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Abstract
Synthetic generation of realistic materials for testing of process–structure–property (PSP) relationships in computational 
materials science has gained significant traction over the past two decades. Generation tools continue to lag in some aspects 
of realism, leading to uncertainty and errors in simulating material response. The experimental collection of information 
to guide generation of 3D synthetic structures remains costly, time consuming, and challenging. These challenges are com-
pounded by limitations of stereology, which permits estimation of 3D microstructural statistics from 2D observations under 
restrictive assumptions on constituent morphologies and size distributions and can be difficult to apply to microstructure 
metrics like constituent orientation distribution and clustering. This work seeks to overcome these challenges by introduc-
ing a framework for learning probable 3D microstructure statistics by minimizing the loss determined by matching statistics 
obtained from 2D observations via synthetic microstructure generation software (e.g. Dream.3D) and stereological principles. 
This framework is applied to short carbon fiber composite structures printed from an additive manufacturing process, Direct 
Ink Writing, with the hope that the framework could generalize to other particulate structures as well as allow for simulation 
and design of materials structure.
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Introduction

Additive manufacturing (AM) continues to gain atten-
tion in a wide variety of industrial sectors for its ability to 
create complex geometries and integrate multiple materi-
als into one product. Even with the interest in AM, there 
are still several unknowns that limit its application. Pro-
cess–structure–property (PSP) linkages define the relation-
ships between materials, their manufacturing processes, and 
their subsequent performance. These relationships remain 
nascent for many additive manufacturing processes. A better 
understanding of PSP linkages leads to more effective and 

efficient material designs for specific applications and manu-
facturing processes. A common process for developing PSP 
relationships requires experimental generation of batches of 
physical samples and destructive testing/characterization, 
leading to high costs (both in time and money) associated 
with material and process development. Collection of this 
data is usually done in the 2D space to mitigate some of the 
time and cost issues mentioned but 3D data is needed for 
digital analysis of material properties. If the collected 2D 
data could be used to estimate a 3D structure for materials 
testing, studies into the PSP linkages of additive manufactur-
ing could be moved to a digital environment. This research 
looks to create a digital tool that estimates 3D generation 
parameters from 2D data and utilizes said 3D generation 
parameters to simulate a statistically equivalent 3D struc-
ture for finite element analysis. Using 2D data to estimate 
3D data would assist in the studying of process parameter 
effects on the structure while generating 3D data from said 
2D observations would facilitate the effects of structure on 
the material properties. The material of choice for testing the 
framework, chopped carbon fiber polymer composites, was 
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obtained from the Air Force Research Laboratory from their 
Direct Ink Writing (DIW) additive manufacturing process.

This paper introduces the first iteration of a statistical 
matching algorithm, guided in part by stereological princi-
ples, that can be applied to generate 3D structures from 2D 
observations. “Background” section covers the background 
of topics such as stereology, material simulation, DIW, 
characterization of microstructures, and statistical tests. 
“Methods” section introduces the methods for completing 
and testing the model mentioned above. “Results” section 
analyzes the robustness of the framework through the lens of 
three case studies with varying fiber orientation along with 
collected experimental data. “Discussion” section discusses 
implications of the results relative to modeling of 3D struc-
tures from 2D data. Finally, “Conclusion” section concludes 
with future considerations to advance the framework.

Background

An additively manufactured (AM) short carbon fiber com-
posite was chosen for this demonstration with the hope that 
the framework could be applied to other particulate struc-
tures as the Air Force Research Laboratory showed interest 
in the material and AM process. The AM process, Direct Ink 
Writing (DIW), deposits ink onto a build plate and prints 3D 
structures. One of the major differences is the ink, which has 
varying flow mechanics when compared to other 3D print-
ing materials such as filaments [1]. Another is the ability of 
DIW to print thermoset composites for better thermal and 
mechanical properties [1]. Direct Ink Writing can be used 
to make polymer and ceramic composite matrices with Kev-
lar and carbon fibers for reinforcement of the matrix [2, 3]. 
This greatly improves the applicability of DIW as the poly-
mer alone does not have the necessary material properties. 
Even with the advantages of DIW, the effects of its process 
parameters on the structure and properties are still under 
extensive research.

A digital framework that utilizes collected 2D data to 
estimate 3D geometries could facilitate the continued study 
of DIW. Geometric model packing algorithms for particulate 
structures driven by statistical distributions are common in 
the material science community and have been demonstrated 
in tools created from years of research and development 
[4–6]. A popular method is the use of two-point correla-
tion functions as a metric for estimating 3D data from 2D 
observations [4, 7–9]. One study utilized two-point correla-
tion functions and simulated annealing to model inclusion 
secondary phases of anisotropic materials [4]. Another study 
used focused ion beam and scanning electron microscopy 
(SEM) to collected 2D images of halloysite nanotube poly-
propylene composite and applied an iterative optimization 
loop by comparing two-point correlation functions of the 

current synthetic structure to the experimental structure 
[7]. This process resembles the research’s current process 
with the main differences in how the fiber features were 
extracted along with how they were compared to the syn-
thetic ground truth or experimental images. An issue with 
the two-point correlation is the loss of information and diffi-
culty in determining which features of interest were captured 
in the two-point correlation [7, 10]. A study looked to apply 
phase-recovery algorithms to try and solve this problem for 
particulate structures with some success as well as limita-
tions mentioned that are inherent to any n-point correlation 
function [8].

