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Abstract
The structure–property hypothesis says that the properties of all materials are determined by an underlying crystal structure. 
The main obstacle was the ambiguity of conventional crystal representations based on incomplete or discontinuous descriptors 
that allow false negatives or false positives. This ambiguity was resolved by the ultra-fast pointwise distance distribution, 
which distinguished all periodic structures in the world’s largest collection of real materials (Cambridge structural database). 
State-of-the-art results in property prediction were previously achieved by graph neural networks based on various graph 
representations of periodic crystals, including the Crystal Graph with vertices at all atoms in a crystal unit cell. This work 
adapts the pointwise distance distribution for a simpler graph whose vertex set is not larger than the asymmetric unit of a 
crystal structure. The new Distribution Graph reduces mean absolute error by 0.6–12% while having 44–88% of the number of 
vertices when compared to the Crystal Graph when applied on the Materials Project and Jarvis-DFT datasets using CGCNN 
and ALIGNN. Methods for hyper-parameters selection for the graph are backed by the theoretical results of the pointwise 
distance distribution and are then experimentally justified.

Keywords Periodic crystals · Property prediction · Graph neural networks

Introduction

Traditionally, material properties are predicted using com-
putationally expensive simulation methods like density func-
tional theory (DFT). DFT (and other similar methods) are 
prohibitively slow and require the tuning of many parameters 
for specific chemical compositions [1]. Furthermore, DFT 
calculations introduce their own approximation error due 
to the relaxation of constraints required to make the com-
putations feasible [2]. These reasons have led to the appli-
cation of machine learning algorithms instead, to decrease 
computation time and allow for more general application 
on materials.

Early property prediction methods used kernel regres-
sion [3, 4], feed-forward neural networks [5], and ensemble 
methods [6]. Since molecules and crystals have underlying 
structures, the more recent graph neural networks (GNN) [7] 
encode the information for atoms and bonds in the vertices 
and edges of a graph.

Crystal structures are much more complex than finite 
molecules due to their periodic nature, leading to ambiguous 
representations [8]. One of the most prominent contributions 
to crystal property prediction was the Crystal Graph convo-
lutional neural network (CGCNN) [9] based on the Crystal 
Graph incorporating inter-atomic interactions up to a manu-
ally chosen cutoff radius. The Crystal Graph has been used 
in many material property predictions [10–16] including the 
recent state-of-the-art models ALIGNN [17] and Matformer 
[18] for crystals in the materials project [19, 20]. Models 
that extend CGCNN incorporate molecular representations 
[21] include three-body interactions between atoms [22], 
define edges as bonds with a cutoff radius [23], or use spe-
cialized attention masks to add geometric data [24].

All the advances described above modified the algo-
rithm, while the ambiguity of input crystal data remained 
unresolved because any crystal structure has infinitely 
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many different unit cells. Doubling a unit cell preserves 
the underlying crystal structure but doubles the size of 
graph-based representations. Even a minimal (primitive) 
unit cell can be chosen in infinitely many ways related 
by transformations from the group SL(ℤn) that change a 
linear basis, but keep the same periodic lattice. Efforts in 
crystallography tried to reduce the ambiguity of crystal 
representations by choosing a reduced cell, which has led 
to a deeper discontinuity problem that was not obvious 
many years ago when a few experimental crystals were 
compared by manual methods. The widely used Niggli’s 
cell has been known to be experimentally discontinuous 
under atomic perturbations since 1965, see p. 80 in [25].

Experimental coordinates of unit cells and atoms are 
inevitably affected by atomic vibrations and measurement 
noise. Crystal structure prediction tools output millions of 
simulated crystals [26] as iterative approximations to local 
minima of complicated energy. Many of these approxi-
mations accumulate around the same local minimum, but 
their vastly different representations were not recognized 
as near-duplicates. Figure 1 summarizes the property pre-
diction process using incomplete or discontinuous descrip-
tors that ambiguously map crystals to a latent space, now 
replaced by the Crystal Isometry Space [8] of isometry 
classes of all periodic crystals.

The present work introduces a simpler graph represen-
tation of a periodic crystal called the Distance Distribu-
tion Graph (DDG) that is independent of a primitive unit 
cell and invariant under rigid motion. The new graph is 
significantly smaller than the Crystal Graph in terms of 
vertices and edges, making it more computationally effi-
cient both in terms of memory and speed. Tables 2 and 4 
will show that the DDG outperforms the Crystal Graph 
on the Materials Project crystals [19] and the T2 dataset 
of simulated crystals [26]. We will experimentally show 
how the tuning of the hyper-parameters affects outcomes, 
and provide guidance on their selection based on practical 
and theoretical results.

Methodology: Invariant Graphs

We justify a new invariant-based approach to periodic 
crystals in Sect. 2.1 and then adapt a generically complete 
matrix invariant for a new graph invariant in Sect. 2.2 for 
comparison with past graph representations by using graph 
neural networks in Sect. 2.3.

Isometry Invariants of Periodic Sets of Points

Any periodic crystal can be formally defined as a periodic 
set of points at all atomic centers [27].

Definition 1 (Periodic Point Set S = M + Λ ⊂ ℝ
n ) For any 

basis vectors v1 … vn of ℝn , the lattice Λ ⊂ ℝ
n is formed 

by all linear combinations 
∑n

i=1
civi with integer coef-

ficients ci ∈ ℤ . Considering all ci in the half-open inter-
val [0, 1), we obtain the unit cell U of this basis. A motif 
M ⊂ U is a finite set of points. A periodic point set is 
S = M + Λ = {p + � ∣ p ∈ M,� ∈ Λ}.

Any lattice can have infinitely many different bases 
(hence, unit cells), see Fig. 1 of [8]. Even if we fix a basis, 
different motifs can generate periodic point sets that are 
related by rigid motion (or isometry) defined below.

Recall that an orientation of ℝn can be defined as the 
sign of the determinant of the n × n matrix whose columns 
v1,… , vn form a linear basis of ℝn.

Definition 2 (Isometry Invariants) An isometry is any map 
f ∶ ℝ

n
→ ℝ

n that preserves Euclidean distances. Any isom-
etry f decomposes into translations, rotations, and reflec-
tions. If we exclude reflections, f preserves an orientation of 
ℝ

n and can be included in a rigid motion, which is a continu-
ous family of isometries ft ∶ ℝ

n
→ ℝ

n , t ∈ [0, 1] , connect-
ing f1 = f  with the identity map f0 . An isometry invariant 
of periodic set S is a function I(S) such that if S ≃ Q are 
isometric, then I(S) = I(Q) , so I has no false negatives such 
that there are pairs S ≃ Q with I(S) ≠ I(Q) . An invariant I 
is complete if the converse holds: if I(S) = I(Q) , then S ≃ Q 
are isometric, so I has no false positives that are pairs S ≄ Q 
with I(S) = I(Q).

To be useful, an invariant I should have easily compara-
ble values. Otherwise, one can define the complete invari-
ant I(S) equal to the isometry class of S, which consists of 
all (infinitely many) isometric images of S. Any constant 
such as I(S) = 0 is also invariant, so helpful invariants 
are non-constant. If I(S) ≠ I(Q) , the invariance property 
implies that S ≄ Q are not isometric. Any non-invariant 

Fig. 1  Past work used incomplete or discontinuous representations 
of crystals. This work predicts energies faster by adapting generically 
complete and continuous invariants [8]
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cannot guarantee this conclusion, hence only invariants 
can reliably distinguish crystals.

Since points of a periodic set S in Definition 1 are not 
labeled, similarly to identical atoms in real crystals such as 
carbons in graphite or diamond, an invariant in the sense of 
Definition 2 should be also preserved under all permuta-
tions of points. The physical density of a crystal (or point 
density of a periodic point set) is an isometry invariant but 
is incomplete because many different crystals have the same 
(or nearly equal) densities.

A complete invariant is like the DNA code, which 
uniquely identifies any human in practice, except for identi-
cal twins, which can be considered a singular case, so we 
could call the DNA a generically complete invariant that 
distinguishes almost all living organisms.

The past complete invariants of periodic crystals were 
usually based on a reduced cell of an underlying lattice, 
which is discontinuous even in dimension 1. Indeed, the 
sequence {0, 1 + �1,… ,m + �m} + (m + 1)ℤ is nearly iden-
tical to the set ℤ of integers for all �i close to 0, but the 
periods 1 and 1 + m (unit cells) are arbitrarily different. This 
discontinuity was resolved by the complete and continuous 
invariant isoset [28] whose disadvantage was an approxi-
mate algorithm for a metric computation [29], which has a 
guaranteed multiplicative factor of about 4 in ℝ3 . The next 
subsection discusses the much faster, continuous, and gener-
ically complete invariant PDD.

