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Abstract
The development and discovery of new materials can be significantly enhanced through the adoption of FAIR (Findable, 
Accessible, Interoperable, and Reusable) data principles and the establishment of a robust data infrastructure in support of 
materials informatics. A FAIR data infrastructure and associated best practices empower materials scientists to access and 
make the most of a wealth of information on materials properties, structures, and behaviors, allowing them to collaborate 
effectively, and enable data-driven approaches to material discovery. To make data findable, accessible, interoperable, and 
reusable to materials scientists, we developed and are in the process of expanding a materials data infrastructure to capture, 
store, and link data to enable a variety of analytics and visualizations. Our infrastructure follows three key architectural design 
philosophies: (i) capture data across a federated storage layer to minimize the storage footprint and maximize the query per-
formance for each data type, (ii) use a knowledge graph-based data fusion layer to provide a single logical interface above the 
federated data repositories, and (iii) provide an ensemble of FAIR data access and reuse services atop the knowledge graph 
to make it easy for materials scientists and other domain experts to explore, use, and derive value from the data. This paper 
details our architectural approach, open-source technologies used to build the capabilities and services, and describes two 
applications through which we have successfully demonstrated its use. In the first use case, we created a system to enable 
additive manufacturing data storage and process parameter optimization with a range of user-friendly visualizations. In the 
second use case, we created a system for exploring data from cathodic arc deposition experiments to develop a new steam 
turbine coating material, fusing a combination of materials data with physics-based equations to enable advanced reasoning 
over the combined knowledge using a natural language chatbot-like user interface.

Keywords Knowledge graphs · Data federation · Materials data architecture · Semantics · FAIR principles · Rapid 
materials discovery

Introduction

Across disciplines ranging from biosciences to the physical 
sciences—astronomy, geology, and earth sciences—consid-
erable investments continue to be made into infrastructure 
that eases the handling of large and often complex scien-
tific data. A key rationale behind the development of such 
infrastructure is that they help researchers and other experts 
efficiently, accurately, and collaboratively answer questions 
over and derive insights from the data, wherein the value 
of the data lies beyond a single research project or a geo-
graphic location. Materials science and manufacturing pro-
cesses, as with other disciplines, have embraced data-driven 
approaches to accelerate scientific discovery and innovation. 
Specifically, artificial intelligence (AI) and machine learning 
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(ML) look increasingly poised to revolutionize materials 
science research as evidenced by the recent use of AI/ML 
approaches to accelerate the development of traditional 
materials [1, 2] as well as their use to discover significantly 
more complex materials such as high-entropy alloys [3, 4].

Materials data exhibit high diversity not only in their con-
tent—from scalar parameters to time series to spectral to 
categorical to image data—but also in the various means by 
which this rich content can be sourced, processed, linked, 
and ultimately be analytically exploited to yield benefit. It 
is well-documented that the path to materials discovery via 
collaborative, data-centric approaches, as proclaimed by the 
Materials Genome Initiative (MGI) [5], is currently bottle-
necked by a lack of access to well-structured, high-quality 
data that prevent materials scientists from harnessing the 
data holistically [6–8]. To this end, the first generation of 
materials data platforms such as the Materials Project [9] 
and Materials Data Facility [10] made concerted efforts to 
standardize and democratize the way materials data is cap-
tured and stored. By providing a centralized data repository 
equipped with standardized data representations, formats, 
and web-based access and sharing interfaces, these plat-
forms address the siloed nature of materials science research 
prevalent within specific sub-disciplines. The updated MGI 
Strategic Plan recognized the progress made by the materi-
als science community in capturing and managing data in 
siloes and now sees the next grand challenges as developing 
a “National Materials Data Network” to integrate distributed 
data stores into a federated system, encouraging the adoption 
of the FAIR data principles, and incentivizing the commu-
nity to adopt and use the federated data infrastructure [11]. 
We believe that our infrastructure is one approach that could 
be taken to address the updated MGI Strategic Plan’s goals.

Critical scientific discoveries, not limited to just the mate-
rials domain, typically build on a more holistic analysis that 
spans contextualized data from across multiple sub-disci-
plines and demands more rigor and repeatability in experi-
mental processes. In the context of scientific data, guiding 
principles such as FAIR [12] prescribe a set of standard 
approaches and practices to manage data complexity and 
ultimately make data more usable and equitable. While there 
is no single agreed upon implementation that operationalizes 
all the FAIR principles, there have been several attempts to 
reduce some of them to practice within different disciplines 
[13–15], each with varying levels of success. Infrastruc-
ture dedicated to the FAIR data capture and management 
of materials data has also been previously demonstrated 
[16–18].

From a FAIR data management viewpoint, materials sci-
ence and engineering present many challenges beyond just 
accessibility. Transforming raw unstructured materials data 
into meaningful structured quantitative representations of 
potential linkages between processing, structure, properties, 

and performance (PSPP) of parts is critical to the success-
ful application of AI/ML techniques for discovering new 
materials and enhanced properties. For describing data with 
sufficient contextual detail and for capturing linkages across 
multimodal data, a FAIR materials data infrastructure should 
leverage ontologies and semantic knowledge graph technol-
ogy to structure the complex information [19, 20].

We developed a data repository for additive manufac-
turing materials and process development data generated 
from a range of sources at multiple GE sites. We are actively 
enhancing our federated data infrastructure to encompass 
materials and manufacturing modalities commonly found in 
the aerospace and power generation industries. To date, we 
have developed components of this infrastructure for captur-
ing, storing, and linking data to make it accessible to users 
for a variety of exploitation techniques including analytics 
and visualization [21–24]. To make materials data findable, 
accessible, interoperable, and reusable, we adopt three key 
architectural design philosophies:

1. Federated data storage: Materials data physically 
resides in one or more decentralized data repositories, 
each of which are optimized to manage and serve spe-
cific types of data.