Additionally, many of these approaches use 2D views to 
approximate 3D microstructure properties [5]. This specific 
instance tried to pack ellipsoids to represent particles of an 
aluminum alloy by calculating pair correlation functions, a 
function of distance and angular orientation [5]. Another 
study used serial sectioning to collect 2D data of a 3D 
particle reinforced metal matrix composite and applied a 
reconstruction software to obtain an approximation of the 
3D structure for material property analysis [11]; serial sec-
tioning is used to collect data in this research project. While 
this study is able to estimate 3D structure from 2D observa-
tions, it only recreates the data collected instead of creat-
ing a statistically similar structure; this limits its applica-
bility in material exploration. Many simulation studies into 
composites focus on the fiber orientation and alignment as 
this directly affects the observed material properties in dif-
ferent loading directions [12–14]. The use of SEM images 
and scale-invariant feature transformations (SIFT) allowed 
matching of points of interest in 2D to create a 3D point 
cloud for reconstruction of the fiber orientation distribu-
tion [12]. Optical microscopy can also be used to collect 2D 
micrographs for measurement of fiber orientation; a varia-
tion in fiber shape caused issues with this method [14]. A 
more researched additive manufacturing process, injection 
molding, continues to investigated the fiber orientation and 
effects of process parameters on said alignment [15]. In 
terms of image processing, template matching and Voronoi 
distances allow for calculation of fiber orientations in unidi-
rectional thermoplastic composites as long as the orientation 
is calculated over a distance far larger than the diameter of 
the fiber [16].

Classical statistics approaches based on simple geomet-
ric models (e.g., spheres or ellipsoids) [4, 5, 8, 17, 18] can 
lack realism in generating microstructures and cause issues 
with simulation of digital materials. Microscale features 
(i.e., fibers, grains, etc.) are the focus of the presented work. 
Empirical distributions of important feature metrics such 
as shape, size, area/volume fraction, and morphological 
orientation are statistically matched in an iterative man-
ner. Many human-defined statistics and parameters have 
been explored, such as n-point statistics, grain diameter, 
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misorientation angle, and aspect ratios [6, 19]. These meth-
ods use statistical measures to generalize the distribution of 
the aforementioned parameters, resulting in software like 
Dream.3D, IMOD, Fovea Pro, and MicroImager that can 
create synthetic microstructures [19, 20]. Another tool, Roc-
pack, uses a packing algorithm to simulate microstructure (a 
particulate composite) with different packing fractions for 
different phases [21]. These tools/approaches allow for easy 
interpretation through statistical distributions drawn from 
experimental microstructure observations. Some issues with 
this classical approach include representing and reconstruct-
ing outliers, capturing the mesoscale fluctuations in materi-
als, and successfully reconstructing intricacies associated 
with shapes in the microstructure [6]. Many of the statisti-
cal models fail to effectively include extrema of the micro-
structure due to the use of distributions like the lognormal 
distribution; these features usually determine the fatigue and 
fracture properties of the material [19]. Further, the exact 
form of these statistical distributions requires large numbers 
of observations, ideally in 3D. However, collection of 3D 
data remains a costly and time-consuming challenge, as this 
data requires more complex collection and post-processing 
methods[22]. While use of 3D data better defines the mate-
rial across varying scales, the trade-off with said benefits and 
data collection/processing remains difficult to balance [22].

The approximation of 3D parameters from 2D data 
(stereology) has been applied within the material science 
research community [23]. Stereology is based on statistical 
probabilities of 2D observations given 3D objects, which are 
often analytically derived for simple objects like spheres. An 
example of determining the size, shape, and orientation of 
elliptical observations given ellipsoidal objects can be found 
in [24] and is shown in Fig. 1. In the paper by Ferguson, 
the dominant axes of an ellipsoid sliced in any 2D section 
plane were found, which aids in approximation of orienta-
tion based solely off 2D section images [24]. An applica-
tion of stereology to cylindrical structures, akin to the short 
carbon fibers, estimated the orientation distribution from a 
single 2D section [25]. Another study in the field of concrete 
applied X-ray projectional radiography for in situ 2D data 
collection and estimated fiber volume fraction and spatial 
distributions with stereological principles [26]. These stud-
ies show the applicability of stereology to short carbon fiber 
composite modeling and its ability to improve the usability 
of 2D data for 3D problems.

An important aspect of any synthetic material generation 
process is comparing the generated structure to the target. 
In the case of geometric model packing approaches, this 
generally means comparing statistical distributions. Sev-
eral methods can be used, with the Student’s T Test and its 
variations being the most popular. However, the Kolmogo-
rov–Smirnov (KS) test better suits the similarity comparison 
problem. This test compares the differences between two 

cumulative distribution functions (CDFs) and outputs a p 
value that describes the absolute value of the maximum of 
all differences between those CDFs [27]. Another poten-
tial test is a variation of the KS test known as the Ander-
son–Darling (AD) test, which takes the weighted sum of 
all the differences of two CDFs. Representations of both 
tests are presented in Fig. 2 [27]. The AD test allows for 
improved measurement of variance differences within the 
CDFs, which could lead to more realistic similarity measur-
ing results. Finding the right statistical test allows for more 
concrete analysis of the validity of the results while also 
finding statistically similar structures.