Generically Complete Continuous Invariant PDD

This subsection reviews the recent invariant PDD [8], which 
will be converted into a new graph invariant DDG.

Definition 3 (Pointwise Distance Distribution) In the nota-
tions of Definition 1, let S = Λ +M be a periodic set with 
a motif M = {p1,… , pm} ⊂ U , where U is a unit cell of a 
lattice Λ . Fix a number of neighbors k ≥ 1 . For each point 
pi , let di1 ≤ ⋯ ≤ dik be a row of Euclidean distances from 
pi to its k nearest neighbors in the infinite set S. Consider 
the matrix m × k of m distance rows, one for each pi ∈ M . If 
the matrix contains l ≥ 1 identical rows, collapse them into 
a single one with the weight l

m
 . The resulting matrix can be 

considered as a weighted distribution of rows and is called 
the Pointwise Distance Distribution PDD(S;k).

The pair distribution function (PDF) was traditionally 
used for comparing experimental crystals, but does not 
distinguish homometric structures [30]. Often this PDF is 
additionally smoothed to guarantee continuity under per-
turbations but even the exact discrete version of PDF is 
strictly weaker than the PDD, see details below Fig. 6 in 
Section 3 of [8]. The earth mover’s distance (EMD) [31] 

defines a continuous metric on PDDs even if they have a 
different number of rows. Here is a summary of the PDD 
advantages over past descriptors. 

1. PDD(S;k) is invariant under changes of a unit cell (even 
for a non-primitive cell) and any Euclidean isometry 
from the group E(3), see Theorem 3.2 of [8], so PDD 
never has false negatives for all structures.

2. The number k of neighbors can be considered a degree 
of approximation because increasing k only adds longer 
distances in extra columns of PDD(S;k) without chang-
ing all shorter distances. If k → +∞ , the distances 
from the k-th column approach c(S) 3

√
k , where c(S) is 

inversely proportional to the density of S, see Theo-
rem 13 of [27].

3. PDD(S;k) can be computed in a near-linear time in both 
k and the motif size m, see Theorem 5.1 of [8], due to a 
fast nearest neighbor search [32].

4. Any periodic point set S = M + Λ in general position 
is uniquely reconstructable (up to isometry) using the 
motif size m, a lattice Λ , and PDD(S;k) whose largest 
distance in every row is at least 2R(Λ) , where R(Λ) is 
the maximum distance from any point p ∈ ℝ

n to Λ , see 
Theorem 4.4 of [8].

5. PDD(S;100) distinguished all (more than 670 thousand) 
periodic crystals in the Cambridge Structural Database 
(CSD) through more than 200 billion pairwise compari-
sons over two days on a modest desktop, see Section 6 
[8]. Hence, all real periodic materials have uniquely 
defined locations in a common Crystal Isometry Space 
continuously parameterized by the complete invariant 
isosets [28], though the faster PDD suffices in practice.

The work on Matformer [18] notes a potential ambigu-
ity when a point p ∈ M has different neighbors in S at 
the same distance. This ambiguity arises if directions (or 
vectors) to neighbors are used, while the PDD takes only 
distances, which change continuously even if neighbors of 
p are swapped, see the continuity in Theorem 4.3 of [8].

When writing PDD(S;k) , we put weights into the extra 
first column. For storage convenience, rows of PDD(S;k) 
can be ordered lexicographically. Definition 3 applies to 
any periodic set, where points can be specific (not all) 
atoms or centers of molecules in a crystal.

The rock-salt crystal NaCl (seen at the top of Fig. 2) has 
a distance 2.81 Å between adjacent atoms, so PDD(NaCl;6) 
is the single row (1 ∣ 2.81 2.81 2.81 2.81 2.81 2.81) , whose 
first entry is weight 1. The LuSi crystal at the bottom of 
Fig. 2a has four atoms in a unit cell, but they collapse into 
two rows that have a weight of 0.5 and correspond to the 
atomic types of Lu and Si in the f inal matr ix 

PDD(LuSi;6) =

(
0.5 2.48 2.48 2.88 2.88 2.88 2.88

0.5 2.88 2.88 2.88 2.88 2.90 3.07

)
.
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The new graph in Definition 4 based on the PDD will 
include atomic types. However, when comparing PDD even 
without atomic types for all periodic crystals in the CSD, 
Section 7 of [27] reported five pairs of duplicates, where all 
geometric parameters were identical to the last digit but one 
atom was replaced with a different one, for example, Cd with 
Mn in the pair HIFCAB vs JEPLIA. Indeed, replacing one 
atom with a larger one should perturb distances to neighbors 
at least slightly. This has led to five journals investigating the 
data integrity of the relevant publications.

Definition 4 (Distance Distribution Graph DDG ) Let 
S = M + Λ ⊂ ℝ

n be a periodic point set with a lattice Λ and 
a motif M = {p1, p2,… , pm} of points with atomic numbers 
t(pi) , i = 1,… ,m . Then, any point q ∈ S is obtained by a 
lattice translation from a point pi ∈ M and has the atomic 
number t(q) = t(pi) . Fix a number of neighbors k ≥ 1 . For 
any point p ∈ S , let d(q) ∈ ℝ

k be the vector of distances in 
non-decreasing order to its k-nearest neighbors in S, and 
t(q) ∈ ℕ

k be the vector of their respective atomic numbers. 
We define an equivalence relation ∼ on S so that the equiva-
lence class [p] of p ∈ S consists of all points q ∼ p with (i) 
t(p) = t(q) , (ii) d(p) = d(q) , and (iii) t(p) = t(q) . For any point 
c ∈ S , we define a partial order on all its neighbors in the set 
S by saying that p < q if one of the following four ordered 
inequalities holds strictly while all previous ones should 
be equalities: |p − c| ≤ |q − c| , t(p) ≤ t(q) , d(p) ≤ d(q) , 
t(p) ≤ t(q) , where the last two inequalities between vectors 
are lexicographic. If all inequalities are equal, the neighbors 
p, q are equivalent: [p] = [q] . The vertices of the Distance 
Distribution Graph DDG(S;k) are the equivalence classes 

[p] for all p ∈ S (or M), which is not larger than M since 
[p] includes all lattice translates p + Λ for any p ∈ S . The 
weight of a vertex [p] is |[p] ∩M|∕m , where |[p] ∩M| is the 
number of points q ∈ M equivalent to p. Any vertex [p] for 
p ∈ M has k directed edges ([p], [q]) in DDG(S;k) for the 
first k nearest neighbors q ∈ S of p, ordered as explained 
above.

In the rock-salt crystal NaCl, all atoms split into two 
classes [Na] and [Cl]. For any atom (say, Na), its first six 
nearest neighbors (Cl) are equivalent. Hence, DDG(NaCl; 6) 
has two vertices [Na] and [Cl] connected by six edges 
([Na],[Cl]) and six edges ([Cl],[Na]).

Crystal Graph

The conversion of the PDD to the new graph invariant DDG 
loses the continuity property because (say) doubling a unit 
cell and perturbing a motif doubles the vertex set of DDG . 
Since the PDD is ultra-fast and generically complete, even 
this degradation keeps it competitive with past graph invari-
ants that are all discontinuous for the same reason and also 
need extra parameters such as a cutoff radius making them 
incomplete by construction. Definition 5 formalizes the 
widely used Crystal Graph, which was informally introduced 
after Fig. 1 in [9].

Definition 5 (Crystal Graph) In the notations of Definition 1, 
let S = M + Λ be a periodic set with a motif M and a lattice 
Λ . Fix a number of neighbors k ≥ 1 and a cutoff radius r > 0 . 
For any point p ∈ M , let N(p;k, r) be a set of at most k near-
est neighbors of p in S within the cutoff radius r. The Crystal 
Graph CG(S;k, r) has the vertex set M and a directed edge 
(p, (q + Λ) ∩M) for any p ∈ M and q ∈ N(p;k, r) , where 
(q + Λ) ∩M is the point in M that equivalent to p under a 
lattice translation.

