No. 1 [19] Long. stiffener S355 5 0.1 Straight line

No. 2 [20] Long. stiffener S700 8 − 1 Straight line

No. 3 [21] Butt joint S1100 6 0.1 Straight line

No. 4 [21] Butt joint S1100 6 0.1 Gaussian

Fig. 1 Fatigue test results of data
set no. 1 (maximum nominal
stress range)
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statistical analysis is performed by applying the standardized
procedure given in [24] evaluating the S/N-curve at a survival
probability of 97.7%. For the high-cycle fatigue strength with
load cycles above the knee point Nk, a second slope ofm′ = 22
in case of CAL and of m′ = 5 for VAL is applied [1]. Table 2
provides an overview of the statistically evaluated S/N-curve
parameters. As the tests are conducted up to a number of fifty
million load cycles, the endurable nominal stress rangeΔσ is
evaluated also at this level accordingly.

The fatigue test results of data set no. 1 reveal a significant
increase of the high-cycle fatigue strength under CAL by a
factor of about 2.1 at N = 2e6 load cycles. In addition, the
slope in the finite life regime under CAL increases due to
the HFMI treatment, which is in line with the IIW recommen-
dations [1, 7]. On the contrary, a reduced beneficial effect of
the HFMI treatment is observable under VAL. Thereby, a
fatigue strength increase of a factor of about 1.04 at 2e6 load
cycles due to the post-treatment is observed; however, at 5e7
load-cycles, a slightly enhanced benefit of roughly 1.2 is eval-
uated. As presented in [19] and furthermore investigated in
[25], this reduced effect can be majorly drawn to a certain
relaxation of the HFMI-induced compressive residual stress
state during cyclic loading.

The fatigue test results of data set no. 2 are shown in Fig. 2
depicted with the maximum nominal stress range. Table 3
provides an overview of the statistically evaluated S/N-curve
parameters. As the tests are conducted only within the finite
life regime, the endurable nominal stress range Δσ is evalu-
ated only at a defined number of two million load cycles,

which thereby equals the FAT-class. In this case, again a fun-
damental increase of the fatigue strength due to the HFMI
treatment is evaluated under CAL. Thereby, an increase by a
factor of about 3.4 in fatigue strength at 2e6 load cycles is
observable. However, under VAL, again a reduced benefit
by the post-treatment is investigated leading to an increase
factor of about 1.3 at 2e6 load cycles, whereas the tendency
is in line with data set no. 1. The evaluated slopes again fit
well to the recommended values.

The fatigue test results of data set no. 3 are shown in Fig. 3
and the results of data set no. 4 are depicted in Fig. 4 with the
maximum nominal stress range. Tables 4 and 5 provide an
overview of the statistically evaluated S/N-curve parameters
of the two data sets. In detail, under CAL, an increase of a
factor of about 1.3 for data set no. 3 and no. 4 is observed at
2e6 load cycles. Under VAL, this factor equals about 1.1 for
data set no. 3 and roughly 1.6 for data set no. 4 again at 2e6
load cycles. As the run-outs are basically in line with the
fatigue test data points in the finite life regime, no knee point
is conservatively considered in case of both test series under
VAL. In general, the benefit due to HFMI may be reduced for
butt joints exhibiting a comparably low stress concentration at
the weld toe already leading to a comparably high fatigue
strength in the AW condition. In addition, it may be assumed
that due to the use of the ultrahigh-strength steel and compa-
rably mildly notched butt joint geometry, no relaxation of the
compressive residual stress state as in case of the previous two
data sets occurs, which may explain this outcome. Further
analysis is scheduled to clarify this behaviour.