2. Knowledge graph-based data integration: Knowledge 
graphs model materials data and any contextual meta-
data in a graphical structure using terms and concepts 
familiar to domain users who interface with the data. 
This provides a semantic layer that abstracts the com-
plexities of the underlying federated data repositories 
away from the consumers of the data.

3. FAIR data access and reuse services: An extensible 
ensemble of data access and reuse services make it easy 
for materials scientists and domain experts to explore the 
data, and for data scientists and developers to provision 
the right data for their use, be it for training a machine 
learning model or for generating a report.

Through this approach to FAIRification of materials data, 
we minimize the cognitive load of scientists who no longer 
need to know where the data are stored or how it needs to 
be accessed. By maintaining data and contextual seman-
tics using a knowledge graph, we make data more findable 
and accessible to scientists by allowing data search using 
domain-driven terminology. From a no-code data access 
standpoint, scientists simply need to select a set of concepts 
(and their attributes) from a knowledge graph representative 
of FAIR data; we then automatically translate such a request 
into a knowledge graph query that retrieves the correspond-
ing data. Through machine-actionable representations of the 
data and logical data integration using linked data principles 
[25], we further enhance its interoperability and reusability 
across applications.
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Merely organizing materials data using a data federation 
system mediated by a knowledge graph is only one part of 
the solution. Efficiently discovering relevant data from such 
a FAIR knowledge graph of materials data is still an open 
challenge. Besides data storage, the MGI strategic plan [26] 
emphasized the need for better accessibility and discover-
ability of data. Hence, as part of our infrastructure’s FAIR 
data services layer, we focus on novel data access and reuse 
services that enable materials scientists to automatically lev-
erage different kinds of useful contextual metadata to find 
and use the right data.

In the following sections, we summarize the FAIR prin-
ciples, explain what knowledge graphs are and how they can 
help make data FAIR, and then further explain our materials 
data infrastructure and detail how the set of reusable services 
simplify the discovery of data from our knowledge graph. 
We then describe two successful applications built with this 
architectural approach to make materials data highly accessi-
ble to materials scientists within the GE company. In the first 
case, we created a knowledge graph for additive manufactur-
ing (AM) alloy screening and process parameter optimiza-
tion and making a large pedigreed AM dataset accessible to 
parameter developers for gaining insights and optimizing 
process parameters for new AM materials faster [22]. In the 
second case, we created a knowledge graph for a coating 
technology development program to increase the reliability 
of the steam path by fusing a combination of materials data 
and physics-based equations to enable advanced reasoning 
over the combined knowledge [23]. In both success stories, 
we developed web-based user interfaces, one based on a 
variety of data visualizations and the other through a natural 
language chatbot interface, that allowed materials scientists 
to interact with and utilize the FAIR materials data without 
having to worry about the specifics of the underlying storage 
infrastructure.

Background

FAIR Data

The FAIR principles are a set of guidelines aimed at enhanc-
ing the management and sharing of scientific data in support 
of data-driven research and collaboration [12]. An acronym 
for Findable, Accessible, Interoperable, and Reusable, a 
summary of the FAIR principles [27] are as follows:

• Findable: Data should be easy to discover, for both 
humans and machines. Metadata and unique identifiers 
should be used to ensure data can be located efficiently. 
Clear naming conventions and standardized keywords are 
essential.

• Accessible: Data should be readily available, preferably 
with clear, open-access policies. Metadata should include 
information about how to access the data, whether it is 
through a repository, an API, or other means.

• Interoperable: Data should be compatible with various 
systems and tools. It should use common data standards 
and formats to facilitate integration and analysis across 
different domains.

• Reusable: Data should be well-documented and struc-
tured, making it understandable and usable by others. 
This includes providing context, describing methods, and 
ensuring data quality.

Adhering to the FAIR principles is of importance in 
today's data-driven world for several reasons.

Data Explosion We are witnessing an unprecedented 
explosion of data across most disciplines, from genomics 
to climate science. To harness this wealth of information, 
data must be findable. Researchers need efficient methods 
to locate and access relevant datasets among this vast ocean 
of data.

Reproducibility In an era of skepticism and concern over 
the reproducibility of scientific research, adhering to FAIR 
principles promotes transparency. Well-documented and 
reusable data make it easier for others to verify and replicate 
research findings.

Collaboration Many of today's most pressing challenges 
require collaboration. FAIR data principles ensure that 
data from diverse sources can be integrated and analyzed 
together, enabling insights that were previously impossible.

As the volume and importance of data continue to grow, 
the FAIR principles for scientific data serve as a vital foun-
dation for responsible data management and utilization.

Knowledge Graphs

A knowledge graph is a structured representation of knowl-
edge that captures relationships between entities within a 
domain in a semantic and graph-based format that both 
humans and machines can comprehend. By structuring 
information as a graph of nodes (entities) and edges between 
them (relationships), knowledge graphs allow for efficient 
traversal, query, and exploration of information, and sup-
port logical reasoning over the facts in the knowledge graph 
to draw conclusions and derive new knowledge. The main 
elements of a knowledge graph are as follows:

1. Entities: The fundamental objects or concepts in the 
knowledge graph, representing everything from people 
and places to abstract concepts or data points.

2. Attributes: Describe properties or characteristics of 
entities. For example, if an entity represents a material, 
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attributes could include their name, density, and melting 
temperature.

3. Relationships: Define how entities are connected. 
Establish semantic links between entities, indicating 
how they are related to one another. For instance, a 
material entity can have relationships with other enti-
ties, such as "has element" or "processed by."

