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An analytical solution for temperature distribution in fillet arc welding
based on an adaptive function
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Abstract
This paper presents an analytical solution that can be applied to predict temperature distribution in fillet welds using adaptive
function approach developed by authors. The adaptive function method is a general approach to solve the partial differential
equation of engineering problem based on developing a flexible function of dimensionless parameters, which circumvent the
simplification assumptions required in numerical and analytical solutions proposed so far. This paper intends to develop the
adaptive function by manipulating Rosenthal’s equation so that it can be adjusted according to the experimental data, which are
the weld pool dimensions and temperature measured at some arbitrary points. To apply the adaptive function in a fillet weld, a
new coordinate system is defined in which the x-axis is parallel to the legs of the fillet weld (width direction of the weld plate), the
y-axis is parallel to the welding trajectory, and the z-axis is parallel to the penetration of the weld (depth direction of the weld
plate). A polar coordinate system is defined for the corner part of the fillet weld. The adaptive function in this part is defined to
preserve the consistency of the isotherms. The experimental data were provided by performing GTAWon a stainless steel 316L
with various welding current. The results indicate that the novel approach is fast and simple and agrees well with results from
experiments.

Keywords Welding simulation . Heat flow . Analytical solution . Fillet weld

Nomenclature
am Adaptive function parameter for x direction
bm Adaptive function parameter for y direction
B Adaptive function parameter
cm Adaptive function parameter for z direction
c Specific heat
d Adaptive function parameter
D Depth of the weld pool
k Heat conductivity
Lr Length of the rear tail of the weld pool
Lf Length of the front part of the weld pool

M Modification function parameter
N Modification function parameter
Q Net heat input into the weld sample
Q˙

�

Energy (heat) density
R Distance between the moving heat source and point

of interest
T(x,ξ,z) Temperature
Tm Melting point
Tmax Maximum temperature in the origin of the moving

coordinates
T0 Initial temperature
t Time
v Welding speed
x, y, z Coordinates of a point
W Width of weld pool

Greek symbols
α Thermal diffusivity
ξ Moving coordinate parallel to the welding trajectory
ρ Density
ω Dimensionless parameter
δ Adaptive function parameter
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1 Introduction

The methods that have been proposed to solve the heat flow
problem in welding can be assigned to one of three major
groups: analytical, modified analytical, and numerical ap-
proaches [1, 2].

From a practical perspective, the analytical solution has the
advantage of being extremely fast [3]. However, the applica-
tion of this solution is restricted because of its limited accuracy
in the case of engineering problems [4]. As a consequence,
several authors have attempted to modify the analytical solu-
tion to achieve higher accuracy, but these attempts have
shown only limited success [5–8]. On the other hand, numer-
ical solutions are relatively accurate, but require high-
computational costs [9].

From the physical perspective, the main obstacles to find-
ing an appropriate solution to the heat flow problem in
welding can be summarized as follows:

& The first problem is the existence of four physically dif-
ferent zones that are involved in the welding process in-
cluding the surrounding air, plasma, molten pool, and sol-
id region in which different heat transfer modes are dom-
inant. To overcome these problems, all zones except the
solid region are usually ignored and substituted by a
boundary condition.

& The second problem concerns the boundary conditions,
which are difficult to determine correctly. The heat source
model and heat flux in the boundary of the model, in
particular, are both equally important and challenging is-
sues [10]. Calibrating the heat source model, which is
always done by trial and error, results in higher costs for
a welding simulation [11].

& The third obstacle is the temperature-dependent
thermophysical properties, which result in the nonlinearity
of the partial differential equation. The nonlinear partial
differential equations can rarely be solved by analytical
methods, and numerical solution of them is achieved by
iterative methods which increase the calculation time [10].

Most of the analytical and modified analytical solutions
have been developed for a bead on plate welding [3, 7, 8],
while fillet arc welding is more commonly used in industries
[12]. Jeong and Cho developed an analytical solution for the
transient temperature distribution in fillet arc welding by

considering a bivariate Gaussian distribution [12]. The inher-
ent characteristics of the numerical solution allow researchers
to consider complex welding geometry, while the analytical
solution still encounters with the problem of complex
geometries.

A new approach is presented here to solve the partial dif-
ferential equation (PDE) based on an adaptive function in
order to overcome the obstacles described. In this paper, a
simple technique is presented which can be applied in a large
number of cases to circumvent the difficulties of the heat flow
solution in welding.