The Crystal Graph can have up to k multiple edges 
between the same vertices (atoms in a unit cell), see Fig. 2. 
CG(S;k, r) is invariant of S only if we choose a primitive unit 
cell because doubling a cell doubles the vertex set. Since 
many real crystals are highly symmetric, the vertex set of 
only non-isometric atoms in DDG(S;k) is often much smaller 
than the motif of S.

There exists a relationship between the Crystal Graph and 
DDG of a crystal structure. If the resulting Crystal Graph 
contains an outdegree of k for each node in the graph, it can 
be converted into a DDG by identifying vertices with the 
same topology. For vertices p, q ∈ M , the topology of the 
two vertices is considered equivalent if the outgoing edges of 
each satisfies d(q) = d(p) and t(q) = t(p) . That is, two verti-
ces have the same edge weights and are directed toward the 
same type of vertices. In this way, the DDG can result from 

Fig. 2  (top) The transformation from the crystal structure of LuSi to 
the Crystal Graph and DDG with k = 2 nearest neighbors. (bottom) 
The transformation from the crystal structure of NaCl to the Crystal 
Graph and DDG using k = 4 and the conventional unit cell (edges 
without arrowhead indicate bidirectionality)
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compressing the Crystal Graph (should the aforementioned 
conditions be met).

Adaptation for Line Graphs

In some property prediction models, the inclusion of a line 
graph [33, 34] is used to add additional geometric informa-
tion such as bond and dihedral angles [17, 18]. The line 
graph L(G) of a graph G can be defined like so:

Definition 6 (Line Graph) The line graph L(G) = (VL,EL) 
of the graph G = (V ,E) where V = {v1,… , vn} is the 
set of vertices and E = {e1,… , em} is the set of edges, 
is defined by the set of vertices VL = E and the edge set 
EL = {(ei, ej) ∶ ∃vk ∈ ei ∩ ej} . In the directed case, there 
exists an edge in the corresponding line graph if for two 
line graph vertices ei = (va, vb) and ej = (vc, vd) , b = c.

While the line graph can be incorporated to improve the 
performance of graph learning algorithms, it can also result 
in a significant increase in computational load. The number 
of vertices and edges in the resulting line graph can vastly 
outnumber the number in the original graph. The order of 
L(G) is equivalent to the cardinality of the original graph’s 
edge set E. The degree of a given vertex ei = (vi, vk) in L(G) 
is defined by |N(ei)| = |N(vi)| + |N(vj)| − 2 [34] in the 
undirected case. Decreasing the size of the original graph 
is therefore largely beneficial as such a reduction will be 
propagated to the line graph.

If a DDG is created according to Definition 4, there is a 
possibility that two motif points will be grouped that have 
different topologies in the line graph resulting from Defini-
tion 6. To prevent this loss of information, we introduce and 
use two stronger notions of equivalence on the periodic set 
S. The first notion we call strong equivalence. Informally, we 
say that two points p and q are strongly equivalent if they 
are equivalent (according to Def.4), the distance between the 
sets of their k-nearest neighbors is 0, and for every i ∈ [k] 
the distances between the set of k-nearest neighbors of the 
i th neighbor of p in S and the set of k-nearest neighbors 
of the i th neighbor of q in S are all equal to 0. The formal 
definition of this equivalence notion is given below in (iv.a), 
and we formally define the used notion of distance between 
finite point sets in the next paragraph. The second notion, 
which we call atomic strong equivalence, is defined similarly 
taking into account atomic types, and is formally defined 
below in (iv.b).

The PDD is invariant and establishes a continuous met-
ric via the EMD on periodic sets, but this also applies to 
simpler finite point sets. Note that when taking the PDD 
of a finite point set, the parameter k is implicitly deter-
mined to be equal to one less than the cardinality of the 

point set. Let P and Q be the point sets for the k-nearest 
neighbors of p and q (including both p and q), respec-
tively. The PDD of P (and Q) is the real-valued matrix 
PDD(P;k) ∈ ℝ

(k+1)×(k+1) . Each point set contains k + 1 
points and the weights in the first column cause the PDD 
to have k + 1 columns. To compare the PDDs, each row 
of ordered distances is compared with each row in the 
opposing PDD (without considering the weights in the first 
column). The result is a distance matrix where the entry 
in the i th row and j th column is the cost for transport-
ing from the i th point in P to the j th point in Q in the 
subsequent minimum-cost flow problem. The weights in 
the first column of PDD(P) and PDD(Q) form the distribu-
tions to be transported. The cost for the solution to this 
problem is the distance between P and Q, also referred 
to as the Earth Mover’s Distance. If P and Q are found to 
be equivalent (having a distance of zero), the point sets 
of their neighbors are then also compared using the same 
technique. Should each pair of k neighbors also be equiva-
lent, the motif points p and q are considered part of the 
same equivalence class. We refer to this as condition (iv.a). 
Formally, 

(IV.a)  Two points p and q in the motif M of a peri-
odic set S = M + Λ ⊂ ℝ

n are members of 
the same equivalence class [p] if they sat-
isfy conditions (i-iii) in Definition 4, as well as 
EMD(PDD(N(S;k;p), PDD(N(S;k;q)) = 0  ,  a n d 
EMD(PDD(N(S;k;pi), PDD(N(S;k;qi)) = 0 where 
p1 < p2 … < pk and q1 < q2 … < qk are ordered 
according to Def 4.

While condition (iv.a) establishes the distance between 
finite point sets, it considers these points unlabeled and 
thus, does not take into consideration the type of point. 
In the case of materials, each point has an atomic species 
that should be accounted for. To do this we use the Atomic 
Mass Weighted PDD.

Definition 7 (Atomic Mass Weighted Pointwise Distance 
Distribution) For a labeled periodic point set S = M + Λ ∈ Rn 
where each point pi ∈ S carries a label equivalent to its cor-
responding atomic mass a(pi) , the Atomic Mass Weighted 
PDD of S, mPDD(S; k), is equivalent to the PDD of S where 
rows are not grouped, having each row’s final weight, wi , 
defined by wi = a(pi)∕

∑�M�
j=1

a(pj).

In this version of the PDD, rows are not grouped 
together as they are in the original. This is done to pre-
vent losing atomic information in the case when two motif 
points have the same k-nearest neighbor distances, but cor-
respond to different atomic types.
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The same procedure mentioned above for determining 
strong equivalence is followed but using the mPDD. We refer 
to this as condition (iv.b). Formally, 

(IV.b)  Two points p and q in the motif M of a peri-
odic set S = M + Λ ⊂ ℝ

n are members of 
the same equivalence class [p] if they sat-
isfy conditions (i-iii) in Definition 4, as well as 
EMD(mPDD(N(S;k;p), mPDD(N(S;k;q)) = 0 , and 
EMD(mPDD(N(S;k;pi), mPDD(N(S;k;qi)) = 0 
where p1 < p2 … < pk and q1 < q2 … < qk are 
ordered according to Def 4.

Once either of the aforementioned conditions is applied 
and the equivalence classes are created the construction of the 
DDG proceeds as normal. Definition 6 is followed to produce 
the line graph. Together with the original DDG, we refer to 
the line graph and any line graph derived thereof generally as 
Distribution Graphs.

Crystal Graph Convolutional Neural Network

Below we modify traditional Graph Neural Networks to take 
advantage of weighted vertices in DDG(S;k) . Changes must 
be made to two specific operations: normalization and graph 
readout. The computations we propose here can be applied in 
a general setting for GNNs which take advantage of a number 
of different mechanisms including convolution, attention, or 
message-passing layers. For consistency, we will use CGCNN 
which was proposed in the original paper from which the Crys-
tal Graph was created, though the DDG is not limited to this 
model.

A single convolution from CGCNN can be defined by the 
equation [9],

where

and v(t)
i

 is the embedding of the i th vertex after t convolu-
tions, u(i,j)k are the edge features of k th edge between verti-
ces i and j and W(t)

f
,W

(t)
s

 and b(t)
f
, b

(t)
s

 are the learned weight 
and bias matrices, respectively. The operators ⊕ and ⊙ refer 
to concatenation and element-wise multiplication, 
respectively.