In practice, knowledge graphs can be realized in multiple 
ways—the traditionally leading approaches being semantic 
knowledge graphs and property graphs. Of the two, seman-
tic [or Resource Description Framework (RDF)] graphs 
are inherently more knowledge-centric in that they rely on 
World Wide Web Consortium (W3C) standards [e.g., rep-
resenting knowledge in the form of RDF triples and Web 
Ontology Language (OWL) axioms] to prioritize interop-
erability. Property graphs, while more data-centric, can 
potentially have a semantic overlay atop the graphical data 
to manage domain knowledge in a more flexible, performant 
manner. While RDF-based knowledge graphs may have cer-
tain limitations with regard to natively representing different 
forms of materials data in a scalable manner, we still prefer 
to use such semantic knowledge graphs due to the rich inter-
operability on offer, the out-of-the-box standardized ability 
to logically reason over such graphs, and modern semantic 
virtualization approaches which help circumvent issues of 
scalability. In theory, however, the application of knowledge 
graph technology to FAIR data management may potentially 
be realized using property graphs as well.

Ontologies provide the underpinning for the most popular 
open semantic knowledge graphs in use today (DBpedia,1 
Wikidata2). An ontology is used to define a set of concepts 
(or classes) within a domain of interest—which become 
nodes in a knowledge graph, the attributes (or properties) 
of those concepts, and any links (or relationships) between 
concepts—which become edges in the graph. Also com-
monly referred to as a “semantic model,” an ontology by 
itself is an important form of knowledge as it represents how 
experts within a domain think about their field and codi-
fies the vocabulary they use to describe the concepts in that 
field. Several ontologies have been proposed to represent 
and capture materials data,3 although the breadth of cover-
age and maturity of the models varies widely [28–30]. More 
information on materials ontologies can be found in a survey 
paper by Zhang et al. [31]. In addition to a semantic model 
of a domain, a knowledge graph usually also comprises data 
that represent specific instances of knowledge.

Knowledge graphs constructed from semantic models are 
well-aligned with key FAIR principles. In comparison with 
FAIR data modeled using traditional, simpler data models, 
FAIR data represented through semantic knowledge graphs 
enable relatively greater findability and reuse, as described 
below:

• By allowing domain experts in materials science and 
manufacturing to model their data and any contex-
tual information about the data (i.e., metadata) using a 
structure and terminology familiar to them, knowledge 
graphs permit efficient search and information retrieval. 
By encoding domain taxonomy within semantic models, 
retrieving data of interest becomes dramatically simpli-
fied, and knowledge graph queries can be constructed via 
no-code or visual drag-and-drop techniques resulting in 
enhanced Findability of data.

• When constructed in accordance with linked data prin-
ciples [25], semantic knowledge graphs assign unique 
identifiers (URIs) to all entities, ensuring that informa-
tion about a specific entity can be maintained consistently 
and unambiguously paving a path to better data Interop-
erability.

• To address siloed data, knowledge graphs can further be 
virtualized such that instance data corresponding to the 
semantic model is maintained “externally” within one or 
more underlying data stores, resulting in a logical data 
architecture referred to as a semantic data fabric. Ontolo-
gies are then used to mediate querying and access to the 
data via a technique known as ontology-based data access 
(OBDA) [32]. By providing a single common interface 
and federated mechanism to interact with data across 
many storage systems and APIs, and by fusing this data 
on-demand in the context of curated domain knowledge, 
knowledge graphs can improve overall Accessibility to 
and Reusability of data by abstracting away many com-
plexities related to data management.

Materials Repository Architecture

Our materials repository architecture is comprised of three 
layers as shown in Fig. 1. At the bottom is a federated data 
storage layer wherein multimodal materials data are captured 
and stored within distinct repositories, where each repository 
is dedicated to a specific type of data. Atop this is a knowl-
edge graph that serves as a layer of abstraction over the stor-
age layer and is also responsible for annotating the materi-
als data with semantic context to make the data FAIR. The 
topmost, consumer-facing layer is responsible for facilitating 
easy access to FAIR data structured as a knowledge graph. 
This layer comprises a library of smart data access services 
to further abstract away the complexity of interacting with a 

1 https:// www. dbped ia. org/
2 https:// www. wikid ata. org/
3 Many of which can be found at https:// matpo rtal. org/ ontol ogies

https://www.dbpedia.org/
https://www.wikidata.org/
https://matportal.org/ontologies
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semantic knowledge graph from materials scientists, engi-
neers, and data scientists.

Federated Materials Data Storage

The multitude of sub-disciplines associated with materials 
science and manufacturing generate, consume, and analyze 
very heterogeneous forms of data—experimental data results 
are often maintained in spreadsheets or other structured tab-
ular formats for analysis and visualization. The experimental 
metadata, on the other hand, may be captured either in the 
form of unstructured text or as semi-structured key-value 
pairs. Many computational materials science tools generate 
output in nested, semi-structured JSON-like formats, some 
others in CIF, XML, POSCAR, or text file formats. Mate-
rials characterization routines may target optical or SEM 
micrographs and other forms of image data, or spatial and 
spectral data in text file formats. Monitoring the manufac-
turing of a part in real time produces large volumes of time-
series data at high rates.

Early community-scale materials data platforms either (i) 
only supported a limited set of data types—e.g., by trans-
forming all experimental metadata into some common inter-
nal format, thereby imposing some structure on the data, or 
(ii) maintained all forms of data as generic files or binary 
objects devoid of any structure—e.g., a set of micrograph 
images archived and stored as a file on an open data reposi-
tory like Zenodo. Common to both approaches, all data were 
stored and served out of single centralized repositories.

