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Abstract
Additive manufacturing (AM) can create net or near-net-shaped components while simultaneously building the material 
microstructure, therefore closely coupling forming the material and shaping the part in contrast to traditional manufactur-
ing with distinction between the two processes. While there are well-heralded benefits to AM, the widespread adoption of 
AM in fatigue-limited applications is hindered by defects such as porosity resulting from off-nominal process conditions. 
The vast number of AM process parameters and conditions make it challenging to capture variability in porosity that drives 
fatigue design allowables during qualification. Furthermore, geometric features such as overhangs and thin walls influence 
local heat conductivity and thereby impact local defects and microstructure. Consequently, qualifying AM material within 
parts in terms of material properties is not always a straightforward task. This article presents an approach for rapid qualifica-
tion of AM fatigue-limited parts and includes three main aspects: (1) seeding pore defects of specific size, distribution, and 
morphology into AM specimens, (2) combining non-destructive and destructive techniques for material characterization and 
mechanical fatigue testing, and (3) conducting microstructure-based simulations of fatigue behavior resulting from specific 
pore defect and microstructure combinations. The proposed approach enables simulated data to be generated to validate and/
or augment experimental fatigue data sets with the intent to reduce the number of tests needed and promote a more rapid 
route to AM material qualification. Additionally, this work suggests a closer coupling between material qualification and 
part certification for determining material properties at distinct regions within an AM part.

Keywords Additive manufacturing · Porosity · Fatigue · Material qualification · Part certification · Characterization · 
Computational modeling · Non-destructive evaluation

Introduction

The terms qualification and certification are often used when 
introducing new technologies into regulated fields, such as 
aerospace or medical [1–4]. Although the two terms are 
sometimes used interchangeably depending on the context, 
they have specific distinctions. Certification involves an 
external party evaluating and accepting a part design, pro-
viding written confirmation of its established level of repeat-
able capability. This certification process can be costly and 
time-consuming, depending on the complexity of the part or 

system-level design, making it desirable to minimize certi-
fication iterations. Material characteristics and behavior are 
integral to part design, particularly regarding thermal and 
mechanical properties. To determine these material proper-
ties, materials are qualified, often by the entity designing 
the part, through extensive material characterization, test-
ing programs, and periodic surveillance testing to ensure 
repeatable material capability. Like certification efforts, 
qualification efforts can require significant resources, espe-
cially when attempting to qualify a new material and pro-
cess simultaneously. Thus, any effort that may help reduce 
development and/or non-recurring engineering (NRE) costs 
associated with material qualification is of interest to vari-
ous industries.

In traditional manufacturing, material qualification 
and part certification have historically been treated as 
two distinct activities. Conventional materials process-
ing, such as casting and forging, often involves subtractive 
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post-processing to achieve the final part dimensions. Mate-
rial characterization and testing efforts during the material 
qualification stage are considered separate from part certi-
fication. In conventional methodology, the distribution of 
material properties is determined and used to establish the 
design allowables during the qualification stage, and these 
allowables are subsequently applied uniformly over the part 
during the certification stage. However, additive manufactur-
ing (AM) has introduced a method to create material and, 
in some cases, final part design simultaneously, and thus, 
there is a growing interest in integrating material qualifica-
tion and part certification efforts, particularly for critical, 
structural parts.

Fatigue is the most likely failure mechanism in the major-
ity of structural applications [1, 2, 5]. As a material’s fatigue 
capability is driven by a combination of composition, micro-
structure, defect content, and loading conditions, assessing 
all potential variation that may exist in an AM part can be 
extremely onerous. This is amplified by the number of AM 
process parameters and conditions (e.g., powder state, laser 
power and speed, hatch spacing, layer thickness, part orien-
tation and position on the build platform, process gas flow, 
machine used, etc.) that directly affect the material state and 
therefore influence the fatigue behavior. Fatigue simulations 
can be useful to test the various microstructure, defect, and 
loading conditions and complement the experimental test-
ing campaign [6–8]. Therefore, this article presents a hybrid 
approach of experimental mechanical tests and microstruc-
ture-based simulations that may be employed to reduce 
reliance on traditional mechanical testing to assess fatigue 
as part of AM material qualification efforts. Byproducts 
of the AM build process, such as residual stresses [9, 10], 
rough as-built surfaces [11], and porosity [12–14], reduce 
the fatigue resistance of AM components and hinder their 
widespread implementation. The former two conditions 
may be alleviated with post-processing operations such as 
heat treatment and machining/polishing, respectively, but 
porosity is more challenging to remedy. Hot isostatic press-
ing (HIP) can reduce porosity but has difficulty eliminat-
ing pores with irregular morphology or near free surfaces 
[15–17]. The focus of this work is therefore on evaluating 
the detrimental effects of porosity on the fatigue resistance 
of metallic AM components. This integrated computational 
materials engineering (ICME) approach is demonstrated 
for laser powder bed fusion (L-PBF) processing of Ni-base 
alloy 718 (also known as IN718) due to its prevalence in the 
aerospace industry.

Previous AM qualification efforts have similarly leveraged 
simulations and experiments in an ICME-based approach. 
Thapliyal and Mishra [18] recently outlined a materials sys-
tems approach for AM qualification, specifically considering 
the multiscale hierarchy of material structure at both the micro 
and macro scale. They emphasized the need to understand the 

thermomechanical and kinetic aspects of AM and included 
alloy chemistry in the process-structure–property relation-
ship [19]. Experimental characterization and computational 
modeling at multiple length scales was leveraged to optimize 
the post-processing heat treatment in alloy 718Plus as part 
of DARPA’s Open Manufacturing program [20, 21]. Mindt 
et al. [22] also optimized AM process parameters for this 
alloy to minimize porosity using multiscale and multiphysics 
simulations alongside experiments. Fatigue properties of alloy 
718Plus were assessed using a Bayesian inference approach 
that leveraged experimental data and microstructure-sensitive 
simulations [23]. Megahed et al. [24] presented a comprehen-
sive, rapid qualification ICME approach and determined AM 
process parameters to build a full scale rocket nozzle while 
achieving target porosity, mechanical strength, and geomet-
ric accuracy. Other ICME efforts toward qualification of AM 
examined the manufacturability of complex shapes [25, 26], 
the role of post-processing and solution annealing [27], and the 
integration of process, microstructure, and fatigue modeling in 
a single computational framework [28].