Methods

A known ground truth structure was needed to effectively 
test the framework; however, there are limitations to using 
real 3D data for this purpose. First, the ground truth would 
potentially have some bias introduced by the processing 
of the experimental data given that the actual 3D distribu-
tions would not be known analytically. Second, it would 
be difficult to obtain multiple ground truth structures 
with differing 3D distributions to test the robustness of 
the framework. For these reasons, a synthetic structure 
was created in Dream.3d by packing ellipsoids into a 3D 
volume to approximate fibers. The controlling parameters 
for the size, shape distribution, and volume fraction of the 
fibers were selected arbitrarily. The mean ( �3D ) and stand-
ard deviation ( �3D ) of the size distribution, along with 

Fig. 1  Stereological method of 2D Slice of 3D ellipsoid for determi-
nation of new dominant axes of ellipse in 2D observed in [24]. This 
method allows for estimation of the 2D angular distributions in a 
plane, which can be used to update the 3D angular distribution
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the aspect ratio ( r3D ), orientation distribution, and vol-
ume fraction ( f 3D ) were used to control the distributions 
of the features of interest. Based on previous work, these 
parameters relate directly to material properties in particu-
late microstructures [19, 20]. The ground truth structure 
was sized in order to fit enough fibers, at least 1000, to 
properly sample the population distribution of fibers. For 
the ground truth statistical set, ten goal structures of size 
256 × 256 × 256 pixels were generated for proper sampling 
of the fiber feature space. 2D slices were then taken in 
three orthogonal planes (XY, XZ, YZ) and used for collec-
tion of fiber statistics. A set of example slices is shown in 
Fig. 3. The 2D statistical distributions of the target ( �2D

gt
 , 

�2D
gt

 , r2D
gt

 , f 2D
gt

 ) drive the loss associated with the iterative 
optimization of the 3D generation parameters needed to 
emulate the observations of the ground truth structure.

Experimental data collected from DIW printed parts 
was applied to the workflow to ensure its application to 

real microstructures. The 3D dataset was not collected for 
this experimental data so the only results were collected in 
the 2D, limiting the comparisons of this case to omly 2D; 
see “Experimental Data Case Study” section. The algo-
rithm works to match the statistical distributions of the 2D 
target observations (the ground truth) structure. An over-
view of this algorithm is shown in “Optimization Loop” 
section. The next section will cover the fiber orientation 
control methodology before expanding on the rest of the 
optimization loop.

Orientation Control

Matching the morphological orientation distribution of 
features remains an important aspect of the generator and 
impacts the ability to match other statistical measures of 
the 2D observations, f (�) . Unlike the other microstructure 
descriptors discussed above, there is no scalar value that 
adequately captures the orientation distribution of fibers: 

Fig. 2  Visualization of Kolmogorov–Smirnov (KS), maximum dif-
ference between CDFs, and Anderson–Darling test, weighted sum 
of differences between CDFs. Both tests return a statistic and corre-

sponding p value. Comparison of CDFs allows for a better compari-
son of similarity of the whole distribution [27]

Fig. 3  XY (Left) and YZ (Right) 
2D slices of Aligned X case 
study goal structure syntheti-
cally created with Dream.3d. 
The chopped fibers were 
approximated by packing ellip-
soids and 2D views compared 
to the experimental data showed 
promise



Integrating Materials and Manufacturing Innovation 

furthermore, it cannot be approximated as a classic sta-
tistical distribution. Without scalar parameter(s), there is 
not an intuitive way to adjust the estimated 3D distribu-
tions, F(�) , during the optimization process to match the 
observations of the target structure. A process to map the 
fiber orientations observed in the 2D observations to the 
3D orientation distribution is needed.

There are many different reference frames for repre-
senting the orientation distribution of a structure [28]. 
Dream.3d utilizes the homochoric representation, which 
is a generalization of the Lambert equal-area mapping 
[28]. The homochoric representations for rotations, r(�) 
are shown in Eq. 1:

Working in the homochoric space, in theory, makes it eas-
ier to equally sample the orientation space [28]. Limiting 
the acceptable range of angles for this representation also 
reduces issues with symmetry of the ellipsoids. By making 
it easier to sample the orientation space equally, Dream.3d 
applies the homochoric space to create equal volumetric 
bins. By controlling each of the probabilities of an ellipsoid 
having an orientation that corresponds to a bin, a probability 
distribution for the full orientation space is created. This 
method decomposes the observed 2D orientation distribu-
tion into a weighted sum of the many characteristic ones 
associated with the 3D orientation bins; comparable to a 
Gaussian mixture model. The algorithm effectively estimates 
the 3D orientation distribution by iteratively adjusting model 
weights based on direct comparison of the ground truth to 
the synthetic 2D orientation distributions. The discrete 3D 
orientation distribution is directly transferred to Dream.3d, 
which uses approximately 5° resolution when binning the 
space. This resolution results in 36 bins along each dimen-
sion of the homochoric space for a total of 46,656 total bins/
weights.