2 Experimental setup

In order to show the evolution of the adaptive function, a Gas
Tungsten Arc Welding (GTAW) process with welding param-
eters given in Table 1 was applied on a 316L stainless plate
with the dimensions given in Table 2, and the chemical com-
position given in Table 3. Experimental data including weld
pool dimension and temperatures measured at some arbitrary
points were extracted to be used in modeling and validation of
the models. The temperature history of points at positions
shown in Fig. 1 were measured by type K thermocouples
(0.3 mm in diameter). After welding, the width (W), depth
(D), rear tail (Lr), and front radius (Lf) of the weld pool were
measured on the sample and are presented in Table 4.

3 Solution procedure

3.1 General (Rosenthal) solution

According to the law of energy conservation, the partial dif-
ferential equation of heat flow due to a moving heat source can
be described as follows:

ρc
∂T
∂t

þ v ∇T
� �

¼ ∇ : k∇Tð Þ þ Q˙ ð1Þ
Table 1 Parameters of the welding process

Voltage
(V)

Welding
current
(A)

Speed
(mm/s)

Shielding
gas

Flow
rate
(cfh)

Electrode
diameter
(mm)

Arc
length
(mm)

14.6 150 1.5 Argon 40 2.4 3

Table 2 Dimensions of the welding plate

Plate size (mm)

Width Length Thickness

100 200 10

Table 3 Chemical composition of the stainless steel 316L plate

Element C Mn P S Si Cr Ni Mo N

Weight % 0.03 2 0.045 0.03 0.75 18 14 3 0.1
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If the heat source travels along the y-axis, and the physical
properties and the temperature distribution around the heat
source are assumed to be constant, Eq. 1 can be rewritten in
a quasi-steady state [3]:

ξ ¼ y−vt ð2Þ
ρcv
k

∂T
∂ξ

¼ ∇ 2T þ Q̇
k

ð3Þ

According to the Rosenthal assumptions [3] and the solu-
tion to the Helmholtz equation, the general solution will be:

T ¼ T0 þ Q
2πkR

e −ρcv
2k Rþξð Þð Þ ð4Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ξ2 þ z2

q
ð5Þ

The principle of the new method is based on developing a
function so that it can be matched to the measured temperature
by determining some limited parameters and this is termed the
adaptive function.

3.2 Result of the Rosenthal’s solution

Figure 2 shows the temperature distribution on the upper sur-
face of the plate as calculated with the Rosenthal equation
(Eq. 4). The constant thermo-physical properties of AISI
316L stainless steel at room temperature were used for the
temperature calculation (Table 5), and the arc thermal efficien-
cy of GTAW was considered to be 0.7 [13].

As shown in Fig. 2, the temperature at the origin of the
moving coordinate is infinite due to the assumed point heat
source. Since the Rosenthal solution considers a conduction

Fig. 1 Schematic of a quarter of
the welding plate and the position
of the thermocouples

Table 4 Weld pool
dimensions (mm) W Lf Lr D

4.5 3.5 7 1.9

Fig. 2 Temperature distribution
on the upper surface of the 316L
plate as calculated with the
Rosenthal equation
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heat transfer mode with constant physical properties of the
material, while the fluid flow convection is the dominant heat
transfer mode in the weld pool, the predicted weld pool di-
mensions are different compared to the measurement as
shown in Fig. 2.

By considering the quasi-steady state condition, the mea-
sured temperature history of a point can be converted into a
spatial temperature distribution along the y-axis using Eq. 2.
Accordingly, the temperature distribution along the y-axis, 6
and 10 mm away from the centerline, were calculated accord-
ing to the recorded temperatures at points P1 and P3 (Fig. 2).

Figure 3 shows that the heating and cooling rates predicted
by Eq. 4 are significantly different from the measurement,
which is partly due to the simplified boundary conditions
and partly due to assumed constant physical properties of
the material.

3.3 Configuration of the adaptive function

Regardless of the restrictive assumptions that have been made
by Rosenthal, the rigid formulation of Eq. 4 does not allow for
changes in such a way that the result can be matched to the
measured temperature. For instance, it is not possible to match
the calculated melting point isothermwith the observed fusion
line by changing the parameters of Eq. 4.

However, this paper intends to show the development of an
adaptive function describing the temperature distribution by

manipulating the Rosenthal equation so that the calculated
fusion line coincides with the measurement.