The guideline presented in this article leverages a combi-
nation of experiments and microstructure-based simulations 
intentionally seeded with porosity to expedite the qualification 
of AM components, and the structure of this work is outlined 
as follows. To provide context, the section “Fatigue-Limited 
Parts and Design Allowables” provides an explanation of 
fatigue design allowables, including their importance in quali-
fication/certification as well as how they typically are created. 
Emphasizing the role of porosity in fatigue behavior, the sec-
tion “Typical Porosity in Additive Manufacturing” discusses 
the various types of porosity in AM, their causes, and common 
methods for quantifying pores using non-destructive evalua-
tion (NDE) techniques. The development and characterization 
of AM materials is addressed in the section “AM Material 
Development and Characterization”, with a focus on the con-
cept of intentionally seeding pores that may not be detectable 
using production level NDE techniques. The microstructure-
sensitive fatigue modeling framework, serving as the founda-
tion for the hybrid experimental-model qualification approach, 
is detailed in the section “Fatigue Modeling.” The applica-
tion of the hybrid methodology is demonstrated in sections 
“Application of the Hybrid Methodology to Fatigue Design 
Allowables” and “Application of the Hybrid Methodology for 
Zone-Based Life Analysis.” Finally, the “Conclusions” section 
provides a summary of the work.

Fatigue‑Limited Parts and Design 
Allowables

While fatigue failure can be caused by various factors, unin-
tentional porosity is widely recognized as a primary con-
tributor to premature material failures. This is no different 
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for AM materials where porosity is a known defect type 
observed [12–14]. Understanding this impact is extremely 
important for applications, both from a business perspec-
tive, and more importantly, from a safety perspective. With 
regards to the business perspective, if a part was designed 
to last a specific number of cycles to meet service schedules 
that influence resource planning (e.g., spare parts, shop time, 
engineer/technician availability), early failures may result 
in unplanned maintenance cycles that impact schedule and 
revenue opportunities. Furthermore, if failure of the appli-
cation can result in catastrophic failure of an overall system 
that may cause a risk to personal safety, having a clear and 
often conservative assessment of safe application lifespan is 
imperative to plan evaluations and replacement of hardware 
prior to reaching end of service life.

The phrase design allowable may be utilized in different 
contexts in scientific literature. For the sake of this discus-
sion, the authors define design allowable as a nominally pro-
cessed material’s bulk (i.e., no impact of surface features) 
fatigue capability via the use of a regression that represents a 
statistically relevant minimum expected life. In other words, 
designs must ensure operating conditions commensurate to 
the capability defined by the design allowable.

Creating such a design allowable requires significant 
empirical fatigue testing of material coupons, often try-
ing to intentionally incorporate known sources of variation 
(e.g., compositional, orientation, production runs, etc.) that 
influence nominal test results. In such testing, unintentional 
sources of variation (e.g., porosity) may also be present; 
however, unintentional variation is not guaranteed to exist 
when processing all parts to nominal conditions. This has 
historically driven the requirement for test campaigns with 
large sample sizes (i.e., number of individual tests) to 
increase the probability of adequately capturing the unin-
tentional variation for incorporation in the design allowable 
assessments.

Fatigue test campaigns are often expensive and can span 
multiple years, delaying the ability to adopt a new material 
and/or manufacturing methods or accept modifications to a 
previously established manufacturing process. While this 
is not necessarily unique to AM, the lack of comprehensive 
material property databases containing design allowable 
evaluations coupled with the perceived immaturity and lack 
of field experience has been cited as one of the main impedi-
ments to AM adoption [1, 2].

A material’s fatigue capability is generally character-
ized via mechanical testing. As with any material testing 
program, statistically significant sample sizes are desired to 
ensure results and decisions are not artificially influenced by 
small sample sizes. In other words, enough specimens and/or 
volume must be tested to provide a reasonable representation 
of the process and material capability, potentially captur-
ing variation that may result from unintentional anomalies 

and statistically rare defects. While there is some industry 
guidance with regards to the amount of testing required to 
establish statistically significant sample sizes, particularly 
for static properties, there are no official documents that 
dictate the sample sizes of dynamic testing properties (e.g., 
fatigue) required to submit for qualification efforts. Such 
requirements are often driven by original equipment manu-
facturers (OEMs) internal documents and best practices and 
are related to the criticality of the components being con-
sidered. Thus, this article will focus on the use of a hybrid 
approach to augment and/or to compare to a baseline data 
set, previously referred to as a design allowable, rather than 
creation of the baseline itself.

While there are many ways to conduct fatigue testing, 
two common methods utilized in a safe-life regime, particu-
larly in regulated fields, are: (1) strain-controlled fatigue per 
ASTM E606 [29] and (2) load-controlled fatigue per ASTM 
E466 [30]. Both assume axial-loading characteristics, typi-
cally on cylindrical cross-section samples. In general, tests 
are conducted via these methods to create a stress (S–N 
curve) or strain (ε−N curve) versus cycles to failure curve, 
representing high cycle fatigue or low cycle fatigue, respec-
tively. In either scenario, this entails defining a specific set 
of test parameters, including temperature, test frequency, test 
stress/strain ratio, and stress/strain-life region of interest, as 
these variables can impact the scope and results of the test 
program. Ultimately, these S–N or ε−N curves may act as 
the nominal data to derive design allowables for designers 
to assess fatigue capability of components. It is important to 
perform enough tests to understand any nuances regarding 
the shape of these curves. If only a few stress/strain condi-
tions are tested, there is a potential to miss transition points 
in material behavior (e.g., surface versus internal failures) 
[31–33]. The number of data points to generate a baseline 
is not standardized, although ASTM standards recommend 
no fewer than 10 tests be used per curve [29, 30]. Programs 
must weigh such considerations when generating fatigue 
design allowable curves—running tests at a few predefined 
stress/strain conditions focusing on variation or running tests 
at various stress/strain conditions focusing on establishing 
curve shape. Each approach has its own benefits and chal-
lenges, and the choice is typically based on internal practices 
and preferences.