Given the diversity in materials data, it is impractical to 
reduce all types of data to a single structure, even when 
the schema allows for some flexibility. On the other hand, 
stripping away any structure inherent in the data would end 
up making the data less findable and interoperable. Thus, 
in contrast with prior approaches, our federated materials 

repository integrates multiple data storage technologies and 
systems such that each different type of data is captured in a 
repository optimized for that data format—e.g., structured 
tabular data are stored in a relational database, time-series 
data in a specialized time-series database system, images 
in an object store or a specialized array database, and so on 
[22]. Not only does this approach minimize the overall stor-
age footprint and maximize the query performance for each 
data type, but it also allows us to leverage the data durability 
and protection mechanisms within each underlying storage 
system out of the box to guard against potential data loss and 
expensive data regeneration. Besides federating data storage 
systems, we will extend our repository to include accessing 
specialized 3rd party systems as well as external sources of 
data that may only be accessible via APIs or other endpoints.

Knowledge Graph for Materials Data FAIRification

Our federated data storage layer can be extended as needed 
to store newer forms of materials data. However, data stored 
in this way still does not adhere to FAIR principles, and 
data across the different stores are not linked by default. Our 
solution to this problem is the second layer of our architec-
ture—a knowledge graph integration layer—which models 
the data structure and relationships within and across the 
data repositories. The knowledge graph layer enables data 
to be semantically annotated with rich, contextual metadata 
and linked to other data based on the metadata—both criti-
cal steps toward ensuring FAIR compliance. The knowledge 
graph integration layer also models and captures metadata 
describing the underlying data stores and how to query and 
interact with each data store. Through this layer of abstrac-
tion, our materials repository provides a single logical inter-
face encompassing a wide range of diverse, distributed data 
sources. The knowledge graph itself is maintained within a 

Fig. 1  Overall architecture of 
our knowledge graph-driven 
FAIR data infrastructure for 
materials and manufacturing 
data
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graph database system or semantic triple store within our 
federated storage layer.

To facilitate development and use of knowledge graphs 
for managing materials data, we build on open-source 
semantic technology solutions. First, to ease development of 
ontologies by non-experts, we use the Semantic Application 
Design Language (SADL) [33]. SADL is a formal, struc-
tured English-like language and development environment 
for authoring semantic models that allow domain experts to 
read, write, and edit ontologies without requiring extensive 
training in semantic web technologies such as the W3C’s 
OWL [34]. Second, the Semantics Toolkit (SemTK) [35] 
facilitates rapid and scalable development and deployment 
of knowledge-driven applications once a semantic model has 
been established, including enabling data across federated 
data stores to be seamlessly accessed as though they were 
residing in a single storage system. Together, these two tech-
nologies, SADL and SemTK, were used extensively in the 
success stories described in Sect. "Success Stories."

Semantic Application Design Language

The Semantic Application Design Language (SADL) is 
a structured, formal English-like language for authoring 
semantic models, allowing non-semantic domain experts to 
author ontologies that model their domain of interest using 
their community’s commonly accepted vocabulary. SADL 
is available as an open-source Eclipse plugin and can be 
used to directly compile OWL files, the de facto standard for 
instantiating models in a semantic triple store for capturing 
linked data.

Within a semantic triple store, ontologies are frequently 
populated with data that capture details about specific 
instances or entities within the domain. For example, an 
additive manufacturing ontology may define the structure 
and attributes of a powder lot and be populated by instance 
data capturing details about each powder lot maintained at 

a manufacturing site. Figure 2 shows a visual representa-
tion of a subset of such a semantic model, including classes 
representing 3D-printed parts, the build used to produce the 
part, attributes about the specific powder used for the build, 
and mechanical properties of the part.

Semantics Toolkit

The Semantics Toolkit (SemTK) is a framework that simpli-
fies the rapid creation and utilization of knowledge-driven 
services and applications. SemTK offers features and func-
tions that simplify the use of and interaction with knowledge 
graphs, that can make it dramatically easier for materials 
scientists to interact with, explore, manage, and use knowl-
edge graphs to ingest, retrieve, visualize, check the validity 
of, and derive benefit from materials data. These include:

• SPARQLgraph,4 a user interface with features for brows-
ing ontologies, for exploring and interacting with the 
knowledge graph, for building and storing queries, and 
for building and storing ingestion templates to map data 
ingestion files to a knowledge graph. Both queries and 
ingestion templates can be stored in SemTK via the UI 
and embedded in knowledge-driven applications.

• Ontology-based Data Access (OBDA) [32]: SemTK cur-
rently supports relational data, time-series data, file stor-
age, and can be extended to flexibly support other data 
sources and data types as well. SemTK enables data to 
be transparently stored and queried in its most suitable 
location, while enabling it to be referenced in semantic 
domain terms and to be linked with other disparate data-
sets. Supporting disparate storage is important because 
many data types critical to materials science (e.g., time-

Fig. 2  Small extract of additive manufacturing ontology showing four classes, their relationships, and attributes (properties) of two classes—
Powder Lot and Mechanical Properties

4 SPARQL is a standard query language for querying graphs in 
W3C-compliant semantic triple stores.
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series data and image data) are not suitable for storage 
directly within a knowledge graph.

SemTK has previously been deployed in production on 
both internal servers as well as in the Amazon AWS Gov-
Cloud as part of a system managing gas turbine test data 
for GE’s Power business [36]. Both SADL and SemTK 
have been open-sourced, and so they can be used by the 
reader to develop the same materials repository architectural 
approach.

Knowledge Graph Abstractions

The third and final layer of our materials repository archi-
tecture is a set of abstractions that sit atop the knowledge 
graph that greatly simplifies interacting with the knowledge 
graph. These abstractions include, but are not limited to, 
NodeGroups, pathfinding, and dynamic analytic execution, 
and are described next.

NodeGroups

The NodeGroup is a key building-block for querying in 
SemTK [37]. The NodeGroup represents a subgraph of inter-
est and lends itself well to visualization and drag-and-drop 
query-building. In addition to the subgraph structure, it con-
tains annotations that enable it to support automatic genera-
tion of multiple types of queries. The same NodeGroup can 
be used to generate SPARQL queries to select a table, build 
a results graph, delete, or insert data.