For each of the 3D orientation bins, the 2D dominant 
axes were calculated for a set of ellipsoids (of varying 
aspect ratios) for each of the 2D observation planes [24]. 
The results were stored in lookup tables, one for each 2D 
observation plane, to be used in the orientation control 
loop’s update step. The aspect ratio of a 3D ellipsoid will 
affect the 2D dominant axes. To account for this, an initial 
population of random ellipsoids are sectioned within each 
3D orientation bin to build the lookup tables. 100 ellip-
soids was a sufficient number to capture the distribution of 
2D orientations observed due to 3D ellipsoid aspect ratio. 
As the optimization framework progresses, the estimated 
3D aspect ratio distribution converges and the lookup 
tables are periodically recalculated reflecting the current 
estimate of the 3D aspect ratio distribution. Regeneration 

(1)r(�) =
[

3

4
(� − sin(�)

]

1

3

for � ∈ [0,�]

of the lookup tables allows for better convergence of the 
orientation distribution and accounts for the effects of the 
aspect ratio on the orientation.

Each iteration of the orientation control loop compares 
the observed 2D orientation distributions of the current esti-
mated structure and the target structure on each 2D obser-
vation plane. The ratio of each normalized histogram bin 
in the 2D distributions was computed to determine which 
2D orientations are under- or over-observed on each plane 
when compared to the target structure. The set of ratios is 
then multiplied (as a dot product) with the lookup table for 
each of the 46,656 3D orientation bins. The resultant prod-
uct is used to adjust the weight of each bin. If the product is 
above 1, then the the 3D orientation bin is contributing to 
over-observed 2D orientations and vice versa. Each iteration 
introduced a decay in the magnitude of the update steps, 
resulting in an initial broad search with more refined con-
vergence over time.

Optimization Loop

The optimization loop consists of four important subsec-
tions: (1) Create/update the synthetic structure; (2) extract 
statistical distributions and measures from the structure; (3) 
compare observed distributions against observations from 
the goal structure; and (4) update generation parameters until 
convergence. The first two steps of the optimization loop 
utilized existing capabilities in Dream.3d presented else-
where [29]. Steps 3 and 4 are the focus of this work and a 
more detailed algorithm workflow for the optimization loop 
is shown in Fig. 4.

Initialization of the 3D structure generation parameters 
was performed by taking the averages of the ground truth 2D 

Fig. 4  Generation workflow for creation of statistically similar struc-
ture from goal 2D fiber feature information. Comparison of KS test 
statistics was stopping criteria for generation of synthetic structure
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sizes ( �2D
gt

 , �2D
gt

 ), aspect ratios ( r2D
gt

 ), and area fractions ( f 2D
gt

 ) 
from all three orthogonal section and applying stereological 
principles, such as:

The 3D size parameters ( �3D, �3D ) define a log-normal dis-
tribution for the equivalent sphere diameters of fibers in 
Dream.3d. The 4∕� constant for the mean of the size distri-
bution is a common stereological constant used when com-
paring 2D and 3D size distributions [30]; the other scal-
ing values, sf  , were estimated by trial and error for values 
between 0 and 1. This range was chosen as the mean and 
standard deviation of the size along with the aspect ratio 
increase when observing projections of a 3D structure in 
2D [24]. Calculations for r3D and f 3D were done in the same 
manner as the size standard deviation, �3D , but not on the 
logarithm scale used for the size distribution; see Eqs. 3–5.

Dream.3D determines the size, aspect ratio, and orientation 
of each individual fiber on each 2D observation plane. Com-
parisons were performed with observed 2D statistics of the 
target structure to calculate the needed updates to the 3D 
structure generation parameters. The 3D structure generation 
parameters, along with the orientation distribution weight 
array, were updated after performing statistical testing on 
the features of interest.

The optimization step of the algorithm used a similar 
process to a thermal control system; if the temperature is 
too hot or cold, add or remove heat from the system. In 
this instance, the 2D features of interest to change were 
the size ( �2D

c
 , �2D

c
 ), shape ( r2D

c
 ), and area fraction ( f 2D

c
 ) 

of the fibers; if any of these parameters was different 
from the ground truth values, increase or decrease said 
parameter accordingly. While these parameters are not 
independent of each other, each of the parameters was 
updated independently at the same time as it would be 
difficult to integrate knowledge from one parameter to 
another in the framework. Updates to the structure gen-
eration parameters were based on the relative change, 
C, between the 2D statistics of the target ( �2D

gt
 , �2D

gt
 , r2D

gt
 , 

f 2D
gt

 ), xt , and current structure ( �2D
c

 , �2D
c

 , r2D
c

 , f 2D
c

 ), xc , as 
shown in the equation below:

(2)𝜇3D = log
( ̄𝜇2D

gt ∗ 4∕𝜋
)

(3)𝜎3D = log( ̄𝜎2D
gt ∗ sf )

(4)r3D = ̄r2Dgt ∗ sf

(5)f 3D = ̄f 2Dgt ∗ sf

(6)C =
xc − xt

xt

Upper and lower thresholds were placed on the relative 
change of 5% to ensure parameters did not increase or 
decrease sporadically from iteration to iteration. Update 
steps were further scaled by a monotonically decreasing 
function, Istep , related to the current iteration number, ic , 
allowing for more precision as the algorithm converged on 
a value; the iteration cap, if  , was set at a predetermined num-
ber of 200.