Table 2 S/N-curve parameters of
data set no. 1 Test series Δσ (N = 2e6) (MPa) Δσ (N = 5e7) (MPa) Slope m (−) Scatter 1/Tσ (−)

S355-AW-CAL 97 67 3.5 1.15

S355-AW-VAL 396 217 5.2 1.09

S355-HFMI-CAL 204 186 8.8 1.07

S355-HFMI-VAL 412 262 5.5 1.09

Fig. 2 Fatigue test results of data
set no. 2 (maximum nominal
stress range)
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3.2 Fatigue assessment of HFMI-treated joints under
VAL

As introduced, main focus of this work is to validate the ap-
plicability of the equivalent stress range approach for HFMI-
treated steel joints under VAL. Therefore, Eq. 1 is used to
calculate the equivalent nominal stress range of the VAL test
data for the HFMI-treated joints. For the calculation, the rec-
ommended slope m = 5.0 and m′ = 9 is considered. The stress
range at the knee point of the S/N-curve is evaluated according
to the applicable design curve based on the IIW recommen-
dations for the HFMI treatment [7]. Herein, it is mentioned

that a specified damage sum of D = 0.5 may be used for the
assessment. For comparison purpose, additionally a value of
D = 1.0 is applied within this study. Utilizing these values and
the data from each load spectra, the equivalent nominal stress
range for each fatigue test data point is evaluated. Finally, the
S/N-curve for a survival probability of 97.7% is statistically
evaluated and compared with the applicable design curve for
the HFMI-treated joint under CAL.

Figure 5 illustrates the results of the fatigue assessment of
data set no. 1 using a damage sum of D = 0.5. For the S355
longitudinal stiffener, a design curve of FAT 112 is applicable
under CAL according to [7]. Applying the equivalent stress
range approach and the value of D = 0.5, the resulting S/N-
curve is assessed conservatively with a FAT-class of FAT 174
and a slope of 7.2. Therefore, the recommended use of the
equivalent stress range approach with D = 0.5 is validated in
this case.

Figure 6 depicts the results of the fatigue assessment of data
set no. 1 using an increased damage sum of D = 1.0. Again,
applying the equivalent stress range approach and the value of
D = 1.0, the resulting S/N-curve is still assessed conservative-

Table 3 S/N-curve parameters of data set no. 2

Test series Δσ (N = 2e6) (MPa) Slope m (−) Scatter 1/Tσ (−)

S700-AW-CAL 67 4.1 1.76

S700-AW-VAL 502 4.0 1.26

S700-HFMI-CAL 226 5.0 1.39

S700-HFMI-VAL 659 5.6 1.17

Fig. 3 Fatigue test results of data
set no. 3 (maximum nominal
stress range)

Fig. 4 Fatigue test results of data
set no. 4 (maximum nominal
stress range)
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ly with a FAT-class of FAT 151 and a slope of 7.2. Hence, in
this case, also a higher damage sum value of D = 1.0 may be
feasible.

Figure 7 shows the results of the fatigue assessment of data
set no. 2 using a damage sum of D = 0.5. For the S700 longi-
tudinal stiffener, a design curve of FAT 125 is applicable
under CAL according to [7]. Applying the equivalent stress
range approach and the value of D = 0.5, the resulting S/N-
curve is assessed conservatively with a FAT-class of FAT 214
and a slope of 5.6. Therefore, the recommended use of the
equivalent stress range approach withD = 0.5 is again validat-
ed in this case.

Figure 8 depicts the results of the fatigue assessment of data
set no. 2 using an increased damage sum of D = 1.0. Again,
applying the equivalent stress range approach and the value of
D = 1.0, the resulting S/N-curve is still assessed conservative-
ly with a FAT-class of FAT 186 and a slope of 5.6. Hence, in

this case, also a higher damage sum value of D = 1.0 may be
again feasible.

Figure 9 depicts the results of the fatigue assessment of data
set no. 3 using a damage sum of D = 0.5. For the S1100 butt
joint, a design curve of FAT 180 is applicable under CAL
according to [7]. Applying the equivalent stress range ap-
proach and the value of D = 0.5, the resulting S/N-curve is
assessed conservatively with a FAT-class of FAT 302 and a
slope of 9.9. Therefore, the recommended use of the equiva-
lent stress range approach with D = 0.5 is again validated in
this case.

Figure 10 shows the results of the fatigue assessment of
data set no. 3 using an increased damage sum of D = 1.0.
Again, applying the equivalent stress range approach and the
value of D = 1.0, the resulting S/N-curve is still assessed con-
servatively with a FAT-class of FAT 263 and a slope of 5.6.
Hence, in this case, also a higher damage sum value ofD = 1.0
may be again feasible.