The SemTK SPARQLgraph user interface supports the 
creation of NodeGroups with a visual editor. Each node 
represents a class and shows the data and object properties 
available. The user can click properties or drag new classes 
to quickly make connections that are valid given the ontol-
ogy. Properties and nodes can be flagged for return and/or 
deletion. They can be constrained with additional clauses of 
SPARQL. Properties can also be flagged to be constrained at 
runtime. When a runtime constraint is applied, SemTK will 
generate a query to retrieve the valid values given the data 
in the knowledge graph. NodeGroups are also designed to 
be easily reused across different applications.

Figure 3 shows a NodeGroup used to retrieve data where 
ML techniques are used to analyze and gain insights into 
powder properties such as flowability and apparent density, 
as a function of particle size distribution of a powder lot and 
powder sphericity for a selected alloy chemistry. Once this 
NodeGroup is created by a data scientist, it can be stored 
and retrieved by name, freeing an end user from needing to 
understand the data model and manually writing the query.

NodeGroups enable a separation of roles (data engineer, 
data scientist, and application developer) involved in the 
end-to-end application lifecycle and ensure consistency in 
how each of them accesses data. This separation alone has 
reduced development times substantially in several industrial 
scenarios.

Pathfinding

SemTK includes a pathfinding algorithm to find connections 
between data and concepts in the knowledge graph. This 

Fig. 3  NodeGroup from a data scientist’s perspective
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is used frequently during the creation of NodeGroups. The 
user can drop concepts onto the canvas, and the tool suggests 
multi-hop connections between the concepts, thus greatly 
improving the ease of building a NodeGroup. The algorithm 
is also a key component used to connect concepts for auto-
mated NodeGroup creation used in the question-answering 
interface discussed in the second success story described in 
Sect. "Success Stories."

Pathfinding is based on the A* algorithm, but with addi-
tional rules to limit the number of hops searched and the 
amount of time allowed for a given search. In both manual 
and automatic modes, there is an implied proximity (e.g., 5 
hops) and time limit reasonable built into the interface. If a 
path cannot be found within those constraints, the algorithm 
returns a null path.

Pathfinding can operate in two different modes. In its 
basic mode, the algorithm uses only the model to deter-
mine valid paths. However, when data are available and the 
pathfinding is meant to search for existing data, it can be 
operated in a mode that takes existing data into account. In 
this mode, a property must have instances in the data to be 
included in the path. For the sake of efficiency, the current 
algorithm only searches each property individually, and the 
full graph pattern may still not represent existing data. None-
theless, this algorithm is indispensable in multiple applica-
tions, providing another large improvement in the ease and 
efficiency with which queries can be built.

Dynamic Analytic Chaining

A third abstraction in our repository architecture is dynamic 
analytic chaining. In our infrastructure, analytics can take 
the form of physics-based equations, computational and/
or ML models, allowing us to embed domain knowledge 
directly into the knowledge graph. Analytical models are 
formally described in terms of the (materials science) con-
cepts modeled in the knowledge graph. Each description of 
an analytical model, e.g., a physics-based equation, formally 
specifies the model’s inputs and outputs, explicitly linking 
the analytical models to the concepts and any instance data 
in the knowledge graph.

Our approach includes executable code such as Python 
functions, which allow the analytic models to be executed 
on demand [38]. The system can perform inference over the 
knowledge graph and determine if the user’s questions can 
be answered based on the data that are available within the 
knowledge graph. If the data alone are insufficient, the sys-
tem reasons over the combination of data and analytics and 
determines if a single analytic or combination of analyt-
ics chained together can answer a query. The system can 
organize and execute a chain of analytics in the appropriate 
sequence, using the available data in the knowledge graph 
as inputs, until an answer is derived.

This ability to dynamically chain analytics allows phys-
ics-based knowledge as well as machine learning and com-
putational models to be embedded with materials science 
data, and for materials scientists to use the knowledge and 
models without having to explicitly request a run sequence. 
We have used this capability, as will be described later, to 
enable materials scientists to automatically derive unknown 
properties of known materials and processes [23]. This 
approach also provides an answer which is completely 
explainable. A visual representation of the analytic chain 
and raw inputs are displayable to the user along with the 
calculated result. An example of this visualization is shown 
in Fig. 4.

Related Work/Prior Art

FAIR data infrastructure in support of data-centric scien-
tific discovery has been proposed and explored, with diverse 
implementation strategies and success stories primarily pub-
lished within the biomedical and life sciences [13, 39, 40], 
health care and clinical settings [41, 42], geosciences [14], 
and earth sciences [17]. Development of such infrastruc-
ture is often driven by dedicated consortia in collabora-
tion with standards bodies [43]. Scheffler et al. [14] outline 
how the materials sciences, specifically, could benefit from 
FAIR data management. Kalidindi et al. [44] describe the 
implementation of different software components—data 
management tools, data analytics frameworks, and an e-col-
laboration network—for accelerated materials innovation in 
keeping with the TMS recommendations [45]. Kadi4Mat 
[46], an open-source implementation of a FAIR research 
data infrastructure focused on combining the best features 
of electronic laboratory notebooks and research data reposi-
tories to support materials scientists through the research 
and publication process. In [47], the authors present their 

Fig. 4  Dynamic analytic chaining example
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“laboratory of Babel” vision of integrated materials data 
management for autonomous discovery, where they discuss 
data challenges and strategies at the laboratory-level, group-
level, and community-level, with FAIR aspects coming into 
play primarily at the community level. He et al. [48] present 
a no-code approach to parse output from popular compu-
tational materials science tools to auto-generate FAIRified 
data. The National Materials Data Management and Service 
(NMDMS) platform [17], within China’s Material Genetic 
Engineering initiative, is implemented as a country-wide 
repository for materials data following FAIR principles for 
modeling data.