(1)

v
(t+1)

i
= v

(t)

i
+
∑
j,k

𝜎(z
(t)

(i,j)k
W

(t)

f
+ b

(t)

f
)⊙ g(z

(t)

(i,j)k
W

(t)
s
+ b

(t)
s
)

z
(t)

(i,j)k
= v

(t)

i
⊕ v

(t)

j
⊕ u(i,j)k

Atomistic Line Graph Neural Network

ALIGNN incorporates the angles of atom triplets by using a 
line graph to update the edges of the original Crystal Graph. 
The vertex embeddings are updated according to

where v(t)
i

 is the embedding of the i th vertex after t convolu-
tions, u(i,j) are the edge features of the edge between vertices 
i and j, and W(t)

s
 and W(t)

d
 are the learned weight matrices for 

the source and destination vertices; BN is batch normali-
zation and SiLU is the Sigmoid linear unit [35]. The edge 
features of the graph are updated using the following:

Eqs. 2 and 3 are used to update both the original and line 
graphs. The resulting updated vertices of the line graph are 
used in the update for the original graph’s edges.

Including PDD Weights

Normalization is a data scaling tool commonly used to 
increase model stability and improve training efficiency [36]. 
Two commonly used types are batch normalization [37] and 
layer normalization [38]; each of which operates on different 
dimensions of the input. Layer normalization scales features 
with respect to one another, within a single sample. In batch 
normalization, normalization is done over multiple samples 
for a single feature.

In GNNs, the result of layer normalization on vertices is 
independent of the number of vertices in any given graph, 
since the computation operates on the features of one graph. 
The same cannot be said of batch normalization. In a single 
batch, it is necessary to operate on multiple graphs at once. 
These graphs have no requirement to consist of the same 
number of vertices. Due to this disparity, a single graph can 
be over-represented in the mean or variance computed dur-
ing normalization.

While it may not be a problem for other GNNs, graphs 
used to represent crystals that depend on the unit cell can 
fall victim to this ambiguity. One could arbitrarily scale a 
crystal’s unit cell size, or select different basis vectors and 
predictions for the model trained on this altered data would 
be different despite using the same crystals and hyper-
parameters. The DDG alleviates the concerns over unit cell 
selection by the use of weights within batch normalization. 
The weighted batch normalization for a batch b contain-
ing graphs G1,…Gn with a respective number of vertices 
g1,… gn can be computed using
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where B =
∑n

j=1

∑gj

i=1
wij , vij is the i th vertex embedding in 

the j th graph, and wij is the weight of the i th vertex in the 
j th graph. Equation 4 and Eq. 5 are used to compute the 
weighted mean and weighted biased variance of the batch 
respectively. Equation 6 provides the formula for normal-
izing a given sample or vertex v from batch b.

The readout or pooling layer of a GNN is used to con-
dense the information contained within the individual vertex 
embeddings into a single vector representative of the whole 
graph. This vector is commonly passed to a multilayer per-
ceptron for a prediction to be made.

While there are many options for a pooling layer, they all 
must retain the property of permutational invariance (the 
order of the vertex embeddings does not matter). Some of 
the most common graph readouts are maximum and mean 
pooling and normalized sum. In the former case, no adjust-
ments need to be made as the maximum of each feature 
within the embedding does not depend on the number of 
vertices. For the latter two, this is not true. For mean pool-
ing, we must use the weighted average of the vertex embed-
dings defined by

where vi is the vertex embedding after the predefined num-
ber of graph convolutions is complete. For the normalized 
sum, we can again use the weighted average described by 
Eq. 7 and then apply layer normalization.

Experiments on Materials Project and T2 
Crystals

We test the strength of the DDG on the T2 dataset [26] of 
5,687 simulated molecular organic crystals and on the Mate-
rials Project database of 36,678 crystals [19] obtained by 
extra optimization from real mostly inorganic crystals. The 
T2 dataset was produced during the Crystal Structure Pre-
diction process using quasi-random sampling [39]. We focus 
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on property prediction of lattice [40, 41], formation [42], and 
band gap energy [43].

Each dataset presents a different challenge for the model. 
The Materials Project crystals are varied in their compo-
sition, while all crystals in the T2 dataset have the same 
molecular composition. For each dataset, the primary dif-
ferentiator is different, and applying the model to both is 
important in displaying its flexibility and robustness.

In the first experiment, we will introduce an additional 
hyper-parameter for the model and show how it can be used 
to compress the graph representation. We will then show 
how this compression affects the accuracy of the model. 
Then, we will present a method for finding the optimal k 
when constructing the DDG.

The Jarvis-DFT dataset [44] is introduced and a modified 
version of ALIGNN which uses the DDG is tested against 
the original model [17].

Finally, we show the importance of having a graph that is 
independent of the unit cell.

Training and Evaluation

All experiments will be done using 80/10/10 training/valida-
tion/test splits. The atom embeddings used will be identical 
to those used in CGCNN [9]. The various atomic properties 
and their dimensionality are shown in Table 1.

The edge embeddings will also be identical to that of 
CGCNN. Embeddings will consist of a one-hot encoding of 
the edge weight (the distance between atoms in angstroms) 
using Gaussian smoothing.

Once the model is trained, MAE will be used to present 
results. MAE is an error measure defined by [45]:

where yi, xi , and n are the true property value, predicted 
property value, and number of samples, respectively. This 

MAE =

∑n

i=1
�yi − xi�
n

Table 1  Atom feature embeddings by atomic property

Atomic property Dimensionality

Group number 18
Period 9
Electronegativity 10
Covalent radius 10
Valence electrons 12
First ionization energy 10
Electron affinity 10
Block 4
Atomic volume 10
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measure is used throughout other works in crystal property 
prediction [9, 15, 17, 22], thus we selected it to make for 
easier comparisons.

For CGCNN, all results shown were produced after the 
model was trained for 200 epochs using ADAM [46] opti-
mizer with mean-squared error loss (except where otherwise 
stated). Results using stochastic gradient descent were worse 
overall for both the Crystal Graph and DDG, but the under-
lying trend in performance remained the same. The model 
implementation used was that of the original CGCNN paper 
with the added code to create the DDG and the ability to set 
the new hyper-parameters. We provide a custom weighted 
batch normalization layer, while the non-weighted version 
uses the default implementation in the model.

Impact of Collapse Tolerance on Predictions

The grouping of atoms occurs under three conditions, one of 
which is that the k-nearest neighbors’ distances must be the 
same. This presents a problem when creating the implemen-
tation for the DDG as small discrepancies can arise through 
means such as floating point arithmetic, measurement 
error, or atomic perturbations. For this reason, we introduce 
a tolerance such that, if the difference between k-nearest 
neighbors’ distances is less than this tolerance, they will 
be considered the same. We will refer to this tolerance as 
the collapse tolerance and it will be considered a hyper-
parameter. Figure 3 displays the application of the collapse 
tolerance on Lutetium Silicon. Note that the comparisons 
of the pairwise Euclidean distances are conducted on atoms 
that have the same atomic species, one of the requirements 
mentioned in Definition 4.

In this experiment, we will look at how the collapse toler-
ance affects the accuracy of model predictions. Intuitively, 
the collapse tolerance presents a trade-off. As it increases, 
atoms will be grouped, creating a more compressed rep-
resentation. However, when the tolerance reaches a point 
at which it is large enough to group atoms that should be 

treated separately, information loss will begin to occur and 
this should have a negative impact on prediction accuracy.

Table 2 shows the resulting mean absolute errors (MAE) 
across each of the collapse tolerances. The hyper-parameter 
k for both graphs will be the same. The convolutional layer 
developed by the authors of CGCNN can appropriately 
weigh the influence of distant atoms accordingly, so their 
interactions are weakened. As such, when testing the Crystal 
Graph we use an adequately large r to have k neighbors for 
each vertex.

Across both properties, the DDG is able to beat the pre-
diction accuracy of the Crystal Graph while remaining sig-
nificantly smaller with respect to the number of vertices and 
edges. As the tolerance increases the graph is reduced in 
size. There is a threshold where performance should begin to 
suffer due to information loss. We can see this begin to hap-
pen, though it does not manifest in large increases in error. 
Overall, the differences in the results across the tolerances 
are relatively small.

Work from DeeperGATGNN [14] showed that conver-
gence for CGCNN can come after training for a number of 
epochs closer to 500. We replicate the same experiment done 

Fig. 3  Transformation from 
unit cell based graph to the 
DDG including the collapse 
tolerance which allows for small 
differences in the edges features 
while still grouping similar 
vertices (atoms)

Table 2  The mean absolute error (MAE) for predicting the formation 
energy (FE in eV/atom) and band gap energy (BG in eV) for materi-
als project crystals and the DDG with several collapse tolerances and 
the Crystal Graph (CG) for k = 12 nearest neighbors

Bold values indicate better performance (lower MAE)
The relative size is the average percent of the number of vertices 
compared to the CG

Graph Tolerance Band gap 
MAE 
(eV)

Formation 
energy MAE 
(eV/atom)

Relative size (%)

CG N/A 0.327 0.0512 100.0
DDG 10

−8 0.314 0.0456 48.8
DDG 10

−6 0.315 0.0468 47.5
DDG 10

−4 0.316 0.0469 43.7
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in Table 2 after increasing the number of epochs to 500 at a 
collapse tolerance of 10−4 in Table 3.