From these experimental tests, an average response and 
statistical minimum can be established. A regression based 
on a model, such as the Basquin or Coffin–Manson models, 
can be fit to the experimental data to provide an average 
response. The difference between the experimental data 
points and the predicted response from the regression estab-
lishes the residuals that can be used to calculate a statistical 
minimum. While there are many statistical minimum calcu-
lations that can be conducted, the most common ones ref-
erenced are based on standard deviations (σ) or confidence 



338 Integrating Materials and Manufacturing Innovation (2024) 13:335–359

intervals around the average regression response. A − 3σ 
minimum represents a line offset from the average regression 
by three standard deviations, with the number of data points 
only influencing the standard deviation calculation [34]. The 
− 3σ minimum is computed by shifting the mean S–N curve 
in logarithmic coordinates to the left as follows:

where Xi represents the fatigue data in logarithmic coordi-
nates, Ŷ  is the regression curve of Xi, K is a multiplier equal 
to 3, and s is the sample standard error of Y on Xi. In prac-
tice, a distinction is made between the utilization of σ and 
s in Eq. (1) as follows. While σ characterizes the variation 
within a set of measurements (for example, cycles to failure 
at a given load), s measures the variation in means across 
multiple sets of measurements, encompassing the entire 
fatigue life curve [35]. On the other hand, a 95/99 minimum 
is based on confidence intervals, suggesting that there is 
95% confidence that tests will fall above the defined curve 
99% of the time [34]. Therefore, this calculation is heavily 
influenced by the number of tests included in the regression 
analysis. Figure 1 illustrates a S–N regression to experimen-
tal data to establish the mean fit as well as the -3σ minimum 
fit that represents the design allowable curve utilized to 
assess the fatigue life of a material [34]. Generally, fatigue 
design allowable curves are established to be the lower of 
either of these statistical calculations or to be an even more 
conservative curve based on engineering judgement. This 
is an important consideration when it comes to use of the 
hybrid approach to be discussed later in this document.

Traditional design allowables consider the baseline con-
dition of the materials, which is difficult in the case of AM 
since many factors influence the material response. It is 
important to consider other variables that may drive vari-
ation of unintentional anomalies like porosity beyond the 
parameter set, such as powder lot, build orientation, build 
location (e.g., platform location/incidence angles, Z heights), 
and multi-laser assignment (e.g., platform location/incidence 
angles, laser alignment). While including all these variables 
in a test campaign creates a complex matrix to consider, it 
can increase the probability of characterizing material rep-
resentative of the overall process to establish a robust set 
of design allowables while optimizing the number of tests 
required. In other words, testing fatigue bars created from a 
nominal set of process parameters may minimize porosity 
and could result in non-conservative design allowables for 
fatigue-limited applications.

To establish a robust set of design allowables, the ques-
tion arises as to how many tests of potential off-nominal 
conditions may be required to statistically understand the 
impact of a factor such as porosity. In the case of AM, main 
variables may include things like orientation due to potential 

(1)Ymin

(

Xi

)

= Ŷ
(

Xi

)

− K × s

for anisotropic behavior and the machine and energy source 
used to print. Regarding this methodology article, an off-
nominal condition used to generate a specific level of poros-
ity/defects will be considered as a main variable. Thus, the 
number of off-nominal conditions to trial will dictate the 
amount of testing required to establish model inputs for the 
hybrid qualification approach. The next section will discuss 
porosity in AM in more detail, and section “AM Material 
Development and Characterization” discusses how such off-
nominal conditions can be determined to seed desired pore 
defect characteristics, particularly if legacy DOE conditions 
are not known from parameter optimization trials.

Typical Porosity in Additive Manufacturing

The existence of porosity in AM materials created via 
parameter settings is generally well-documented [13, 14, 37, 
38]. For the sake of the approach considered, three types of 
porosity conditions will be discussed: (1) keyhole, (2) lack 
of fusion (LOF), and (3) linearly aligned/planar porosity, a 
subset of LOF and hereafter referred to as linear stitch.

Pore Defect Nomenclature

Keyhole porosity is created by the entrapment of process 
gas during melt pool formation, leading to spherical voids 

Fig. 1  Additively manufactured alloy 718 data from Solberg et  al. 
[36] is used to determine a nominal fatigue design allowable curve 
using the − 3σ minimum fit [34]



339Integrating Materials and Manufacturing Innovation (2024) 13:335–359 

[13, 14]. This typically occurs when either the power is 
increased at a given speed setting or the speed is reduced at 
a given power setting, leading to increased energy input in 
a localized region. Furthermore, unless extreme, in theory, 
the impact on fatigue behavior would be less than the other 
types of porosity discussed below due to its spherical nature 
leading to less severe stress concentrations (see Fig. 2a [37, 
39]). Additionally, there are other sources of gas porosity, 
due to the residual state of the powder. Cunningham et al. 
[40] demonstrated that porosity present in the powder from 
atomization, prior to the build process, persists throughout 
the subsequent processing of the material and results in a 
higher presence of porosity in the as built configuration and 
after heat treatment, as shown in Fig. 3.

Conversely, LOF porosity is created by the lack of 
energy input in a localized region [13, 14]. This can occur 
under multiple scenarios, including: (1) insufficient overlap 
between adjacent passes of the laser, or hatch spacing, (2) 
increased beam scanning speed with respect to the nomi-
nal parameter, and (3) reduced laser power with respect to 
the nominal parameter (e.g., potentially due to normal layer 
thickness variation during the build process). Generally, this 
type of porosity is the most prevalent “what if” scenario 
encountered during production where an optimized and 
stable parameter is being utilized. It can also significantly 

impact fatigue behavior due to the irregular pore morphol-
ogy that can arise (see Fig. 2b).

Linear stitch porosity is a subset of LOF porosity created 
due to insufficient overlap spacing between adjacent passes 
of the beam [37]. This type of porosity is especially detri-
mental when the applied loading is orthogonal to the plane 
of pore defects and has the potential to cause an “unzip-
ping” phenomenon as the crack front finds a path of least 
resistance through the aligned porosity [37]. This type of 
porosity is being explicitly discussed due to the increased 
interest in multi-laser systems. While linear stitch porosity 
could present itself in a single laser system for unoptimized 
parameters, this scenario is rarely observed. In a multi-laser 
system, the overlap is driven by the parameter controlling 
the laser paths as well as laser alignment.

Non‑destructive Evaluation

Pores are omnipresent in AM builds. Typically, AM mate-
rials produced with optimized parameters exhibit minimal 
bulk porosity, most of which are small (i.e., < 10 µm) and 
spherical. These types of pores are generally stochastic in 
nature and, thus, should be present in nominally processed 
test coupons. In geometric features of builds, such as over-
hangs, thin walls, and locations with sudden changes in heat 

Fig. 2  Examples of a keyhole 
and b lack of fusion pore 
defects detected using computed 
tomography in additively 
manufactured specimens of 
alloy 718. A keyhole pore and 
two of the largest lack of fusion 
pores are enlarged to emphasize 
the irregular morphology of the 
latter
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conductivity paths, there is a greater probability of pore 
defects existing using the baseline bulk process parameters. 
Production level builds will often have witness coupons that 
may be destructively evaluated for both pore size distribu-
tion along with other metallurgical factors like grain size, 
but this is merely a snapshot of the build. If the coupon 
fails to meet material quality expectations, it automatically 
raises the question of the material quality of the entire build. 
Unfortunately, even if it passes expectations, it provides only 
directional assurance of hardware capability since the cou-
pon does not represent the entire volume of the build or 
the geometric feature of the builds. Similarly, destructive 
mechanical testing of witness coupons is also limited in its 
ability to provide full assurance of material quality. Witness 
coupons are often based on tensile behavior being used as a 
proxy for more advanced and costly testing such as fatigue.