Federated Data Storage. Over the past decade, data-
driven enterprises are increasingly adopting a “no one size 
fits all” mantra [49] wherein concerted efforts are afoot to 
unbundle or replace traditional data stacks (e.g., data ware-
houses for structured tabular data and NoSQL stores for 
semi-structured and unstructured data) with more “fit-for-
purpose,” cloud-native data infrastructure. This has resulted 
in newfound ideologies such as composable data architec-
tures and fragmented ecosystems such as the “modern data 
stack” that seek to create data infrastructure from the ground 
up to suit the individual data needs of a given enterprise. A 
core tenet of this approach is flexibility—to develop data 
platforms with APIs that integrate components for storing 
and analyzing different types of data. In an interdisciplinary 
research field such as materials science, given the heteroge-
neity of materials data, it is impractical to establish a sin-
gle schema or format that covers all types of data. Hence, 
for storage, our philosophy is one of the data federation, 
wherein data of a given type are stored in a repository that is 
optimized to handle that type. A federation layer then trans-
parently handles accessibility to all underlying repositories 
(including, potentially 3rd party/external data sources) via 
suitable APIs. We use as many kinds of different repositories 
as needed, but also as few as sufficient to handle the different 
kinds of materials data. Federating data is currently not as 
widely practiced by the materials science community. An 
exception among existing FAIR data infrastructure imple-
mentations is the hybrid data storage system (HDSS) layer 
within NMDMS [17], which comes closest to our data fed-
eration approach.

Materials Knowledge Graphs. A key requirement for 
implementing FAIR principles within any domain is the 
annotation of the scientific data with rich, contextual meta-
data. Ghiringelli et al. [19] present a detailed report on 
metadata extraction and representation for computational 
materials science and experimental workflows. Part of the 
report discusses the role of materials science ontologies for 
data FAIRification. Kalidindi et al. [20] also propose the 
need for ontologies and linked data to truly realize FAIR 
principles for materials data. Beyond extraction and sche-
matization, our strategy is one of maintaining materials 

metadata in the form of semantic knowledge graphs. While 
this approach has been prevalent within the life sciences [50, 
51], there have been fewer instances of FAIR materials data 
infrastructure based on knowledge graphs. The Materials 
Knowledge System (MKS) and its subsequent implemen-
tation as Python-based software (PyMKS) [18] is an early 
implementation of materials data structured in the form of 
a semantic knowledge graph but does not address federated 
data. More recently, the CRUX platform [52] expands mate-
rials knowledge graphs beyond materials data to addition-
ally include metadata about resources (analysis scripts, etc.), 
sources (computations and experiments), and from scien-
tific workflows. Our materials knowledge graph goes one 
step further and captures contextual knowledge such as the 
organization of materials data in a federated storage layer, 
and explicitly includes metadata about physical and analyti-
cal equations within the domain.

FAIR materials data discovery. Once FAIR materials data 
is organized in the form of a semantic knowledge graph for 
interoperability and machine-readability, one still needs to 
suitably query the graph to find and access relevant data. 
The NMDMS [17] platform allows discovery over federated 
data via full-text queries, SQL-like queries, and knowledge 
graph-like queries but, to our knowledge, does not maintain 
data as a semantic knowledge graph. The CRUX platform 
[52] parses keywords and materials workflow declarations 
into native Gremlin graph pattern queries for execution by 
a JanusGraph engine. Ontology-based data access (OBDA) 
[32] is an established paradigm in which querying of a data 
source is mediated by a high-level domain ontology. Ontol-
ogy-based Data Federation (OBDF) [53] extends this idea by 
combining OBDA with a federation layer to allow querying 
in domain terms over linked data from across disparate data 
repositories. Our FAIR materials data infrastructure enables 
federated querying across a knowledge graph spanning data 
stored across multiple storage repositories. This is enabled, 
in part, because of novel FAIR data access abstractions and 
services that help auto-formulate graph queries by combin-
ing appropriate materials data with contextual metadata 
stored in our knowledge graph.

Success Stories

We have successfully used this architectural approach in two 
very different materials applications at GE (as well as in 
non-materials applications, e.g., [21, 36]). In this section, we 
give a brief description of the two materials-specific applica-
tions. In the first, we created a repository of feedstock mate-
rial properties, manufacturing process parameters, physical 
testing, material characterization, and inspection data for 
rapidly introducing new alloys to the additive industry [22]. 
In the second, we created a repository of materials property 
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and performance data, manufacturing process parameters, 
and material characterization data for a steam path coating 
material development use case that fused a combination of 
data and physics-based equations to enable advanced reason-
ing over the combined knowledge [23].

Additive Manufacturing New Material Introduction

Additive manufacturing is the process of building a part by 
successively adding raw material via one of a variety of 3D 
printing techniques [54]. Additive technologies can yield 
lighter yet sturdier parts that produce less manufacturing 
waste, often through novel part geometries that are highly 
challenging if not impossible to manufacture using tradi-
tional techniques. This combination of greater manufactur-
ing efficiencies and part performance is having a notable 
impact across almost every industry [55]. While there are 
many opportunities for developing new materials and part 
designs, the full potential of additive manufacturing has yet 
to be achieved. One major challenge with introducing a new 
material to additive manufacturing is the identification of an 
optimal set of process parameters (e.g., laser power, laser 
speed, beam spot size, and layer thickness, among many 
others, for a laser powder bed fusion-based process) that will 
produce parts quickly (fast build rate) with high quality (low 
number density and volume fraction of anomalies such as 
voids and cracks). For predicting process outcomes, scien-
tists and process engineers use visual analytics techniques 
to circumvent a potentially combinatorial search space and 
a lack of governing equations for a given material. These 
analytics approaches rely heavily on finding and assembling 
the right datasets by drawing from multiple distinct sources.