Statistical testing, KS test, determined whether the synthetic 
structure’s 2D observations were statistically equivalent to 
the target structure. Various sampling sizes were investi-
gated and it was determined that 1000 samples were suf-
ficient when performing the KS test. It was determined that 
the percent change of the moving average ( Ma ) of the KS test 
and percent error for the area fraction provided appropriate 
termination conditions. The selection of Ma of the KS test 
statistic reduced inherent noise in the measure caused by 
inter-dependencies in feature parameters and random sam-
pling. The convergence speed for the threshold of change in 
Ma varied considerably and will be discussed in “Discus-
sion” section; however, it is noted here that the Ma of the KS 
test statistics were weighted to emphasize current values. A 
set of moving average weights, MaW  , are introduced below. 
For the KS statistics, the Ma window length was set at 10 
iterations for the size, shape, and angle features while the 
area fraction error was set at 30 iterations; these numbers 
were driven by observing previous results and testing. The 
objective function of this optimization was the decrease of 
the relative change of the moving average of the KS statistic, 
CMa

 , for the size, shape, and area fraction parameters for all 
three 2D faces of the structure, N, below a threshold value, 
T; see Eq. 10.

An example for how 3D generation parameters are updated 
based on 2D observations is shown in Algorithm 1 for one 
parameter, the size mean �3D . The current synthetic 2D 
value and ground truth 2D value, �2D

c
 and �2D

gt
 , will be used 

as the two values for major comparison in terms of relative 
change and KS test.

(7)Istep =
if − ic

if

(8)Prod
ma

=M⃗
a
⋅ (M⃗

a
W)

(9)Ma =
Prodma
∑

(MaW)

(10)argmax
x

N
∑

i=1

x s.t. x = if(CMa
< T) 1, else 0
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Algorithm 1   Example of update step for 3D generation 
parameters in Dream.3d. Comparisons in 2D control how 
of each 3D generation parameter change during each update 
step. Disagreements in varying views of 2D statistics causes 
a smaller update step to ensure a smoother convergence. 
Threshold placed to ensure update steps do not exceed an 
absolute value of 5 percent

Carr = array of percentile differences
U = 3D update step
for plane in (XY,XZ,YZ):

Cplane =
µ2D
c −µ2D

gt

µ2D
gt

Carr.append(Cplane)
if Carr > 0 or Carr < 0 for all :

U = µ3D ∗ ¯Carr

elif Carr > 0 or Carr < 0 for two planes:
U = µ3D ∗ ¯Carrfor two planes ∗ 2

3
else :

maxC = max(Carr)
U = µ3D ∗maxC ∗ 1

3
if abs(U) > 0.05 ∗ µ3D:

if U < 0:
U = −0.05 ∗ µ3D

else:
U = 0.05 ∗ µ3D

µ3D = µ3D + U ∗ −1 ∗ Istep

Examples of the 2D statistics, the KS test analyses, and 
other visualizations are shown in “Results” section.

Three Case Studies

Three case studies were selected to test the effectiveness of 
the algorithm. The size, aspect ratio, and volume fraction of 

fibers were held mostly constant, but the orientation distri-
bution of the fibers within the structure was (1) randomized 
(Random), (2) highly aligned along x-axis (Aligned X), or 
(3) highly aligned along the body diagonal of the structure 
(Off Body Diagonal, OBD). Each case poses challenges 
with observing the fibers on 2D planes, comparing the sta-
tistical distributions, and determining appropriate updates 
during the optimization loop. Examples of 3D structures 
for each orientation distribution are shown in Fig. 5; colors 
represent unique index given to each fiber during pack-
ing in Dream.3d. All three target structures were created 
in Dream.3D in order to have ‘ground truth’ 3D structure 
generation parameters to compare to the results of the opti-
mization framework.

Experimental Data Case Study

To test the applicability of the framework to experimental 
data, data for one DIW specimen was collected. Serial 
sectioning collected the data on three orthogonal planes. 
A direct threshold applied to raw image separated the fib-
ers from matrix and voids for use in the current workflow; 
see Fig. 6. Given the lack of 3D data, results were drawn 
from KS test comparisons and visual inspection of syn-
thetic data created from experimental data as the baseline.

Results

As previously discussed, the KS statistic and area frac-
tion error are the two main metrics for determining 
convergence of the optimization loop. The KS statistic 
for the size, aspect ratio, and orientation distributions 
were plotted for each case study by iteration. The plots 
show the progress toward convergence as the framework 
updates the 3D structure generation parameters to match 
the observed 2D statistics. Figure 7 shows the set of plots 
for an instance of a complete optimization of the OBD 
case. KS statistics are restricted to iterations greater than 

Fig. 5  (From left to right) 
Random, Aligned X, and OBD 
3D structures generated from 
Dream.3d. The axis in the lower 
left corner shows the orienta-
tion of the 3D structures. Each 
structure had the same size and 
shape distributions with the 
only variation in the 3D orienta-
tion distribution of the chopped 
fibers
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10 due to calculation of Ma , while the area fraction error 
begins after 30 iterations. While the KS statistic was 
tracked as a termination criteria, the p value at the end 
of each run was calculated to check whether the synthetic 
and goal structure were statistically indistinguishable; p 
values in Table 1 under 1 ∗ 10−4 were reported as 0.