While the gap between the formation energy MAEs has 
decreased, the band gap results are marginally different. The 
DDG provides a decrease of 4.8% at 500 epochs and 8.4% at 
200 epochs. For band gap energy, this improvement stands 
at 3.4% and 2.7% for 200 and 500 epochs, respectively.

Table 4 shows the results for the analogous experiment 
on the T2 dataset for the prediction of lattice energy. For 
the T2 crystals, we use a more aggressive tolerance of 10−3 
as 10−8 is inadequate in significantly decreasing the size of 
the graphs.

The T2 dataset consists of molecular crystals all based on 
triptycene. The primary differentiator between these crystals 
is their geometric arrangement. These structural differences 
manifest themselves as changes in the pairwise distances 
between atoms. Such changes can be subtle. Because the 
collapse tolerance provides a way for atoms with (slightly) 
different k-nearest neighbor distances to be grouped, it is 
possible that these differences in structure can be lost.

Such information loss should result in a decrease in pre-
diction accuracy. Alternatively, it is possible for differences 
in structure to be small enough that the property values 

change insignificantly. In this case, the collapse tolerance is 
useful for removing such noise. This in turn could allow the 
model to better generalize and prevent overfitting, ultimately 
improving results.

In Table 4, at a tolerance of 10−6 , we can see the grouping 
of atoms in the representation lowers the overall MAE. This 
is in line with our previous hypothesis as such a tolerance 
value is still conservative. When the tolerance increases past 
this, the MAE increases significantly, approaching that of 
the Crystal Graph. This is where information loss begins 
to occur.

If we consider the best-performing collapse tolerance, we 
are able to shrink the crystal representations to just 31.4% 
of the original size of the Crystal Graph and reduce MAE 
by 6.1%.

Selection of k‑Nearest Neighbors

The value of k is considered a DDG hyper-parameter to tune 
for best prediction performance. Previous graph represen-
tations which also use each atom’s nearest neighbors have 
selected this k based on trial and error, without providing 
much guidance on how this selection should be conducted. 
Here, we develop a method to help find an adequate k using 
the properties of the PDD. Selection of k should always be 
the smallest possible without sacrificing prediction quality.

We know the PDD is generically complete given Λ,m and 
a k large enough that the values in the final column of the 
PDD are all larger than twice the covering radius of the lat-
tice Λ for a given periodic set, see Theorem 4.4 of [8]. This 
upper bound for k can be very large but is not without value.

Since we group together atoms that experience the same 
k nearest neighbor distances (among other conditions), as 
k increases the number of groups will either stay the same 
or increase (when the k th distance finally becomes differ-
ent and grouping can no longer occur). Using this, we can 
establish a lower bound defined by a large enough k that the 
groupings are the same as our upper bound. This method 
establishes a range in which to search for optimal k.

Every crystal in the dataset will have differing ranges, and 
applying each one individually such that each graph uses its 
own k value yields poor results. This is not surprising, the 
Earth Mover’s Distance [31, 47] establishes a continuous 
metric between PDDs with fixed k according to Theorem 4.3 
of [8]. So, given a different range for each sample in the 
data, we want a single value for k that is sufficient across 
the dataset.

We take the maximum of this lower bound for the crystals 
in our dataset, without considering outliers. What is consid-
ered an outlier is not well defined, so we will convey this 
in terms of what percent of the dataset this k value satisfies 
the aforementioned condition. At k = 6 , the lower bound 

Table 3  The mean absolute error (MAE) for predicting the formation 
energy (FE in eV/atom) and band gap energy (BG in eV) for materi-
als project crystals and the DDG with a collapse tolerance of 10−4 and 
the Crystal Graph (CG) for k = 12 nearest neighbors at 200 and 500 
epochs

Bold values indicate better performance (lower MAE)
The relative size is the average percent of the number of vertices 
compared to the CG

Graph Tolerance Epochs BG MAE 
(eV)

FE MAE 
(eV/atom)

Relative size 
(%)

CG N/A 200 0.327 0.0512 100.0
DDG 10

−4 200 0.316 0.0469 43.7
CG N/A 500 0.328 0.0478 100.0
DDG 10

−4 500 0.319 0.0455 43.7

Table 4  The mean absolute error (MAE) for predicting the lattice 
energy (LE in kJ/mol) for T2 crystals and the DDG with several col-
lapse tolerances and the Crystal Graph for k = 16 nearest neighbors

Bold values indicate better performance (lower MAE)
The relative size is the average percent of the number of vertices 
compared to the Crystal Graph

Graph Tolerance Lattice energy 
MAE (kJ/mol)

Relative size (%)

CG N/A 3.358 100.0
DDG 10

−6 3.154 31.4
DDG 10

−4 3.256 28.4
DDG 10

−3 3.312 27.2
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is satisfied for 98% percent of samples, and at k = 9 , this 
percentage rises to 99%.

Table 5 shows the resulting MAE for the formation and 
band gap energy after k is varied. At k = 3 , the results dete-
riorate and the number of neighbors should be increased. 
Formation energy peaks at k = 12 and band gap energy at 
k = 9.

When the number of neighbors is increased, the degree 
of the vertices of the graph is increased. By doing this, the 
information from more distant atoms is included during the 
convolution. The convolution for a given vertex aggregates 
information pertaining to the neighboring vertices.

As k increases, the local information about the atom is 
traded in exchange for global information since more distant 
atoms are now included in the convolution and thus, the new 
vertex embedding. At a point, with k being large enough, 
this causes over-saturation and the local information of the 
atom is diluted. In both band gap and formation energy, this 
can be seen in the higher k values when MAE begins to 
increase after reaching a minimum. Furthermore, we can 
deduce that if performance peaks at a lower k then the vertex 
embeddings are optimally produced when using atoms that 
are closer in distance.

Importance of Unit Cell Invariance

A valid unit cell U for a given crystal can be transformed by 
multiplying the original basis vectors (a, b, c) by a transfor-
mation matrix P where Pij ∈ ℤ

such that det(P) = 1 to maintain cell volume and det(P) > 1 
for a supercell [48], a unit cell which has a larger volume 
than the original.

In this experiment, these transformations are done to 
the unit cell to form a supercell for 2, 000 of the crystals 

⎛⎜⎜⎝

P11 P12 P13

P21 P22 P23

P31 P32 P33

⎞⎟⎟⎠

(roughly 7% ) from the training set of the Materials Project 
data. The amount was chosen to show that even just a small 
fraction of crystals with a changed unit cell can affect the 
prediction results of the whole dataset. A control run was 
done using the original data, and then the unit cells were 
altered for a second run. We chose to use formation energy 
as the band gap energy data has very small values that can 
result in inflated percent change.

A heatmap of the absolute percent change in prediction 
between the first and second run for the Crystal Graph is 
shown in Fig. 4. On average the predictions changed by 
4.36% , with the maximum change being over 135% com-
pared to its original value. The overall test MAE increased 
slightly from 0.501 to 0.502.

With the DDG, the resulting graph would be the exact 
same regardless of the transformation to the unit cell. Intui-
tively, this can be seen as the PDD keeps track of the propor-
tion of a particular atom within the cell through its weights 
and eliminates atoms with the same behavior through col-
lapsing rows in the PDD. Such collapsing removes the 
dependence of our graph from the unit cell choice. In order 
to maintain such consistency using the Crystal Graph, users 
would need to apply the same cell reduction algorithm (for 
example) to obtain a particular cell, in line with what others 
have used. Even this is not without problems, as reduction 
techniques are discontinuous under atomic perturbations or 
errors in experimental measurement [49].