Non-destructive evaluation (NDE) provides qualita-
tive and quantitative testing to determine the quality of the 
part within an acceptable degree of uncertainty. NDE can 
be used within a production setting to provide confidence 

for qualification, as well as quality control of the mate-
rial builds. A recent review article by Quintana et al. [41] 
provides comparisons of NDE techniques for AM in terms 
of capabilities and recent advancements. As described by 
Quintana et al. [41], NDE can be categorized as: (1) visual 
testing, (2) ultrasonic testing (including laser ultrasounds 
and laser induced phase arrays), (3) acoustic emission, (4) 
electromagnetic testing (including eddy current testing), 
(5) radiographic testing (including tomography and micro-
computed tomography), and (6) thermal and infrared testing. 
Of these techniques, ultrasonic inspection and radiography 
exhibit the best capabilities to detect porosity. Furthermore, 
several of these techniques offer promise for in operando 
use for detection of porosity, including in situ camera-based 
techniques, in situ laser ultrasounds, in situ radiographic 
monitoring, and melt pool monitoring via thermal or infra-
red measurements. There is tremendous promise in using 
these in operando sensing methods within a framework for 
rapid qualification and represents future work that can be 
used within this proposed framework standard.

Fig. 3  Micro-computed tomography (µCT) reconstructions depicting 
porosity in powders and coupons originating from AP&C (a–d) and 
TIMET (e–h). The scans are completed on: powder (a and e), as-built 
material (b and f), after hot isostatic pressing (HIP) (c and g), and 
HIP followed by heat treatment (d and h). Terms of Use: This fig-

ure comes from an open access article distributed under the terms of 
the Creative Commons CC BY license. It is attributed to Cunningham 
et al. [40], and the original version can be found here: https:// doi. org/ 
10. 1080/ 21663 831. 2017. 13409 11

https://doi.org/10.1080/21663831.2017.1340911
https://doi.org/10.1080/21663831.2017.1340911
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Within NDE, there is a tradeoff between resolution and 
the size of the part in terms of penetration of the signal 
or field of view. One of the most common NDE methods 
employed for AM hardware is computed tomography (CT). 
CT equipment resolution can be tuned to detect very small 
voids in a material; this is often referred to micro-CT (µCT). 
To enable such resolution, however, the volume of the mate-
rial evaluated may be limited with respect to the overall 
hardware size. Furthermore, the time required to scan an 
entire part at higher resolutions may require days instead of 
hours or even minutes, which would have a direct impact on 
part throughput and ultimately revenue. Hence, it is imprac-
tical to perform µCT on every part produced via AM.

Given the variation of pore defects across a geometric 
part, resolution limits of the NDE technique used, as well 
as the complexity, size, and material of the part, there exists 
a probability of detection for pore defects at each region 
in a part. Production level scans, depending on material 
and geometry, may only be able to reliably and repeatably 
resolve defects larger than ~ 250 µm (based on part sizes on 
the order of 100 mm in size) [42].

A significant portion of the pores are smaller than the 
detectable limits of existing, industrial NDE techniques, 
which requires new methodology. As such, the question 
arises as to whether the fatigue design allowable covers all 
scenarios of unintentional variation (e.g., porosity) that may 
exist in the material and that cannot be detected via NDE 
techniques. In other words: what if the fatigue-limited/criti-
cal hardware has small, well-distributed porosity or poros-
ity that is localized in a distinct geometric feature (i.e., not 
observed in the witness coupon) that is below the NDE 
detectable limit? This document proposes an approach to 
increase confidence in nominal design allowables or produce 
augmented design allowables by reducing the reliance on 
empirical tests while addressing the possibility of uninten-
tional variation in the form of porosity impact on material 
fatigue performance.

AM Material Development 
and Characterization

As described in the section “Fatigue-Limited Parts and 
Design Allowables”, material qualification campaigns 
require many samples to adequately capture scatter and 
variability in the material response, particularly in fatigue-
limited applications. This brute force approach is expensive 
and not conducive to large-scale production. As an alter-
native, the proposed approach described in this work is to 
intentionally seed the different abovementioned pore defects 
into AM builds directly and subsequently perform charac-
terization, fatigue testing, and modeling. This reduces the 
number of coupons/specimens that must be built to evaluate 

the possible debit to fatigue resistance in the presence of 
stochastic pore defects.

In the context of qualification and certification, we exam-
ine the development pyramid illustrated in Fig. 4, which 
represents a typical certification test campaign and follows 
a bottom-up approach [43]. In this pyramid, initial testing 
begins with coupons to comprehend material properties, 
often involving tens of thousands of specimens. Testing 
progresses through elements, sub-components, components, 
and ultimately full-scale articles. As we ascend the pyramid, 
the specimen count decreases, but the cost, time, and test 
complexity increase. The framework proposed in this article 
aims to slenderize the development pyramid by reducing the 
number of specimens required during physical testing via the 
use of computational modeling, particularly near the bottom 
of the pyramid, thereby promoting a more rapid route toward 
qualification of AM.

As with any new material and process development, fol-
lowing a structured approach ensures the appropriate evalua-
tions occur as the process matures. One industry recognized 
approach developed by NASA is known as technology readi-
ness levels (TRLs), which defines the overarching steps to 
consider while maturing a technology [44, 45]. While not 
specific to materials and process development, it provides a 
common language for collaborators to assess maturity. The 
relationship between the development of AM material and 
process to the TRL progression (i.e., TRL 1 through 6) is 
shown in Fig. 5.