Figure 7 shows the convergence of the KS statistic dur-
ing the optimization process, but it does not directly show 
how the observed 2D statistical distributions are evolving. 
Figure 8 shows the evolution of the size, aspect ratio, and 
area fraction distributions on the XZ plan for the OBD test 
case. The plots show the convergence to the 2D statistics of 

Fig. 6  2D Slices collected from 
Direct Ink Writing part through 
serial sectioning with half of 
image thresholded as example 
of image processing needed for 
experimental data

Fig. 7  M
a
 of the size, shape, and 2D angle distribution KS test statis-

tics and area fraction percent error progression of OBD case. Moving 
average is calculated based on 10 observations at time; therefore, the 

first 10 iterations do not have a moving average value; the area frac-
tion used 30 observations for moving average calculation

Table 1  p values for all 
feature parameter and angle 
distributions for all case studies 
on 2D faces

Values were calculated based on KS test statistics. Values under 1 ∗ 10
−
4 were reported as 0

XY plane XZ plane YZ plane

Case study �2D

c
r
2D

c
f (�)2D �2D

c
r
2D

c
f (�)2D �2D

c
r
2D

c
f (�)2D

Random 0.003 0.001 0.024 0.084 0.018 0 0 0.024 0
Aligned X 0.176 0.036 0 0 0 0 0.085 0.018 0
OBD 0.047 0.046 0.109 0.011 0.24 0.001 0.19 0.035 0.138
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the goal structure. A Gaussian mixture model (GMM) of 
1000 samples from each of the 2D distributions for the size, 
shape, and area fraction parameters were applied to smooth 
the lines.

Figure 9 shows the evolution of the 3D orientation dis-
tribution for each of the case studies. The plots display the 
position of the dominant axes (major, secondary, and minor) 
of 1000 fibers randomly sampled from the 3D orientation 
distribution. Figure 10 shows the evolution of the observed 
2D orientation distributions, created by applying a GMM 
similar to the process used in Fig. 8.

Figure 11 shows the final, optimized 3D structures. The 
absolute values of the 2D and 3D error were also calculated 
for all feature parameters (Tables 2 and 3). All errors were 
reported from the 200th iteration, and the 2D errors reported 
were averaged from the absolute errors on each 2D observa-
tion plane. The 2D and 3D errors were calculated from 20 
different test runs in order to test the repeatability of the 
framework for each case study.

Moving on to the experimental case study, the conver-
gence of the KS statistic for the size, shape, area fraction, 
and angular distribution is shown in Fig. 12. Figure 13 
shows the evolution of the size, aspect ratio, and area frac-
tion distributions on the XZ plan for the experimental data. 
The plots show the convergence to the 2D statistics of the 
experimental structure. A Gaussian mixture model (GMM) 
of 1000 samples from each of the 2D distributions for the 
size, shape, and area fraction parameters was applied to 
smooth the lines.

Since there is no 3D data collected for the experimental 
case, only convergence in the 2D case for the angular distri-
bution can be shown. Figure 14 shows the evolution of the 
observed 2D orientation distributions, created by applying 
a GMM similar to the process used in Fig. 13. Figure 15 

shows a 2D comparison of the synthetic structure to the 
experimental data on the XY and XZ observation planes. 
A quantitative comparison of the 2D observed errors of the 
features parameters for the experimental case is given in 
Table 4.

Discussion

This work demonstrates the practicality of using 
observed 2D statistics of a target microstructure to itera-
tively search for 3D statistics similar to a target structure. 
However, the selected convergence criteria was not met 
within the allotted maximum number of iterations (200) 
in any of the studied cases. The simplest case (Random) 
was also conducted using only one face for statistical 
comparison and led to convergence in the XY and XZ 
plane within the same number of iterations and YZ in 
a few more iterations. Using all three planes in parallel 
increases the complexity of updating the 3D structure 
generation parameters and tracking convergence. The 
inter-dependencies between shape and orientation, for 
example, introduce inherent noise into all of the micro-
structure generation parameters. Implementing Ma as 
a measure for tracking the improvement of the conver-
gence metrics mitigated or reduced this issue. While Ma 
reduced high-frequency variations, the convergence rules 
do not properly capture the actual convergence behavior 
of the algorithm. Using the p value does not solve this 
convergence issue (Table 1). A majority of the p values 
do not pass a 0.05 significance test and the fluctuations 
between iterations were unstable. Even without conver-
gence, the allotted amount of iterations permitted the 
workflow to generate similar structures when compared 

Fig. 8  (Left to right) Size, shape, and area fraction line plots for OBD case for XZ plane at every 50 iterations. As the optimization loop iterates, 
the feature distributions in the 2D case become more similar to the goal 2D feature distributions
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to the goal, as observed in Fig. 11 and the KS statistic 
plots in Fig. 7.