Previously, this was an ad hoc, manually intensive process 
where scientists were burdened by the need to source each 
individual piece of the data themselves, and without a digital 
paper trail for tracing the genesis of an assembled dataset. 
Moreover, this process was brittle and prone to errors such 
as using incorrect data (brought about by either ill-formed 
queries or communication mismatches or data naming con-
ventions that were either lacking or ambiguous) or fusing 
data for visualization purposes without suitable contextual 
information. Digitalizing such low-level “data mechanics” 
would help improve the overall effectiveness of our process 
engineering teams.

To address these drawbacks and to help deliver on the 
promise of additive manufacturing at GE, we developed 
a digital thread storage and analytics platform to capture, 
integrate, and extract value from the data being generated 
and used during the additive manufacturing lifecycle [22]. 
Using SADL and the SemTK framework, we constructed a 
knowledge graph of the additive domain to logically link 
diverse datasets such as material properties, build process 
parameters, and inspection results so that users could get 

a complete picture of the data and navigate their connec-
tions using familiar additive manufacturing domain ter-
minology. For each instance of data, our knowledge graph 
also captures metadata describing the type of the data, 
where that data physically resides and codifies the queries 
or instructions to be used to access and retrieve that data 
on-demand. This way, users could get a single, unified 
logical view of all the data, and seamlessly navigate and 
interactively find data of interest from our additive manu-
facturing knowledge graph even when the data are diffuse, 
scattered among multiple storage systems. The platform 
leverages data organization-related metadata to automati-
cally retrieve each data instance from its respective storage 
system and fuses the retrieved data based on the semantic 
model.

One of the first applications that this platform has been 
successfully used for is process parameter optimization, to 
accelerate the introduction of new materials into additive 
manufacturing. Multiple teams within GE use the platform 
to store, visualize, and analyze material, process param-
eter, and test coupon inspection data to understand what 
combinations of process parameters for different materi-
als lead to the highest quality parts in the least amount of 
time. Through the platform’s user interface (UI), users can 
visually explore and interact with the data, load additional 
data into the platform, and run multi-objective queries. 
On the main landing page of the UI, the user may select 
one of many “Predefined Queries” (i.e., NodeGroups). The 
user can then select one of the nine visualization types, 
including contour plots, 3D surface plots, box plots, and 
histogram plots. Examples of these four visualizations are 
shown in Fig. 5. Users visually analyze a combination of 
such plots to identify the best process parameter combina-
tions for a new material.

Overall, the three-tiered material repository architec-
ture—a federated data storage layer, a knowledge graph data 
abstraction layer, and a FAIR data access services layer—
has allowed users to visually explore the materials data in 
a highly interactive manner through the application’s user 
interface without requiring any knowledge of the underly-
ing data architecture or data storage layer, greatly simplify-
ing the management of additive manufacturing data, and 
allowing the materials scientists and additive engineers to 
worry less about data management and more about their pri-
mary concern—process parameter optimization to introduce 
new materials to the additive manufacturing industry more 
quickly and efficiently. The data access services layer dra-
matically simplifies not just the interaction with the knowl-
edge graph for the end users, but also for the application 
builders for, e.g., developing the sophisticated user inter-
faces that enable a wide range of visualizations, analytics, 
and multi-objective data queries that are enabled within the 
system [22].
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AI for Accelerated Materials Development

High-pressure steam turbine blades are subject to aggres-
sive oxidation and erosion during their operational lifecy-
cle, prompting our service teams to seek enhancements over 
existing fielded coatings in use. The coatings are fabricated 
through a cathodic arc deposition process and characterized 
by one or more layers of varying chemistry with microstruc-
ture and defects quantified through microscopy. Coated test 
coupons are then subject to rigorous oxidation and erosion 
testing to mimic real-world service conditions for compre-
hensive evaluation. A materials science research program 
was initiated at GE to develop an enhanced coating using AI/
ML approaches for predicting material properties from data 
about the coating’s chemistry, data about the coating process 
such as voltages, currents, durations, and resulting coating 
thicknesses, and finally information about the oxidation and 
erosion evaluations.

While ML has made noteworthy strides as a tool for such 
predictions, and more broadly to advance materials science 
discoveries, there is an exclusive dependence on the avail-
ability of high-quality data as the primary driver for train-
ing ML models. However, most research studies looking to 
discover new materials or properties either (i) suffer from a 
scarcity of data needed to train high-precision models, or (ii) 
where adequate data points are present, may contain incom-
plete descriptors of the materials (i.e., lack a sufficient set of 

features to build meaningful models). Consequently, scien-
tists are exploring other strategies that are not as dependent 
on data. This includes manually scavenging external sources 
(such as analytical equations developed and documented in 
the literature) and applying them in the context of a study to 
enhance the overall value of datasets.

Despite their exceptional performance when operating 
under favorable circumstances, traditional ML approaches 
have significant limitations in their ability to extrapolate 
and gain insights in uncharted territories. Hence, inspired 
by DARPA’s “3rd wave AI” vision [56], which calls for com-
bining ML algorithms with domain knowledge to reason 
about areas never seen before, we developed a system that 
fuses multiple forms of knowledge into what we are calling 
a Compound Knowledge Graph (CKG). We combine three 
distinct, complementary forms of knowledge—factual, ana-
lytical, and human expert knowledge—into our CKG to ena-
ble contextual reasoning and adaptation to answer increas-
ingly complex questions [23]. As of today, our CKG captures 
and links both factual scientific materials knowledge from 
materials science experiments as well as physics-based and 
data-driven ML models describing relationships between 
material processing, structure, properties, and performance 
in a knowledge graph. Within the CKG, analytical models 
are linked to the existing factual knowledge via the seman-
tic description of the models’ inputs and outputs. Thus, if 
a user requests the value of a property that is not explicitly 

Fig. 5  Example visualizations available in the platform user interface, including a contour plots, b 3D surface plots, c box plots, and d histogram 
plots
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available through the knowledge graph, then if an analytical 
model or set of models exist that can be used to derive the 
desired property value, a reasoning engine can execute the 
model or sequence of models and return the desired value 
without the user providing any guidance to the system 
regarding what model or models to use [38, 57].