Application on Line Graphs

We apply ALIGNN to the Jarvis-DFT dataset [44]. The 
properties included aim to present a variety of sample 

Table 5  Prediction MAE using the DDG on formation energy (FE) in 
eV/atom and band gap (BG) energy in eV when the number of near-
est neighbors k is varied at a collapse tolerance of 10−4

Bold values indicate better performance (lower MAE)

k-Nearest 
neighbors

Coverage (%) Band gap 
MAE (eV)

Formation energy 
MAE (eV/atom)

3 87.9 0.333 0.0584
6 98.7 0.299 0.0509
9 99.1 0.295 0.0477
12 99.2 0.316 0.0456
15 99.3 0.319 0.0457
18 99.4 0.317 0.0474

Fig. 4  Absolute percent difference in prediction of formation energies 
for the test set using the Crystal Graph after altering samples in the 
training data to have supercells
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sizes to show their effect on the performance of the Crystal 
Graph against the Distribution Graph. The implementation 
of the Crystal Graph for ALIGNN differs slightly from 
its implementation in the original work. Specifically, the 
resulting graph produced by ALIGNN’s implementation 
has exactly k neighbors for each motif point included in 
the graph. Further, backward edges are placed between all 
pairs of vertices, effectively doubling the number of edges 
in the representation. This increase is then propagated to 
the derived line graph. To reduce computational cost, we 
leave out the backward edges added to the original graph, 
but these can be accounted for in the Distribution Graph 
by simply doubling k.

Each version of ALIGNN is trained for 300 epochs (the 
same as the original paper [17]) using AdamW [50] opti-
mizer and a batch size of 64. The model parameters remain 
the same as in the original implementation except for the 
hidden embedding size which was reduced from 256 to 
128. This was done to reduce memory requirements and 
ensure training and validation errors converged.

The prediction MAE results on the test set for ALIGNN 
are listed in Table 6. For these results, we apply condition 
(iv.a) which is more lenient than condition (iv.b). The result 
is a smaller graph representation at the cost of potential 
information loss. For properties with a smaller number of 
samples, this provides a regularization effect. When com-
pared to the results in Table 7, the MAE is lower for exfolia-
tion error, eij , and dij despite the graph being smaller in terms 
of vertices and edges. It is at larger sample sizes that we 
see performance start to decline, likely because more infor-
mation is needed to distinguish structures. Regardless, the 
Distribution Graph created using condition (iv.a) decreases 
formation energy MAE by 12% , shear modulus by 0.6% , 
bulk modulus by 8% , eij by 4.1% , dij by 6.9% , and exfolia-
tion energy by 9% . Even in the most conservative improve-
ment, the number of vertices and edges in that graph and line 
graph are decreased by 28% . The Distribution Graph pro-
duced by condition (iv.b) provides a more modest improve-
ment on graph size reduction of at least 11.2% . Meanwhile, 
the decrease in MAE on properties with smaller sample 
sizes (exfoliation energy, eij , and dij ) is less significant at 

Table 6  Prediction MAE of 
ALIGNN on the Jarvis-DFT 
dataset using the Crystal Graph 
(CG) and the Distribution 
Graph (DG) created with 
condition (iv.a) using k = 12 
and no backward edges

Bold values indicate better performance (lower MAE)
The relative size of the original graph G and the line graph L(G) are calculated by taking the mean ratio of 
the number of vertices V or edges E in the Distribution Graph to the Crystal Graph at a collapse tolerance 
of 10−4 . Abbreviations of the properties are as follows: formation energy (FE), shear modulus (SM), bulk 
modulus (BM), maximum piezo stress coefficient ( eij and dij ), and exfoliation energy (EE)

Property (units) n CG DG Relative Size of DG to CG

|V(G)|(%) |V(L(G))|(%) |E(L(G))|(%)

FE (eV)/atom 75.993 0.042 0.037 69.4 66.8 64.2
SM log

10
(GPa) 23,824 14.41 14.32 72.0 69.0 66.1

BM log
10
(GPa) 23,824 12.92 11.89 71.1 68.2 65.5

eij Cm
−2 4,799 0.122 0.117 64.4 63.0 61.4

dij CN
−1 3,347 12.09 11.26 65.2 63.6 61.9

EE meV/atom 813 40.02 36.43 53.5 52.7 51.5

Table 7  Prediction MAE of 
ALIGNN on the Jarvis-DFT 
dataset using the Crystal Graph 
(CG) and the Distribution 
Graph (DG) created with 
condition (iv.b) using k = 12 
and no backward edges

Bold values indicate better performance (lower MAE)
The relative size of the original graph G and the line graph L(G) are calculated by taking the mean ratio of 
the number of vertices V or edges E in the Distribution Graph to the Crystal Graph at a collapse tolerance 
of 10−4 . Abbreviations of the properties are as follows: formation energy (FE), shear modulus (SM), bulk 
modulus (BM), maximum piezo stress coefficient ( eij and dij ), and exfoliation energy (EE)

Property (units) n CG DG Relative size of DG to CG

|V(G)|(%) |V(L(G))|(%) |E(L(G))(%)

FE (eV)/atom 75.993 0.042 0.035 86.9 84.1 82.9
SM log

10
(GPa) 23,824 14.41 14.10 88.1 84.9 83.1

BM log
10
(GPa) 23,824 12.92 11.72 88.2 85.2 83.5

eij Cm
−2 4,799 0.122 0.121 88.6 87.1 86.3

dij CN
−1 3,347 12.09 11.79 88.8 87.1 86.2

EE meV/atom 813 40.02 36.65 83.3 82.4 81.8
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8.4%, 0.6% and 2.5% . For formation energy, shear modulus, 
and bulk modulus, these values are 16.7%, 2.2% , and 9.3%.

Discussion

The methods presented in Sect. 2.4 are generally applicable 
for graphs used in GNNs; however, their application to peri-
odic materials is particularly effective since, by their nature, 
these crystals exhibit repetitive behavior. For objects that can 
be represented as point sets (crystals, proteins, molecules, 
etc.), graphs are often constructed with edges being placed 
between a given point and its k-nearest neighbors. This con-
sistency in outdegree for each vertex makes the application 
of Distribution Graphs more effective since it is more likely 
to find repetitive topologies that can be grouped.

When graphs are fed into a GNN model, the vertex 
embeddings are typically dependent on the adjacent edge 
features and neighboring vertex features. The process of 
converting a given graph to a Distribution Graph maintains 
these relationships for any given vertex in the graph and 
thus, the resulting updated embeddings will be the same. 
This is conditioned on the collapse tolerance used being 
exactly zero. For any collapse tolerance greater than zero, 
the resulting edge embeddings will differ slightly as vertices 
with slightly different edge features will be averaged.

The improvement coming from the Distribution Graph 
stems from two possible sources: the use of weights instead 
of multiplicities in the graph and the regularization that is 
produced by using a positive collapse tolerance.

The use of weights accomplishes two things: it describes 
the vertices of the graph in terms of a concentration instead 
of using multiplicities and it prevents graphs with a larger 
number of vertices from over-influencing the mean and 
standard deviation during batch normalization. In the former 
case, the result is a smaller graph representation. In the latter 
case, by using weights, a single graph has no more influence 
than any other within the batch just due to its size (num-
ber of vertices or edges). This should be the goal, as larger 
graphs do not carry a higher contribution to the final error 
and thus, should be treated as having the same influence as 
any other graph. While this effect might appear subtle, it is 
important to note that without the use of batch normaliza-
tion in CGCNN, the resulting formation energy MAE more 
than doubles. As such, changes to its calculation can bear 
significant changes in performance.

When the collapse tolerance is increased, more vertices 
(points) are grouped together. When the number of samples 
is small (see Tables 6 vs. 7 for eij, dij and exfoliation energy), 
despite the information loss that can occur through the aver-
aging of edge features, the MAE produced is actually lower. 
We believe this is caused by regularization, resulting in bet-
ter generalization on the test set. This is further backed by 

the difference in MAE decreasing as the size of the graph 
increases for properties with larger sample sizes (i.e., Jarvis-
DFT formation energy).

Notably, both of these are not bound to a particular model. 
Instead, they address an issue with how batch normalization 
is applied to GNNs in general and introduce regularization in 
a new way that may be helpful, depending on the data being 
modeled.

While the Distribution Graph certainly provides benefits in 
its use, the formation of Distribution Graphs is currently con-
tingent on vertices having the same outgoing degree. Graphs 
containing vertices with highly variable degrees will not ben-
efit as significantly (or possibly not at all) when turned into a 
Distribution Graph. A possible approach for rectifying this is 
to allow for vertices with different, but very similar topolo-
gies, to be collapsed. The collapse tolerance addresses this 
case when the number of edges of two vertices is the same 
but the weights of the edges themselves vary slightly. Another 
mechanism that systematically allows for collapsing two ver-
tices with different sets of edges is more difficult to design and 
would inevitably introduce some level of error through infor-
mation loss that would likely be more significant than the col-
lapse tolerance. A method for rectifying this would be appli-
cable to graph neural networks regardless of their application.