Parameter Optimization to Establish Baseline 
Condition

Prior to intentionally seeding defects in AM material, the 
baseline condition for processing should be established. 
In the field of AM, parameter optimization may be inter-
preted differently based on the part requirements. As in any 
material development process, there are often tradeoffs that 
need to be considered. For example, some parts may require 
high strength, but this may be at the expense of ductility. 
When it comes to fatigue-limited parts, AM processes are 
developed to minimize the amount and types of porosity as 
described above. Depending on part requirements, there may 
be tradeoffs with regards to the amount of productivity that 
can be achieved while maintaining acceptable porosity and 
as-built microstructure to meet material property require-
ments. Thus, the first step (i.e., TRL 2) in parameter optimi-
zation is to collect and prioritize requirements to create the 
design of experiment (DOE) conditions for consideration 
(e.g., viable layer thickness, laser power based on machine 
architecture, etc.). Additionally, theoretical calculations of 
AM build speeds may narrow the range of the DOE condi-
tions based on a potential business case required to justify 
pursuing AM for material qualification and part certification 
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Fig. 4  Example of a development pyramid. This image is courtesy of Mick Maher, used with permission, from Ref. [43]

Fig. 5  Technology readiness 
levels (TRLs) in the context of 
additive manufacturing
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efforts. These productivity needs should be included as part 
of the DOE conditions. For example, theoretical calculations 
may indicate that the layer thickness may be at most 100 µm 
if the machine architecture can only achieve a maximum 
power of 400 W. Since this guideline addresses bulk mate-
rial capability, the following discussion will focus on only 
a piece of the parameter development that needs to occur as 
part of an overarching parameter development effort; con-
tour/surface finish development will not be addressed as part 
of this effort but will be mentioned in the “Application of the 
Hybrid Methodology for Zone-Based Life Analysis” section.

Optimal parameters are often established as part of TRL 3 
and 4 efforts via a series of DOEs, which typically consider 
porosity, microstructure, tensile strength, and ductility. In 
general, there are five main factors that may be varied to 
achieve optimal porosity and as-built microstructure: (1) 
laser power, (2) laser spot size, (3) laser speed, (4) hatch 
spacing, and (5) powder layer thickness. Based on these 
conditions, a multi-factorial DOE may be constructed using 
some or all of the five variables to establish viable process 
windows based on a given criteria. Porosity is often used 
as a first level assessment criteria on the DOE parameters. 
Multiple DOEs may be necessary to narrow a process win-
dow, particularly when factoring in post-processing steps 
necessary to optimize the microstructure and mechanical 
properties. For example, a parameter with acceptable poros-
ity may have an as-built microstructure that is less likely to 
convert to an equiaxed grain structure after thermal process-
ing. This is often why a phased approach may be necessary 
to develop a fully optimized process; it is not only a function 
of machine parameters.

Once a parameter (or series of parameters) and post-
processing steps are down selected based on porosity and 
microstructure, it is appropriate to conduct more time and 
cost intensive testing, including fatigue. Typically, due to 
cost, only viable baseline parameters are typically tested as 
part of the TRL 3 and beyond. However, in the context of 
this guideline, understanding the non-optimal or off-nominal 
parameters (i.e., increased porosity levels) and their impact 
on fatigue behavior can benefit the hybrid approach pre-
sented to establish more robust design allowables.

Seeding Different Types of Pore Defects

The pores described in the section “Typical Porosity in 
Additive Manufacturing”, even with size below typical pro-
duction NDE limits (~ 250 µm for production components 
on the order of 100 mm in size [42]), may notably debit the 
fatigue resistance of AM components. A methodology to 
seed these pores using a DOE is discussed in Ref. [37]. This 
methodology relies on an established baseline parameter set 
that produces near optimal builds with minimal porosity. 
AM process parameters are then systematically perturbed 

to achieve the desired pore characteristics such as average 
and maximum pore size and porosity volume fraction [37].

The primary process parameters are often collapsed into 
a single parameter called the laser energy density (LED), 
computed as

where P is laser power, v is scan speed, h is hatch spac-
ing, and t is layer thickness. Several other parameters influ-
ence the presence of pore defects and include number of 
samples, location, orientation on build platform, laser spot 
size, layer-to-layer rotation, process gas flow, machine used, 
etc. However, the focus here is on the primary processing 
parameters in Eq. (2). As described in the section “Typical 
Porosity in Additive Manufacturing”, keyhole porosity typi-
cally occurs through an increase in LED. The normalized 
enthalpy, defined as the ratio of laser input enthalpy, ΔH , to 
the enthalpy of the material at melting, hs , can also be used 
to predict melt pool morphology and monitor the transition 
of a stable melt pool to the formation of keyhole porosity. 
The normalized enthalpy is computed as

where A is the absorptivity, � is density, Cp is specific heat 
capacity, Tm is the melting temperature, D is thermal diffu-
sivity, and a is the laser spot size. The normalized enthalpy 
provides further control over the formation and embedding 
of keyhole pores since it considers the absorptivity, which 
has been shown to vary with melt pool properties such as 
temperature and the spot size [46–48]. In contrast to keyhole 
pores, the formation of LOF pore defects is due to inad-
equate local energy input. The predicted width of the melt 
pool can be computed as

where T0 is the spatially uniform initial temperature of the 
substrate and e is the exponential constant. Along with the 
hatch spacing, the beam power and scan speed can be altered 
to decrease the melt pool overlap between adjacent passes 
of the beam and to systematically control the formation of 
LOF pores.

The methodology described here was recently demon-
strated using AM builds of alloy 718 [37]. Keyhole and 
LOF pores were seeded with a target porosity volume frac-
tion between 0.4 and 1%, determined such that the poros-
ity can notably perturb the fatigue response but does not 
impact specimen ductility or bias the fatigue crack forma-
tion site due to a smaller effective cross-sectional area. 
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Additionally, the target maximum pore size was 400 µm 
to evade detectability using production NDE techniques 
[42]. AM builds were sectioned, and pore defects were 
characterized using optical microscopy. Figure 6a depicts 
porosity volume fraction in the AM builds as a function 
of LED. The selected process parameters are highlighted 
in Fig. 6b in which the LEDs and porosity volume frac-
tions are normalized by the baseline parameter set, i.e., 
the parameter set that minimizes porosity. A decrease in 
LED results in a steep rise in porosity and indicates a sen-
sitive response to process parameters. On the other hand, 
an increase in LED results in a gradual increase in poros-
ity. To summarize, for a near-optimum starting process 
parameter set for alloy 718, the following conditions were 
achieved as shown in Fig. 6:

• 10 × increase in LOF porosity (lower LED boundary, LR) 
from the porosity values in the baseline condition at a 
parameter set of 0.5 × Baseline LED value

• 10 × increase in keyhole porosity (upper LED boundary, 
UR) from the porosity values in the baseline condition at 
a parameter set of 2.0 × Baseline LED value

For a general case with limited data, a 10 × increase in 
porosity can be achieved by changing the LED as

where the normalized process slope mi is estimated from 
Fig. 6b.