For all three synthetic case studies, Ma of the KS statistics 
for size, aspect ratio, and orientation distribution generally 

converged within the first 100 iterations. Iterations after this 
either marginally improved the KS statistic or the 2D param-
eter error. The Ma of the aspect ratio and orientation distri-
bution for the random case (Fig. 8) appear to have the most 

Fig. 9  3D angular distribution evolution for OBD case. As the optimization loop iterates, the 3D angular distribution resembles the goal angular 
distribution within 100 iterations
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noise. This noise might have been caused by Dream.3D’s 
random seed process and the inter-dependencies of the ori-
entation and aspect ratio distributions. Even so, the 2D and 
3D feature parameter errors were small and the p values 
were on the order of the other two case studies. The line 
plots for the feature parameters and the 2D orientation dis-
tributions further support the algorithm’s convergence. After 
100 iterations, all three case studies’ 2D distributions closely 
resemble the goal 2D distributions. Figure 9 shows the effi-
cacy of the orientation control of the optimization loop The 
OBD case matches the goal distribution the best of the three 
case studies with a minimal increase in spread. Note that it is 
not detrimental to have views that do not observe a primary 
axis, and in this case, it is actually beneficial.

The calculated 2D and 3D errors show a noticeable 
difference in magnitude, with the 3D errors generally 
larger. These results stem from multiple effects. First, the 
algorithm maximizes the similarity of the statistical 2D 
distributions of the goal and current synthetic structure. 
Second, there is no guarantee of a unique 3D distribution 
that yields the observed 2D distribution, so a small devia-
tion in 3D distributions is likely. Finally, 2D errors are 
calculated on the distribution parameters (i.e., mean and 
standard deviation) of the actual observed values. How-
ever, 3D errors are calculated on the 3D structure genera-
tion parameters, which are the fitting parameters for the 
functional forms of the distributions. In the case of the size 
distribution, the functional form is a log-normal distribu-
tion and the fitting parameters are approximately an order 
of magnitude smaller than the feature sizes themselves. 
This is likely contributing to the larger apparent error in 
the 3D comparisons. The two parameters with the lowest 
error in the 2D and 3D case for all three case studies are 
the �2D

c
 , �3D and f 2D

c
 , f 3D . This makes sense as the area 

fraction is a simple metric to calculate for images, and 
the �3D is relatively simple to track and update relative to 
other parameters. The �3D and r3D errors are larger, which 
could be concerning if the physical significance of the �3D 
and r3D were not considered. For the �3D , the errors relate 
to a goal value of 0.1; therefore, an error of 50% could 
mean a sigma of 0.05 or 0.15, which does not dramatically 
affect the overall size distribution. The same applies for 
the r3D , as the difference between the goal of 0.1 and 0.08 
(20% ) creates a minimal difference in the axes ratios of the 
ellipsoid with a 10/1 ratios versus an 8/1 ratio. Therefore, 
these results support the hypothesis that using a similarity 
metric to drive comparison of 2D statistical distributions 
leads to producing synthetic structures with comparable 
3D parameters to a goal structure.

Looking at the experimental data shows similar results 
seen in the virtual case studies with some differences caused 
by the increase of variability expected in experimentally col-
lected structures. The Ma of the KS statistic for the size, 
shape, and angular distribution do not converge to values 
that suggest the structures are as statistically similar as the 
synthetic test cases were. When observing a slice of the gen-
erated structure compared to a subset of the experimental 
data, the fiber populations appear similar in size, shape, and 
orientation. The 2D error for all parameters is higher than 
any of the errors observed in the three synthetic case studies. 
During the implementation, many issues were discovered 
that could explain the reduce performance of the methodol-
ogy when applying it to this specific material data.

The first issue encountered was caused by the circular 
cross section of the experimental fibers, which constrained 
the b and c axis to be equal when packing equivalent ellip-
soids. Dream.3d currently does not have this capability 
as the aspect ratios for the minor and secondary axes are 

Fig. 10  2D angle distribution line plots for every 50 iterations of (left to right) XY, XZ, and YZ plane for OBD. As the algorithm iterates, the 
observed 2D angular distribution becomes more similar to the goal 2D angular distribution for all three case studies



 Integrating Materials and Manufacturing Innovation

Fig. 11  Visualization of final 3D structure (left) to ground truth (right) for case studies (top to bottom) Random, Aligned X, and OBD. 3D struc-
tures were generated from Dream.3d with the generation parameters updated during each iteration to emulate the ground truth
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sampled separately on their corresponding beta distribution. 
Therefore, it is almost impossible to generate an ellipsoid 
with the same aspect ratio and therefore size on the minor 
and secondary axes. This was discovered when observing the 

2D slices of one of the planes of the synthetic emulation of 
the experimental data where the minor and secondary axes 
were visible; only ellipses were observed in this plane. This 
issue did not occur with the other synthetic case studies as 
the ground truth synthetic data was generated in Dream.3d. 
The group was able to compensate for this by limiting the 
spread of the aspect ratio beta distributions for the b and c 
axis; this limited the sampling range for both axes.

Another issue encountered in the experimental case study 
was the assumption of one particulate population in the 
images. For the synthetic case studies, it was assumed the 
fibers in the structure were sampled from one population. 
Given the lack of 3D data, it is possible the experimental 
data contains different particulate populations. The effects of 
the printing in DIW on the fibers themselves are still under 
investigation. Therefore, the group hypothesized a possibil-
ity of fibers breaking during printing in such a way that a 
new population of particulates was created with a different 
set of feature parameter distributions. This could explain 
some of the difficulties observed in the generator algorithm 
as it tried to fit a single population to particulates with sev-
eral different populations.