The experiments contained in Sects. 3.2 and 3.3 to eluci-
date the effect of the two hyper-parameters of the Distribution 
Graph were in line with what would be expected based on 
the theoretical results of the PDD and measurement errors in 
crystal structures. For the line graphs in ALIGNN, there is a 
less justifiable reason for selecting k and for using the collapse 
tolerance selected. First, it is unclear whether the value of k 
determined using our method is too small or even too large 
given the additional angular information. Second, the collapse 
tolerance can be selected based on the size of measurement 
error in Angstroms or on mitigating floating point precision 
error. When the collapse tolerance is too large, the collapse 
of two vertices propagates to any derived line graph. This is 
fine if the topology in the line graph created by the vertices is 
the same, but should this not be the case the information loss 
produced from selecting either instead of keeping both would 
be significant. Notably, this is not a problem when the sample 
size of the training/testing data is small as seen in Table 6. 
Such a situation can be avoided by selecting an appropriate 
collapse tolerance or by using condition (iv.b) from Sect. 2.4. 
For these reasons, however, these hyper-parameters still need 
to be assessed based on trial and error.

Conclusion

The DDG is a graph representation for periodic crystals 
that is invariant to rigid motion and unit cell choice. This 
representation reduces the size of the graph representation 
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significantly compared to the commonly used Crystal 
Graph while improving prediction performance. By hav-
ing fewer vertices and edges in the representation, we can 
speed up training and prediction time, as well as reduce 
memory requirements. Such an advantage is in line with 
the original intent of introducing machine learning meth-
ods into material property prediction.

We develop a graph representation of crystals based 
on the pointwise distance distribution, a continuous and 
generically complete invariant of all periodic structures. 
While the graph cannot maintain continuity, it is sufficient 
for the finitely sized set of crystals within the T2 and mate-
rials project. Regardless, we find that the use of the PDD 
as the basis for our graph representation is a step toward 
the eventual goal of adapting the Crystal Isometry Prin-
ciple, first stated in [27], for material property prediction.

We adopt the two values from the PDD as hyper-param-
eters in the DDG, the collapse tolerance and k. The col-
lapse tolerance can be tuned to increase or decrease the 
size of the graph in line with one’s requirements. Further, 
it allows the DDG to be stable to atomic perturbations or 
small errors in measurement that can occur at the atomic 
level. Finally, we used properties of the PDD to help guide 
the selection of the hyper-parameter k, as well as explored 
how this affects the performance of prediction accuracy.

This DDG is generalized to the Distribution Graph, 
which can accommodate derived line graphs to include 
angles and dihedrals. We show this graph representation to 
outperform the Crystal Graph in accuracy and size on the 
Jarvis-DFT dataset across six material properties.

Distribution Graphs can be used as a representation for 
any model that currently uses the Crystal Graph to reduce 
compute requirements and improve accuracy. Further, the 
modifications we described in the methodology for incor-
porating weighted vertices can be applied in general to 
GNNs to use vertex-weighted graphs.

Acknowledgements Thank you to the anonymous referee for their 
helpful questions and comments; they were very helpful in improving 
this article and expanding the scope of its application.

Funding This project was funded by the Royal Academy of Engineer-
ing Industry Fellowship (IF2122 / 186) at the Cambridge Crystallo-
graphic Data Centre, the New Horizons EPSRC grant (EP/X018474/1), 
and the Royal Society APEX fellowship (APX/R1/231152).

Data Availability The implementation for the DDG applied on CGCNN 
is located at https:// github. com/ jonat hanBa lasin gham/ pdd- graph- cgcnn 
and the implementation for ALIGNN is located at https:// github. com/ 
jonat hanBa lasin gham/ alignn- DDG. The data from the Materials Pro-
ject is publicly available through their API at https:// next- gen. mater 
ialsp roject. org/ api. The crystallographic information files and lattice 
energies for the T2 crystals are available at https:// eprin ts. soton. ac. 
uk/ 404749/.

Declarations 

Conflict of interest On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Sholl DS, Steckel JA (2009) Density functional theory: a practical 
introduction. John Wiley & Sons

 2. Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density 
functional theory. Chem Rev 112(1):289–320

 3. Calfa BA, Kitchin JR (2016) Property prediction of crystalline sol-
ids from composition and crystal structure. AIChE J 62(8):2605–
2613. https:// doi. org/ 10. 1002/ aic. 15251

 4. Ropers J, Mosca MM, Anosova O, Kurlin V, Cooper AI (2022) 
Fast predictions of lattice energies by continuous isometry invari-
ants of crystal structures. In: International conference on data ana-
lytics and management in data intensive domains, pp 178–192

 5. Ye W, Chen C, Wang Z, Chu I-H, Ong SP (2018) Deep neural 
networks for accurate predictions of crystal stability. Nat Commun 
9(1):3800–3800. https:// doi. org/ 10. 1038/ s41467- 018- 06322-x

 6. Olsthoorn B, Geilhufe RM, Borysov SS, Balatsky AV (2019) 
Band gap prediction for large organic crystal structures with 
machine learning. Adv. Quantum Technol. 2(7–8):1900023. 
https:// doi. org/ 10. 1002/ qute. 20190 0023

 7. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G 
(2008) The graph neural network model. IEEE Trans Neural Netw 
20(1):61–80

 8. Widdowson D, Kurlin V (2022) Resolving the data ambiguity 
for periodic crystals. Adv Neural Inf Process Syst (NeurIPS) 
35:24625–24638

 9. Xie T, Grossman JC (2018) Crystal graph convolutional neural 
networks for an accurate and interpretable prediction of material 
properties. Phys Rev Lett 120:145301. https:// doi. org/ 10. 1103/ 
PhysR evLett. 120. 145301

 10. Court CJ, Yildirim B, Jain A, Cole JM (2020) 3-D inorganic crys-
tal structure generation and property prediction via representation 
learning. J Chem Inf Model 60(10):4518–4535

 11. Louis S-Y, Zhao Y, Nasiri A, Wang X, Song Y, Liu F, Hu J (2020) 
Graph convolutional neural networks with global attention for 
improved materials property prediction. Phys Chem Chem Phys 
22(32):18141–18148

 12. Schmidt J, Pettersson L, Verdozzi C, Botti S, Marques MA (2021) 
Crystal graph attention networks for the prediction of stable mate-
rials. Sci Adv 7(49):7948

 13. Sanyal S, Balachandran J, Yadati N, Kumar A, Rajagopalan P, 
Sanyal S, Talukdar P (2018) MT-CGCNN: integrating crystal 
graph convolutional neural network with multitask learning for 

https://github.com/jonathanBalasingham/pdd-graph-cgcnn
https://github.com/jonathanBalasingham/alignn-DDG
https://github.com/jonathanBalasingham/alignn-DDG
https://next-gen.materialsproject.org/api
https://next-gen.materialsproject.org/api
https://eprints.soton.ac.uk/404749/
https://eprints.soton.ac.uk/404749/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/aic.15251
https://doi.org/10.1038/s41467-018-06322-x
https://doi.org/10.1002/qute.201900023
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevLett.120.145301


 Integrating Materials and Manufacturing Innovation

material property prediction. arXiv. https:// doi. org/ 10. 48550/ 
ARXIV. 1811. 05660arXiv: 1811. 05660

 14. Omee SS, Louis SY, Fu N, Wei L, Dey S, Dong R, Li Q, Hu J 
(2022) Scalable deeper graph neural networks for high-perfor-
mance materials property prediction. Patterns 3(5):100491

 15. Das K, Samanta B, Goyal P, Lee S-C, Bhattacharjee S, Ganguly 
N (2022) CrysXPP: an explainable property predictor for crystal-
line materials. npj Comput Mater 8(1):43. https:// doi. org/ 10. 1038/ 
s41524- 022- 00716-8

 16. Liu S, Du W, Li Y, Li Z, Zheng Z, Duan C, Ma Z-M, Yaghi 
OM, Anandkumar A, Borgs C, Chayes JT, Guo H, Tang J (2024) 
Symmetry-informed geometric representation for molecules, pro-
teins, and crystalline materials. In: Advances in neural informa-
tion processing systems, vol 36