A schematic of the linear stitch porosity condition is 
shown in Fig. 7a, in which a controlled geometric approach 
is employed with two computer aided design (CAD) models 
to induce linear aligned/planar pore defects [37]. The coupon 
overlap between the two CAD models controls the degree 
of porosity and no outer contour is applied in this build 
configuration which would prevent this porosity condition. 
Figure 7a depicts a single scan layer in which the tips of the 
melt pools do not completely overlap and produce a line of 
pores. As subsequent layers are built and the laser scan path 
is rotated, the lines of pores coalesce into a plane. Figure 7b 
depicts a CT scan of a machined fatigue specimen with a 
plane of pores seeded perpendicular to the loading direction 
using this controlled geometric approach [37].

Seeding Pores Without Changing the Surrounding 
Microstructure or Mechanical Strength Behavior

The methodology to seed representative pores relies on 
the ability to not significantly alter the microstructure or 
mechanical strength behavior of specimens, in terms of yield 

(5)

ΔLEDNormalized ≅ ±
10

m
i

; m
i
= normalized process’ slope

Fig. 6  Design of experiments (DOE) to determine process parameters 
to intentionally seed keyhole and lack of fusion pores in additively 
manufactured builds of alloy 718. a Porosity volume fraction as a 
function of laser energy density. b Normalized porosity as a function 

of the normalized laser energy density. The selected parameter trials 
provide insight into the robustness of the process parameters. The 
normalized process slope  mi referenced in Eq. (5) is estimated in (b)
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point and work hardening response, as this may skew the 
analysis of fatigue experiments. AM specimens built using 
different process parameters should thus be characterized 
after the application of any post-processing heat treatments, 
which include stress relief, homogenization, solution treat-
ment, and aging for alloy 718 [49].

Electron backscatter diffraction (EBSD) can be employed 
to examine the microstructure of AM builds. Metrics such as 
grain size and the presence of crystallographic texture can 
then be compared between different specimens to determine 
whether statistically significant differences exist [37]. Addi-
tionally, different material systems may provide additional 
metrics that can be compared between specimens built using 
different process parameters, e.g., length fraction of anneal-
ing twins, volume fraction of different phases in multiphase 
alloys, etc.

Figure 8 depicts EBSD scans of AM alloy 718 specimens 
built using a baseline (i.e., control) process parameter set 
alongside specimens built using process parameters iden-
tified to seed lack of fusion and keyhole pores [37]. The 
specimens underwent a heat treatment that included stress 
relief (1.5 h at 1065 °C), homogenization treatment (1 h at 
1177 °C), solution treatment (1 h at 982 °C), and aging (8 h 
at 718 °C followed by 18 h at 621 °C) [37]. EBSD would 

ideally be conducted on multiple specimens from each con-
dition to develop a statistical assessment. The EBSD scans 
had a resolution of 0.5 μm/pixel with a 2000 × 2000 pixel 
or 1  mm2 field of view and were subsequently split into 
quadrants and the grain size distribution in each quadrant 
is analyzed using the MTEX software [50] with a 5° grain 
misorientation tolerance and a minimum grain size of 12 
pixels. Bounds of the grain size distributions are shown in 
the bottom row of Fig. 8 and demonstrate variability within 
individual EBSD scan, particularly for the keyhole condi-
tion. Nonetheless, the bounds of the grain size distributions 
overlap between the three specimens, indicating similarity 
in microstructure. Furthermore, crystallographic texture is 
random in each specimen, i.e., grains are not preferentially 
aligned.

Potential differences in microstructure can additionally 
be assessed using the macroscopic stress–strain response. 
Figure 9 compares the monotonic response of a baseline 
specimen and specimens seeded with the lack of fusion and 
linear stitch porosity conditions, the latter two of which are 
visualized in Figs. 2b and 7b, respectively. The nominal 
conditions report stress as the applied load divided by the 
original cross-sectional area of the specimen, as determined 
via caliper measurements after machining. Since these two 

Fig. 7  a Schematic of a single layer of the controlled geometric 
approach to seed the linear stitch porosity condition in additively 
manufactured builds. Note that only a single laser scan orientation is 
depicted here. As the part is built and the laser scan path is rotated, 

the lines of pores coalesce into a plane. b Computed tomography scan 
of a machined fatigue specimen with a plane of pores seeded perpen-
dicular to the loading direction
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latter specimens contain considerable porosity, their meas-
ured stress response was modified by considering a corrected 
cross-sectional area. For the corrected cross-sectional area, 
the maximum projected area of pores perpendicular to the 
loading direction was identified via X-ray tomography [37]. 
As shown in Fig. 9, by correcting the cross-sectional area 
of the LOF and linear stitch specimens, the stress–strain 
curves are consistent with the baseline specimen, which 
demonstrates the mechanical strength (yield and hardening 
behavior) of the material was not affected by intentionally 
inserting pore defects. Moreover, the corrected stress–strain 
curves in Fig. 9 conform to the scatter observed in other 
baseline specimen stress–strain curves.

Fatigue Modeling

Many models have been proposed to account for the role 
of porosity in additively manufactured materials, including 
phase field modeling [51], linear elastic fracture mechanics 

[12], cohesive zone modeling [52], peridynamics [53], and 
probabilistic approaches [54–56]. As an illustrative example, 
crystal plasticity is discussed for use within a finite element 
solver. Crystal plasticity finite element (CPFE) modeling 
accounts for the elastic and plastic anisotropies at the grain 
level, as well as the ability to mesh around porosity and 
microstructural features. This approach uses a multiplicative 
decomposition of the deformation gradient into an elastic 
and plastic component, in which the velocity gradient is 
determined by the shear strain rate induced by crystallo-
graphic slip, accounting for the kinematics of the slip sys-
tems, in each element. The result of this framework enables 
the calculation of the stress concentration and plastic strain 
accumulation near defect and microstructural features that 
can lead to damage and overall failure of the material. This 
microstructure-sensitive CPFE framework is demonstrated 
for the.

The general approach described in this paper can be used 
with any modeling approach that accounts for local poros-
ity and microstructural defects and is not specific to crystal 

Fig. 8  Comparison of electron backscatter diffraction (EBSD) scans 
of additively manufactured alloy 718 specimens built with a baseline 
process parameter set (i.e., parameters to minimize porosity) and pro-
cess parameters identified to seed lack of fusion and keyhole pores, 
which are circled in the two latter conditions. The EBSD scans are 

depicted as inverse pole figure with the reference direction in the Z 
direction. The EBSD scans are split into quadrants from which grain 
size distributions are computed, the bounds of which are shown in the 
bottom row
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plasticity modeling. Due to past experience, the authors have 
selected crystal plasticity as the modeling strategy used for 
the hybrid modeling and experimental approach toward 
rapid qualification and certification. The crystal plasticity 
theory and governing equations will not be discussed in this 
paper, and the reader is referred to [57] for details. An over-
view of the microstructure-sensitive modeling framework 
is shown in Fig. 10 and will be discussed in the subsequent 
sub-sections.