3.3.1 Matching the weld pool

The term R (Eq. 5) in the Rosenthal solution is the mathemat-
ical equation of a sphere, which is a special form of an ellip-
soid. By replacing R with R*

p (Eq. 6), which is the equation of

an ellipsoid, the calculated melting isotherm can be matched
with the measured fusion line by finding the parameters of the
Eq. 6 including a, b, c, and d.

R*
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
a

� �2
þ ξ

b

� �2

þ z
c

� �2
þ d2

s
ð6Þ

T ¼ T0 þ Q
2πkR*

p

e −ρcv
2k Rþξð Þð Þ ð7Þ

Equation 7 can be simplified by bringing the term Q
2πk

under the square of R*
p, thus simplifying the mathematical ex-

pression of T.

Rp ¼ Q
2πk

� R*
p ¼

Q
2πk

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
a

� �2
þ ξ

b

� �2

þ z
c

� �2
þ d2

s
ð8Þ

am ¼ Q
2πk

� a; bm ¼ Q
2πk

� b; cm ¼ Q
2πk

� c; dm

¼ d
Q

2πk

� � ð9Þ

T ¼ T0

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
am

� �2
þ ξ

bm

� �2
þ z

cm

� �2
þ dm2

r e −ρcv
2k Rþξð Þð Þ ð10Þ

Table 5 Material properties of AISI 316L at room temperature used for
the Rosenthal equation [14–16]

Heat
capacity
(J/kg °C)

Density
(kg/m2)

Conductivity
(J/m)

Melting
point
(°C)

495 7990 15 1400

Fig. 3 Comparison between the
measurement and calculations
using the Rosenthal equation
according to temperature
measurements taken at points 1
and 3
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Therefore, the adaptive function is described as follows:

T ¼ T0 þ 1

Rp
e −ρcv

2k Rþξð Þð Þ ð11Þ

Rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
am

� �2

þ ξ
bm

� �2

þ z
cm

� �2

þ dm2

s
ð12Þ

The term ρc
2k is a function of the heat diffusivity, which is a

temperature-dependent material property in solid state, while
the heat diffusivity in the weld pool strongly depends on the
mass transfer. Since it is not possible to consider the temper-
ature dependency of the physical properties and the mass
transfer with an analytical equation, the term ρc

2k v is substituted
by a constant value B, which is considered to be a parameter of
the adaptive function.

B ¼ ρc
2k

v ð13Þ

Therefore, the adaptive function is defined as follows:

T ¼ T0 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
am

� �2
þ ξ

bm

� �2
þ z

cm

� �2
þ dm2

r e −B Rþξð Þð Þ ð14Þ

The parameter dm removes the singularity in the origin of
the moving heat source (Eq. 15), and it is the main factor
which determines the maximum temperature at the origin
(center of the heat source). By considering the weld pool di-
mensions and an estimated maximum temperature Tmax from
the experiment, the optimum values of the parameters of
Eq. 14 are determined so that the calculated fusion line coin-
cides with the measurement. In accordance with Fig. 4,
representing the weld pool, the temperature of P1 to P5 are
known. Therefore, a set of five equations with five unknown
parameters can be constructed and solved.

Tmax ¼ T 0; 0; 0ð Þ ¼ T0 þ 1

dm
ð15Þ

Tm ¼ T W ; 0; 0ð Þ ¼ T0 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W
am

� �2
þ dm2

r e −BWð Þ ð16Þ

Tm ¼ T 0; Lf ; 0
� � ¼ T 0 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L f

bm

� �2
þ dm2

r e −2BL fð Þ ð17Þ

Tm ¼ T 0;−Lr; 0ð Þ ¼ T0 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr
bm

� �2
þ dm2

r ð18Þ

Fig. 5 Temperature distribution
on the upper surface of 316L plate
calculated by Eq. 14 and
measured values

Table 6 Calculated parameters of the adaptive function obtained by
solving the set of equations (Eq. 15–19)

am bm cm dm B

10.6567 11.5913 3.6575 4.05 × 10−4 52

Fig. 4 Schematic of the assumed spatial volume of the weld pool
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Tm ¼ T 0; 0;−Dð Þ ¼ T0 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D
cm

� �2
þ dm

2

r e −BDð Þ ð19Þ

The set of equations (Eq. 15–19) were solved in accordance
with the weld pool dimensions given in Table 4, and consid-
ering an assumed maximum weld pool temperature of
2500 °C. The calculated parameters of the adaptive function
(Eq. 14) are summarized in Table 6.