 17. Choudhary K, DeCost B (2021) Atomistic line graph neural net-
work for improved materials property predictions. npj Comput 
Mater. https:// doi. org/ 10. 1038/ s41524- 021- 00650-1

 18. Yan K, Liu Y, Lin Y, Ji S (2022) Periodic graph transformers for 
crystal material property prediction. Adv Neural Inf Process Syst 
35:15066–15080

 19. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, 
Cholia S, Gunter D, Skinner D, Ceder G, Ka Persson (2013) The 
materials project: a materials genome approach to accelerating 
materials innovation. Appl Phys Lett Mater 1(1):011002. https:// 
doi. org/ 10. 1063/1. 48123 23

 20. Dunn A, Wang Q, Ganose A, Dopp D, Jain A (2020) Bench-
marking materials property prediction methods: the matbench 
test set and automatminer reference algorithm. npj Comput Mater 
6(1):138

 21. Ying C, Cai T, Luo S, Zheng S, Ke G, He D, Shen Y, Liu T-Y 
(2021) Do transformers really perform badly for graph representa-
tion? Adv Neural Inf Process Syst 34:28877–28888

 22. Park CW, Wolverton C (2020) Developing an improved crystal 
graph convolutional neural network framework for accelerated 
materials discovery. Phys Rev Mater 4(6):063801

 23. Chen C, Ye W, Zuo Y, Zheng C, Ong SP (2019) Graph networks 
as a universal machine learning framework for molecules and 
crystals. Chem Mater 31(9):3564–3572

 24. Cheng J, Zhang C, Dong L (2021) A geometric-information-
enhanced crystal graph network for predicting properties of mate-
rials. Commun Mater 2(1):1–11

 25. Lawton SL, Jacobson RA (1965) The reduced cell and its crys-
tallographic applications. In: Technical report, Ames Lab., Iowa 
State Univ. of Science and Tech., US

 26. Pulido A, Chen L, Kaczorowski T, Holden D, Little MA, Chong 
SY, Slater BJ, McMahon DP, Bonillo B, Stackhouse CJ, Stephen-
son A, Kane CM, Clowes R, Hasell T, Cooper AI, Day GM (2017) 
Functional materials discovery using energy–structure–function 
maps. Nature 543(7647):657–664

 27. Widdowson D, Mosca M, Pulido A, Cooper A, Kurlin V (2022) 
Average minimum distances of periodic point sets—fundamental 
invariants for mapping all periodic crystals. MATCH Commun 
Math Comput Chem 87:529–559

 28. Anosova O, Kurlin V (2021) An isometry classification of peri-
odic point sets. In: Lecture notes in computer science (proceedings 
of DGMM), vol 12708, pp 229–241

 29. Anosova O, Kurlin V (2022) Recognition of near-duplicate peri-
odic patterns by polynomial-time algorithms for a fixed dimen-
sion. arxiv: 2205. 15298

 30. Patterson A (1939) Homometric structures. Nature 143:939–940
 31. Hargreaves CJ, Dyer MS, Gaultois MW, Kurlin VA, Rosseinsky 

MJ (2020) The earth mover’s distance as a metric for the space of 
inorganic compositions. Chem Mater 32:10610–10620

 32. Elkin Y, Kurlin V (2023) A new near-linear time algorithm for 
k-nearest neighbor search using a compressed cover tree. In: Inter-
national conference on machine learn, pp 9267–9311

 33. Harary F, Norman RZ (1960) Some properties of line digraphs. 
Rendiconti del Circolo Matematico di Palermo 9(2):161–168. 
https:// doi. org/ 10. 1007/ BF028 54581

 34. Hemminger RL (1972) Line digraphs. In: Alavi Y, Lick DR, 
White AT (eds) Graph theory and applications. Springer, Berlin, 
Heidelberg, pp 149–163

 35. Hendrycks D, Gimpel K (2016) Gaussian error linear units 
(GELUs). arXiv: 1606. 08415

 36. Shao J, Hu K, Wang C, Xue X, Raj B (2020) Is normalization 
indispensable for training deep neural network? Adv Neural Inf 
Process Syst 33:13434–13444

 37. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep 
network training by reducing internal covariate shift. https:// doi. 
org/ 10. 48550/ ARXIV. 1502. 03167arXiv: abs/ 1502. 03167

 38. Lei Ba J, Kiros JR, Hinton GE (2016) Layer normalization. ArXiv 
e-prints, 1607 https:// doi. org/ 10. 48550/ arXiv. 1607. 06450

 39. Case DH, Campbell JE, Bygrave PJ, Day GM (2016) Convergence 
properties of crystal structure prediction by quasi-random sam-
pling. J Chem Theory Comput 12(2):910–924

 40. Yang J, Hu W, Usvyat D, Matthews D, Schütz M, Chan 
GK-L (2014) Ab  initio determination of the crystalline ben-
zene lattice energy to sub-kilojoule/mole accuracy. Science 
345(6197):640–643

 41. Bogdanov G, Bustos J, Glebov V, Oskolkov E, Tillotson JP, Timo-
feeva TV (2020) Molecular and crystal structure, lattice energy 
and DFT calculations of two 2’-(nitro-benzo-yloxy)aceto-phenone 
isomers. Acta Crystallogr Sect E Crystallogr Commun 76(pt 
6):857–861. https:// doi. org/ 10. 1107/ S2056 98902 00062 95

 42. Emery AA, Wolverton C (2017) High-throughput DFT calcula-
tions of formation energy, stability and oxygen vacancy formation 
energy of ABO3 perovskites. Sci Data 4(1):170153. https:// doi. 
org/ 10. 1038/ sdata. 2017. 153

 43. Perdew JP (1985) Density functional theory and the band gap 
problem. Int J Quantum Chem 28(S19):497–523

 44. Choudhary K, Garrity KF, Reid AC, DeCost B, Biacchi AJ, Hight 
Walker AR, Trautt Z, Hattrick-Simpers J, Kusne AG, Centrone A 
et al (2020) The joint automated repository for various integrated 
simulations (JARVIS) for data-driven materials design. npj Com-
put Mater 6(1):173

 45. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute 
error (MAE) over the root mean square error (RMSE) in assessing 
average model performance. Clim Res 30(1):79–82. https:// doi. 
org/ 10. 3354/ cr030 079

 46. Kingma D, Ba L (2015) Adam: a method for stochastic optimiza-
tion. ArXiv e-prints arXiv: 1412. 6980

 47. Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance 
as a metric for image retrieval. Int J Comput Vis 40(2):99

 48. Arnold H (2006) Transformations of the coordinate system (unit-
cell transformations). Wiley, Hoboken

 49. Edelsbrunner H, Heiss T, Kurlin V, Smith P, Wintraecken M 
(2021) The density fingerprint of a periodic point set. In: 37th 
International symposium on computational geometry (SoCG 
2021), vol 189

 50. Loshchilov I, Hutter F (2018) Decoupled weight decay regulariza-
tion. In: International conference on learning representations

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.48550/ARXIV.1811.05660
https://doi.org/10.48550/ARXIV.1811.05660
http://arxiv.org/abs/1811.05660
https://doi.org/10.1038/s41524-022-00716-8
https://doi.org/10.1038/s41524-022-00716-8
https://doi.org/10.1038/s41524-021-00650-1
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
http://arxiv.org/abs/2205.15298
https://doi.org/10.1007/BF02854581
http://arxiv.org/abs/1606.08415
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.48550/ARXIV.1502.03167
http://arxiv.org/1502.03167
https://doi.org/10.48550/arXiv.1607.06450
https://doi.org/10.1107/S2056989020006295
https://doi.org/10.1038/sdata.2017.153
https://doi.org/10.1038/sdata.2017.153
https://doi.org/10.3354/cr030079
https://doi.org/10.3354/cr030079
https://arxiv.org/abs/1412.6980

	Material Property Prediction Using Graphs Based on Generically Complete Isometry Invariants
	Abstract
	Introduction
	Methodology: Invariant Graphs
	Isometry Invariants of Periodic Sets of Points
	Generically Complete Continuous Invariant PDD
	Crystal Graph
	Adaptation for Line Graphs
	Crystal Graph Convolutional Neural Network
	Atomistic Line Graph Neural Network
	Including PDD Weights

	Experiments on Materials Project and T2 Crystals
	Training and Evaluation
	Impact of Collapse Tolerance on Predictions
	Selection of k-Nearest Neighbors
	Importance of Unit Cell Invariance
	Application on Line Graphs

	Discussion
	Conclusion
	Acknowledgements 
	References