The requirements for microstructure-sensitive modeling 
are (1) a calibrated constitutive model (as discussed in the 
next subsection) and (2) digital microstructure models that 
capture the relevant microstructure features, e.g., grain size 
distribution, pore defects, annealing twins, multiple phases, 
etc. and that serve as inputs to the constitutive model. 
Open-source software packages such as NEPER [58, 59] 
and DREAM.3D [60] are vital in generating realistic micro-
structure models for simulation. These packages can gener-
ate statistically equivalent microstructure models using data 
from previous characterization, e.g., grain size, twin length/
area fraction, crystallographic texture, etc., and reconstruct 
experimental data sets, e.g., 2D models from EBSD or 3D 
models from serial sectioning and EBSD or high-energy 
x-ray diffraction microscopy (HEDM) [59–61]). They also 
integrate well with open-source crystal plasticity software 
packages [62–66].

Several methods exist to embed pore defects into digital 
microstructure models. Spherical or ellipsoidal pores, with 

size and spatial distributions characterized experimentally or 
predicted using computational models, can be generated as 
separated phases in the digital models that are then removed 
from the mesh before simulation. The complex morphology 
of LOF pores can similarly be characterized experimentally 
or predicted computationally and subsequently overlaid onto 
fully dense models to create representative pore models [39].

An important consideration in the development of com-
putational models is the associated maturity level, akin to 
the TRLs discussed previously. These model maturity lev-
els (MMLs) were described in the context of ICME models 
in Refs. [67, 68]. For a comprehensive understanding of 
MMLs, including descriptions, categories, and criteria con-
siderations, readers are directed to Table 2 and 3 in Ref. [67].

Mechanical Test Data, Fatigue Data, and Model 
Calibration

In order to parameterize the microstructure-sensitive fatigue 
model, calibration is needed against experimental data. The 
necessary experimental data are summarized as follows: (1) 
single crystal elastic constants, (2) large deformation hys-
teresis loop evolution during cyclic loading, and (3) fatigue 
experiments, measuring cycles to crack initiation. Each of 
these experiments should be conducted at the temperature(s) 
of interest for the model, which requires repeated testing 
across a range of temperatures to create a model that is appli-
cable at more than one temperature.

First, to account for grain-level anisotropy, single crys-
tal elastic constants are required, which is challenging as 
it requires processing single crystals of complex engineer-
ing alloys or inferencing methods based on local texture 
and micromechanical measurements [69–71]. Since these 
are challenging measurements, single crystal values can be 
acquired from literature, although care should be taken to 
determine the precision and method to acquire such values.

To calibrate the role of plasticity, large deformation 
testing of the material is needed to establish initial yield 
and hardening behavior. This can be accomplished via full 
stress–strain curves under monotonic loading or cyclic load-
ing ensuring the deformation is sufficiently large to create an 
open hysteresis loop behavior, e.g., macroscopic plasticity is 
observed in the initial loading cycles. Ideally, the hysteresis 
loop behavior should be repeated at several loading ratios 
(R-ratios) and if the material is tested in a strain-rate sensi-
tive regime, multiple strain rates should be employed. Dur-
ing calibration, identifying the appropriate crystal plasticity 
parameters to capture the experimental data does not result 
in a unique solution. As mentioned above, additional experi-
mental tests over a range of conditions (R-ratios, strain rates, 
temperatures, repeat tests, etc.) are preferred, but are accom-
panied by additional time and cost and present complexity 
for parameterizing the model. Over the years, the calibration 

Fig. 9  Macroscopic stress–strain curves for specimens seeded with 
the lack of fusion and linear stitch porosity conditions alongside a 
specimen built with nominal process parameters, i.e., minimal sto-
chastic porosity. Pores in the lack of fusion and linear stitch speci-
mens are visualized in Figs.  2b and 7b, respectively. The measured 
stress for these two specimens was corrected by considering the max-
imum projected area of pores normal to the loading direction
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of the crystal plasticity has been accomplished via optimi-
zation routines of macroscopic behavior [72, 73] or direct 
comparisons to micromechanical, crystal-level fields [74, 
75]. Lastly, within cyclic loading, capturing the appropriate 
yielding upon reverse loading is critical to predict the fatigue 
behavior. As a consequence, accurate representation of the 
backstress formulation and evolution is important to fatigue 
modeling [76, 77].

A set of fatigue crack initiation experiments should be 
conducted, either tested in high cycle fatigue (load con-
trolled) or low cycle fatigue (strain controlled), based on the 
applicable usage of the intended model. A sufficient number 
of specimens should be tested to quantify variability or scat-
ter in the fatigue results, for instance at least 10 specimens 
per loading condition or S–N/ε−N plot. A regression fit 
can be applied to the S–N or ε−N data, for example using 
the Basquin or Coffin–Manson power-law, respectively, 
whereas the residual between the individual data points and 
the regression can also be used to assess the degree of scat-
ter in the fatigue behavior. Afterward, the fatigue metric, 
discussed in more detail in the next subsection, can be cali-
brated against the experimental data. Lastly, it is beneficial 
to perform fractography on the failed specimens, to identify 
the cause of crack initiation, porosity (including measuring 
the dominant pore size), free surface, or crystallographic 
facet. The cause of crack initiation is useful to compare to 
model predictions, to ensure the correct mechanism of crack 
initiation is captured by the model [78].