Figure 11 depicts the results of the fatigue assessment of
data set no. 4 using a damage sum of D = 0.5. For the S1100
butt joint, again a design curve of FAT 180 is applicable under
CAL according to [7]. Applying the equivalent stress range
approach and the value of D = 0.5, the resulting S/N-curve is
assessed conservatively with a FAT-class of FAT 414 and a
slope of 11.6. Therefore, the recommended use of the equiv-
alent stress range approach with D = 0.5 is again validated in
this case.

Figure 12 shows the results of the fatigue assessment of
data set no. 4 using an increased damage sum of D = 1.0.
Again, applying the equivalent stress range approach and the
value of D = 1.0, the resulting S/N-curve is still assessed con-
servatively with a FAT-class of FAT 360 and a slope of 5.6.
Hence, in this case, also a higher damage sum value ofD = 1.0
may be again feasible.

To sum up, the equivalent stress range approach using a
specified damage sum of D = 0.5 as well as D = 1.0 leads to a
conservative assessment for all analysed data sets. As present-
ed in [19], if not the recommended design curve under CAL is

Table 4 S/N-curve parameters of data set no. 3

Test series Δσ (N = 2e6)
(MPa)

Slope m (−) Scatter 1/Tσ (−)

S1100-AW-CAL 220 4.7 1.24

S1100-AW-VAL 757 3.9 1.22

S1100-HFMI-CAL 278 4.3 1.25

S1100-HFMI-VAL 808 9.9 1.25

Table 5 S/N-curve parameters of data set no. 4

Test series Δσ (N = 2e6)
(MPa)

Slope m (−) Scatter 1/Tσ (−)

S1100-AW-CAL 220 4.7 1.24

S1100-AW-VAL 470 6.3 1.30

S1100-HFMI-CAL 278 4.3 1.25

S1100-HFMI-VAL 774 11.6 1.18

Fig. 5 Fatigue assessment of data
set no. 1 (equivalent nominal
stress range). Specified damage
sum D = 0.5
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Fig. 6 Fatigue assessment of data
set no. 1 (equivalent nominal
stress range). Specified damage
sum D = 1.0

Fig. 7 Fatigue assessment of data
set no. 2 (equivalent nominal
stress range). Specified damage
sum D = 0.5

Fig. 8 Fatigue assessment of data
set no. 2 (equivalent nominal
stress range). Specified damage
sum D = 1.0
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Fig. 9 Fatigue assessment of data
set no. 3 (equivalent nominal
stress range). Specified damage
sum D = 0.5

Fig. 10 Fatigue assessment of
data set no. 3 (equivalent nominal
stress range). Specified damage
sum D = 1.0

Fig. 11 Fatigue assessment of
data set no. 4 (equivalent nominal
stress range). Specified damage
sum D = 0.5
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used as basis for the calculation, but an experimentally evalu-
ated S/N-curve, the damage sum values may be reduced down
toD = 0.3 or even toD = 0.2 in case of fluctuating mean stress
states as also noted in [1].

4 Conclusions

This paper aims to validate the applicability of the IIW rec-
ommendations for the HFMI treatment in case of HFMI-
treated steel joints under VAL. Focus is laid on test data,
which includes randomly distributed VAL as well as a suffi-
cient amount of tested specimens to ensure a statistically ver-
ified assessment, whereas a total number of four test data sets
is analysed. Applying the recommended equivalent stress
range approach and comparing the results with the design
curves under CAL, it is shown that the use of the recommend-
ed value of the specified damage sum of D = 0.5 leads to a
conservative fatigue assessment in all cases. Furthermore, an
increased value of D = 1.0 still maintains a conservative de-
sign. Based on this work involving the analysed data sets, it
can be concluded that the recommended procedure is well
applicable and a conservative fatigue design is facilitated. As
this study includes only a limited number of currently avail-
able data sets, a further validation considering additional VAL
test data of HFMI-treated steel joints is scheduled in the
future.
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