For this particular study, we incorporated experimental 
data directly into the CKG as factual knowledge. This factual 
knowledge included descriptions of the chemistries of the 
substrates and coatings, data about the cathodic arc coat-
ing process such as voltages, currents, durations, and finally 
the test durations and remaining coating thicknesses from 
the oxidation and erosion testing that was performed on the 
samples. To enable advanced reasoning and inference, we 
further augmented the CKG with a collection of analytical 
models. In collaboration with domain experts, we identified 
25 models, including nine physics-based equations from the 
literature and 16 models that call external services such as 

matminer [58]. As part of our FAIR data access services, 
our third abstraction—dynamic analytic chaining is used to 
enable on-demand composition and execution of relevant 
analytical models and factual knowledge in response to que-
ries where the requested data did not previously exist in the 
CKG.

To facilitate interactions with the CKG, we implemented 
a question-answering interface that allows users to pose 
questions in natural language. Figure 6 shows an example 
of a question in which the answer is available directly in the 
knowledge graph, and so a simple retrieval from the CKG is 
all that is required and the resulting answer (both numerical 
value and units) are presented back to the user.

Figure 7 shows an example in which the user asks for the 
flux ratio of the deposition process of a part. This answer is 
not available directly in the CKG, and so, a dynamic analytic 
chain is required to autonomously derive the answer. Below 
the question, the system displays the answer and a diagram 

Fig. 6  Question and answer interaction with the Compound Knowledge Graph in which the answer is directly in the knowledge graph and can be 
returned to the user. Both the numerical value and units are returned to the user

Fig. 7  Question and answer interaction with the Compound Knowl-
edge Graph in which the answer is not available directly in the 
knowledge graph and so a dynamic analytical model chain must be 
autonomously generated to solve for the answer in real time. Once the 
answer is generated it is presented to the user along with a diagram 

showing the inputs in yellow, the analytical models being executed as 
white boxes, and final the output generated as an oval. In this exam-
ple, five analytical models are executed from nine inputs to generate 
the output
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of the analytical model chain that was dynamically assem-
bled to compute the answer. The diagram shows that the 
system found that it could compute an answer by chaining 
five analytical models and using nine facts (highlighted in 
yellow) available in the CKG as inputs.

Finally, Fig. 8 shows a third example in which the user 
asks for information about the chemistry of a specific com-
pound. In this scenario, the answer is not a single value and 
unit, but a table of elements, their average atomic percent-
ages, and average weight percentages (and respective units).

In this success story, we used the identical architectural 
approach of a federated data store, a knowledge graph 
abstraction layer, and a set of service abstractions atop the 
knowledge graph to greatly simplify materials scientists’ 
explorations and interactions with the data. The system uses 
reasoning over the semantics (metadata) of available factual 
data and analytical models to infer new knowledge to answer 
users’ questions. The natural language dialog interface lets 
materials scientists pose questions in English and receive 
answers together with explainable diagrams when reasoning 
was performed to generate new knowledge.

Conclusions and Future Work

A data infrastructure is presented from the perspective of 
enabling material scientists to extract maximum value from 
all the potentially fragmented data at their disposal. The 
infrastructure is architected and implemented with the idea 
of applying FAIR principles to the management of materi-
als data, and furthermore to make this data, once FAIRi-
fied, easily accessible and shareable using domain termi-
nology. Specifically, we describe the layered architecture of 

our materials data repository that combines state-of-the-art 
practices in federated data storage and knowledge graph 
technology with our novel semantics-driven abstractions 
that simplify access to the FAIR data in the broader con-
text of associated metadata and other domain knowledge. 
We applied this infrastructural approach to two materials 
and manufacturing-related use cases at GE, successfully 
enabling scientists and engineers to search for and access 
relevant data more efficiently and utilize the data to gain 
insights and build predictive ML models.

We are exploring several future directions to further 
expand our data infrastructure. (i) Beyond serving data 
geared primarily for analysis and visualization, the infra-
structure should support scientific publication workflows as 
well—this requires expansion of our data storage layer to 
incorporate standard digital object identifiers (DoIs), search 
systems for text-based literature, and federation across com-
mon digital research data repositories. (ii) Beyond represent-
ing experimental data as factual knowledge and equations 
and models as analytical knowledge, our knowledge graph 
is being expanded to suitably capture and codify useful 
intuitive knowledge from domain experts. (iii) Given the 
successes of Large Language Models (LLMs) in enabling 
chat-based search interfaces, and emerging attempts to apply 
LLMs to classical data management problems, our feder-
ated data storage layer and knowledge graph could be suit-
ably hybridized to additionally handle representations of the 
materials data and contextual metadata in some embedding 
space, and (iv) beyond smart interfaces for just data access, 
we are looking to incorporate similar abstractions and inter-
faces to help materials scientists collect and curate materials 
data in our repository—this would necessitate AI-assisted 
quality review frameworks that can help validate and verify 

Fig. 8  Question and answer interaction with the Compound Knowledge Graph in which the answer is directly in the knowledge graph and can be 
returned to the user. In this instance, the answer is returned in the form of a table
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the data at ingestion time, as well as based on its links to 
other stored data.
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