Figure 5 shows the temperature distribution on the upper
surface of the plate, which was calculated with the adaptive
function and the parameters given in Table 6. As shown in
Fig. 5, the singularity at the origin is removed, and the calcu-
lated fusion line coincides with the measurement.

However, the calculated temperature in the rest of the plate
(Fig. 6) still differs from the measurements taken.

3.3.2 Modification function for matching the heat-affected
zone

The determined parameters am, bm, and cm cause the adaptive
function to match the real fusion line. But, as shown in Fig. 6,
the distribution of temperature in the heat-affected zone still
differs from measured ones. In order to adjust the adaptive
function’s result so that the calculated temperature match
those in reality everywhere in addition to the fusion line, pa-
rameters am, bm, and cm have to be adjusted accordingly.

Therefore, a modification function f is defined based on a
dimensionless parameter ω. The dimensionless parameter ω
changes the scale from a length unit (m) to the scale of the
weld pool dimensions, and it is expressed by the ratio of the
coordinate of the point of interest to the dimensions of the
weld pool in the same direction as defined in Eq. 20.

Fig. 6 Comparisons between the
measurement and calculations
using Eq. 14

Fig. 7 Temperature distribution
on the upper surface of 316L plate
calculated by Eq. 23

Table 7 Estimated parameters of the modification function

M Nx Nyf Nyr Nz

0.45 0.45 0.45 − 0.24 − 0.44
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ωx ¼ x
W

;ωξf ¼ ξ
Lf

;ωξr ¼ ξ
Lr

;ωz ¼ z
D

ð20Þ

In order to avoid changing the melting isotherm, the mod-
ification function f(ω) should be 1 everywhere along the fu-
sion line, which is defined by ω = ± 1.

f �1ð Þ ¼ 1 ð21Þ

The modification function is proposed as follows:

f ωð Þ ¼ Mω2−M
ffiffiffiffiffi
ω2

p
þ 1

� �N
ð22Þ

Regardless of the amount of the M and N, the result of
the modification function is always 1 for inputs of ± 1.
The modification function is used for all axes: the x-axis,
y-axis toward the back of the welding torch (ξ < 0), y-
axis toward the front of the welding torch (ξ > 0), and the

z-axis. The final form of the adaptive function is de-
scribed in Eq. 23–25, and the estimated parameters of
the modification function are presented in Table 7. The
parameters of the modification function are estimated
based on decreasing the overall error of the computation.

T ¼ T0 þ 1

Rp
e −B Rþyð Þð Þ ð23Þ

Fig. 8 Comparison between the
measurement and calculations
using Eq. 23

Fig. 9 Local and global
coordinate systems for a fillet
weld

Table 8 Parameters of the welding processes and size of weld plates

Test
no.

Plate size (mm) Welding
current
(A)

Voltage
(V)

Speed
(mm/
s)Width Length Thickness

1 100 200 10 150 14 1.5
2 175 15
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Rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

x
W

� �
� x

am

� �2

þ f
ξ

Lf

� �
� ξ

bm

� �2

þ f
z
D

� �
� z

cm

� �2

þ dm2

s
; ξ≥0

ð24Þ

Rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

x
W

� �
� x

am

� �2

þ f
ξ
Lr

� �
� ξ

bm

� �2

þ f
z
D

� �
� z

cm

� �2

þ dm2

s
;ξ < 0

ð25Þ

The temperature distribution was calculated using Eq. 23
with the estimated parameters of the modification function
given in Table 7. Figure 7 and Figure 8 show that the mea-
sured temperature and the calculated temperature match one
another along with the matching of the calculated and mea-
sured fusion line.

4 Adaptive function for a fillet weld

In order to apply the adaptive function to fillet arc welding, the
welding geometry, and the weld pool are divided into three
parts, including the weld plates and the conjunction of the
plates as shown in Fig. 9.

The adaptive function is applied in each part separately, and
accordingly, a local coordinate system is defined for each part.
Parts 1 and 3 are assumed to be a plate subjected to a heat
source which produces a weld pool with distinct dimensions
just similar to a bead on plate welding. According to this
assumption, the local coordinate system is defined so that
the z-axis is parallel to the weld penetration direction (depth
direction of the weld plate), the x-axis is parallel to the fillet
weld legs (width direction of the weld plate), and the y-axis is
parallel to the welding trajectory (Fig. 9). The parameters of
the adaptive function are determined according to the weld
dimensions of parts 1 and 3.