The algorithm appears to reproduce the bulk statistics 
chosen for comparisons and generates visually similar 3D 
structures. The novelty of this approach is in the comparison 
with the KS test statistic of the structures using solely the 
observed 2D data and without the direct estimation of the 3D 
statistics from the 2D data. While the structures produced 

Table 2  Average and standard deviation 2D observed error for each 
case study

Values were calculated from 20 full iterations of the optimization 
loop until convergence or iteration cap

2D observed error %

Case study �2D

c
�2D

c
r
2D

c
f
2D

c

Random 1.1 ± 1.1 3.1 ± 2.7 2.3 ± 2.0 0.5 ± .4

Aligned X 3.9 ± 3.1 1.9 ± 1.4 5.0 ± 6.1 0.6 ± 0.4

OBD 0.6 ± 0.5 0.8 ± 0.6 0.3 ± 0.4 0.4 ± 0.3

Table 3  Average and standard deviation 3D generation parameter 
error for each case study

Values were calculated from 20 full iterations of the optimization 
loop until convergence or iteration cap

3D generation parameter error %

Case Study �3D �3D
r
3D

f
3D

Random 1.9 ± 0.7 13 ± 1.4 20.3 ± 4.2 6.3 ± 0.8

Aligned X 2.6 ± 1.0 10.3 ± 3.7 14.1 ± 4.1 0.6 ± 0.3

OBD 0.3 ± 0.1 7.9 ± 0.1 16.6 ± .4 0.8 ± 0.3

Fig. 12  M
a
 of the size, shape, and 2D angle distribution KS test sta-

tistics and area fraction percent error progression of the experimental 
data. Moving average is calculated based on 10 observations at time; 

therefore, the first 10 iterations do not have a moving average value; 
the area fraction used 30 observations for moving average calculation
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for all three cases appear to visually replicate and statis-
tically match the goal structures, the convergence criteria 
remains imprecise. Figure 7 clearly shows that the Ma of the 
KS statistics converge around 70–100 iterations for all three 
cases; the termination criteria implemented does not prop-
erly detect this. Determining when a parameter/metric con-
verges remains subjective, which makes finding a preferable 
set of rules and thresholds challenging. Inherent noise and 
inter-dependencies within the statistics observed increases 
the difficulty for framing objective metrics and convergence 
rules. Future work will address this issue and investigate 
solutions to a multi-objective scheme. The experimental data 
posed more of a challenge than any of the other case studies 
because of the increased variability in the observed structure 
along with the more complex angular distribution. Future 

work will address improvements in the methodology to com-
bat the issues outlined for the experimental data case study.

Conclusion

The objective of this study—to create a framework for 
generating 3D microstructure volumes from 2D planar 
observations—largely succeeded for the three case stud-
ies specified above. Application to the experimental case 
study showed promising results with some of the issues 
outlined for future research. The use of the KS statistic 
as a metric for similarity leads to an effective and effi-
cient iterative optimization framework. Fiber composites 
were chosen as a starting point for the development of the 

Fig. 13  (Left to right) Size, shape, and area fraction line plots for Experimental case for XZ plane at every 50 iterations. As the optimization 
loop iterates, the feature distributions in the 2D case become more similar to the goal 2D feature distributions

Fig. 14  2D angle distribution line plots for every 50 iterations of (left to right) XY, XZ, and YZ plane for Experimental case. As the algorithm 
iterates, the observed 2D angular distribution becomes more similar to the goal 2D angular distribution for all three case studies
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workflow, but the process should allow for studies in a 
variety of particulate material microstructures. This sta-
tistical synthetic generation framework allows for studies 
in the PSP linkage space and facilitates a deeper dive into 
material studies with machine learning.

While the general framework appears to produce a use-
ful generator, an effective convergence criteria or func-
tion remains missing. Future work will further investigate 
this issue and determine whether the metrics, such as the 
KS statistic, need substitutes or whether a more complex 
convergence process is required. There also may need 
to be an increase in the resolution at which the current 
synthetic generator operates, allowing for more precise 

capture of the feature statistics. The issues mentioned for 
the experimental data need further studying to improve 
the performance of the generator. Finally, investigation 
into mesoscale features of the material will enhance the 
generator and improve the material property studies of 
varying particulate microstructures.
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Fig. 15  Synthetic (left) and 
Experimental (right) 2D slices 
of XY and XZ plane for visual 
comparison of synthetic to 
ground truth experimental 
data. The chopped fibers were 
approximated by packing 
cylinders to emulate the fibers 
observed in the experimental 
data

Table 4  Absolute average and standard deviation 2D observed error 
for experimental data

Values were calculated from 5 full iterations of the optimization loop 
until convergence or iteration cap

2D observed error %

Case study �2D

c
�2D

c
r
2D

c
f
2D

c

Experimental 17.2 ± 1.5 23.9 ± 4.4 21.1 ± 14.0 43.7 ± 28.8

http://creativecommons.org/licenses/by/4.0/
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