In the case of part 2, it is assumed that the heat flows
radially within part 2 and, thus, a polar coordinate system is
defined for this part. The adaptive function for this part is
redesigned so that the consistency of the calculated tempera-
ture distribution can be preserved. Accordingly, a new term as
a function of the polar angle (φ) is defined so that the result
calculated by the adaptive function for each part will be equal
in the planes in which the parts are connected.

Fig. 10 Welding setup and
positions of the thermocouples

Table 9 Weld pool size (mm)

Test no. W1 and W3 Lf Lr D1 and
D2

D3

1 4.5 3.5 7 1.7 1.9

2 5 4 9.8 1.9 2.1
Fig. 11 Weld cross-sections
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According to Eqs. 26 and 27, the term containing (φ) is
zero in the connection planes and, regardless the local coordi-
nate systems, the calculated temperature is always the same.
The parameter δ of the new term is determined according to
the weld penetration D2 in part 2 (Eq. 28).

Rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

ξ
Lf

� �
� ξ

bm

� �2

þ f
z
D2

� �
� z

cm

� �2

−δ
z

zþ dm

� �2

cos2φþ dm2

s
;ξ≥0

ð26Þ

Rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

ξ
Lr

� �
� ξ

bm

� �2

þ f
z
D2

� �
� z

cm

� �2

−δ
z

zþ dm

� �2

cos2φþ dm2

s
; ξ≤0

ð27Þ

δ ¼
D2
cm

� �2
þ dm2− e −BD2ð Þ

Tm

� �2

D2
D2þdm

� �2 ð28Þ

5 Example

5.1 Model description

Two stainless steel 316L plates of equal size were welded
using GTAW without a filler metal. Two different welding
parameter sets were applied, which are presented in Table 8.

In order to verify the adaptive function method, eight ther-
mocouples were installed on the welding plates as shown in
Fig. 10. The weld pool dimensions for each part of the fillet
weld weremeasured and are given in Table 9. Figure 11 shows
the cross-section of both fillet welds.

Table 10 Estimated parameters of the modification function

Test no. B M Nx Nyf Nyr Nz am bm cm dm δ

1 52 0.45 0.45 0.45 − 0.24 − 0.44 10.65 11.59 2.79 4.05 × 10−4 9.38 × 10−8

2 52 0.45 0.45 0.45 − 0.24 − 0.44 13.17 16.38 3.25 4.05 × 10−4 9.38 × 10−8

Fig. 12 Temperature distribution in the weld cross-section ξ = 0

Fig. 13 Calculated and measured
time-temperature curves at point
no. 1 for tests nos. 1 and 2
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5.2 Results and discussion

Using experimental data, the parameters of the adaptive
function were calculated for both experiments and are
presented in Table 10.

The estimated parameters of the modification function includ-
ingM, Nx, Nyf, Nyr, andNz are the same for both weldings as well
as for the bead on plate welding presented in Table 7. The param-
eters of the adaptive function increase by increasing the weld pool
dimensions which is, in turn, because of the higher heat input.

Figure 12 shows the temperature distribution in the weld
cross-section which indicates the consistency of the isotherms.
Figures 13, 14, and 15 show the measured and calculated
temperature for points no. 1, no. 3, and no. 7. The adaptive
function results agree well with the measurement.

6 Conclusion

The solution to the heat flow problem in welding proposed in
this paper is a general method that can be used to solve the

partial differential equation with high accuracy and low com-
putation cost. The parameters of the adaptive function are
directly determined by temperature measurement and no in-
formation about material properties and heat source parame-
ters are required.

In addition, the proposed adaptive function enables re-
searchers to conduct further investigations on the effects of
welding circumstances (welding heat input, welding traveling
speed, and geometry of the weld piece) on the temperature
distribution by directly using experimental data.

Acknowledgements Open access funding provided by Graz University
of Technology.
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Fig. 14 Calculated and measured
time-temperature curves at point
no. 3 for tests nos. 1 and 2

Fig. 15 Calculated and measured
time-temperature curves at point
no. 7 for tests nos. 1 and 2
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