Fatigue Model Predictions

Using a microstructure-sensitive model, the fatigue life 
distribution can be predicted for each set of seeded pores. 
Each virtual microstructure is generated from the statisti-
cal distributions of pores and grain level features, such that 
each virtual microstructure is distinct, but the distribution 
of features is statistically similar to prior simulations. From 
the simulations, the local stress concentrations and accumu-
lated plastic strain during cyclic loading are calculated as a 
function of loading cycles. In the literature, there has been 
many metrics proposed over the years to capture crack initia-
tion or advancement of small fatigue cracks, including the 
Fatemi–Socie parameter [79, 80], stored energy density [81], 
and wedge-crack model via dislocation pile-up [82]. Each 
of these models have shown promise in their prediction of 

crack initiation and are complementary in their construction. 
In this work, the critical accumulated plastic stored energy 
density (APSED) is used. Based on the authors’ experience 
and past validation efforts, the APSED metric has been iden-
tified as a single metric to predict crack initiation, which can 
be used as a material parameter across applied loading states 
or in the presence of porosity [23]. It is an accepted prac-
tice to measure these fields during cyclic loading, until the 
change in the metric’s value per cycle has saturated, at which 
point shakedown has occurred in the fatigue simulation, and 
the results can be forward extrapolated based on a linear fit. 
The series of linear projections for each virtual microstruc-
ture can be compared to the series of experimental tests, 
in which Bayesian inference methods can be used to cali-
brate the appropriate critical value of the APSED [23]. The 
advantage of the Bayesian approach is that it can be updated 
based on future experiments and is amenable for direct infer-
encing of the uncertainty in the fatigue metric values. The 
APSED is determined for the baseline process parameters, 
which is consistent across all simulations regardless of load-
ing or the presence of porosity. When seeded porosity is 
included in the model, the fatigue predictions exhibit a debit 
in their expected life. Hence, the output of such a model is 
the expected fatigue life debit for each loading condition, for 
each group of seeded pore defect distributions, as discussed 
in the section “Typical Porosity in Additive Manufacturing”.

In order to build trust within the fatigue model predic-
tions, appropriate levels of verification, validation, and 
uncertainty quantification must be completed. Verification 
refers to the computational model’s implementation accu-
rately capturing the mathematical framework and solu-
tion. The reader is referred to [67] for more information. 
Validation refers to the model capturing the appropriate 
physics, both in terms of the formation of the model and 
the parameterization of any model values. For the present 
fatigue model, this can be accomplished in several steps. 
First, the coupon level probability of failure can be com-
pared to the macroscale probability of failure for different 
loading conditions to ensure the critical APSED captures the 
fatigue behavior [23, 83]. The appropriate range of fatigue 
data should be log-normal in nature, exhibit increased scat-
ter at lower applied loads, capture mean behavior as well as 
the tails of the distribution. Moreover, to ensure the model 
captures the appropriate physics, a direct comparison to 
local behavior is preferred. A direct comparison is such that 
the model provides a one-to-one recreation of the physi-
cal microstructure and defects of the material, such that the 
micromechanical fields and cracking phenomenon can be 
unambiguously compared throughout their loading evolu-
tion. The advantage of such an approach is the model can 
be assessed at the appropriate length-scale, since the model 
and experiment exhibit similar length scales of their meas-
urement, compared to coupon level tests, in which the model 

Fig. 10  Overview of the microstructure-sensitive fatigue modeling 
framework [37, 39]. Additively manufactured specimens with inten-
tionally seeded pore defects are characterized using computed tomog-
raphy, electron backscatter diffraction, and fatigue testing. Statisti-
cally equivalent microstructure models undergo crystal plasticity 
simulations and fatigue hot spots are identified. A fatigue damage 
parameter is calibrated using experimental data and subsequently 
used to predict fatigue lives of models

◂
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behavior is averaged across several length scales. An exam-
ple of such a direct means of comparison is shown in Ref. 
[84], where a microstructure-sensitive fatigue model pre-
dicts the location of fatigue crack initiation consistent with 
the companion experiment. These examples demonstrate 
validated implementations of CPFE models with reduced 
calibration data bias [67]. Additionally, the digital micro-
structure models used to populate the fatigue response are 
independent of the experimental specimens used for calibra-
tion data collection, although their distributions of micro-
structure features (e.g., grain size distribution, area fraction 
of twins, etc.) are statistically similar.

Further uncertainty in the parameterization of the under-
lying crystal plasticity model should be assessed, to deter-
mine how the reliability in determining individual crystal 
plasticity parameters result in discrepancies in the calculated 
quantities. Due to the high computational cost in running 
crystal plasticity models, it is time consuming to conduct 
such rigorous uncertainty quantifications, yet still necessary. 
Several recent studies have examined these types of uncer-
tainties in the crystal plasticity model parameterization [73, 
85, 86]. With the model form of the constitutive equations 
used in the flow rules and hardening equations for crystal 
plasticity, opportunities exist to include more physics-based 
relationships, which often come with additional parameters. 
The inclusion of these additional parameters provides the 
opportunity to produce a better fit with experimental data, 
e.g., additional degrees of freedom for calibration, yet with 
the additional parameters also comes additional sources of 
uncertainty. Calibrating the critical value of the fatigue met-
ric can also produce uncertainty, which can be quantified 
using Bayesian analysis. As shown in Ref. [87], considering 
each of these forms of uncertainty, one can propagate the 
uncertainties to provide a confidence bounds for the fatigue 
life predictions.

Using the framework described in this section, the fatigue 
life of the nominal conditions and associated debit in the 
fatigue life of the intentionally seeded pore defects can be 
assessed. This is helpful to supplement the experimental test 
data, to provide additional statistics, as well as expand the 
dataset to additional testing conditions. Figure 11 depicts 
experimental and model fatigue life data of the baseline and 
keyhole porosity conditions [37, 39]. Fully dense models 
representative of the baseline specimens and models seeded 
with keyhole pores undergo cyclic loading at the same con-
ditions as the experiments in a CPFE simulation. The base-
line models and specimens cyclically loaded to 0.75% strain 
are then used to calibrate the critical value of the APSED. 
The calibrated APSED is subsequently used to predict the 
fatigue lives of models seeded with keyhole pores at both 
applied strains and the baseline models at the lower 0.62% 
applied strain. As a note, the model data depicted in Fig. 11a 
augment experimental observations, while the model fatigue 

lives shown in Fig. 11b–d are predictions and match rea-
sonably well with experimental observations. All the model 
and experimental data are shown collectively in Fig. 11e 
in which jitter is added to prevent marker overlap. These 
fatigue modeling results will be used in the following section 
to provide a more robust set of design allowables.

The CPFE fatigue modeling framework described here 
has been applied across fatigue regimes [23, 78, 87, 88], 
with specific focus on both the low cycle fatigue (LCF) 
[39, 89] and high cycle fatigue (HCF) [83] regimes while 
accounting for porosity. Notably, the HCF regime may be 
more sensitive to porosity, given that stress concentrations 
induced by pores have a more pronounced effect when plas-
ticity at the microscale is limited. While life in the HCF 
regime is dominated by crack initiation, the LCF regime is 
dominated by fatigue crack growth, and as such it is impor-
tant to consider microstructurally-sensitive fatigue crack 
growth rates in the context of crystal plasticity, as detailed 
in Refs. [90–93].

Application of the Hybrid Methodology 
to Fatigue Design Allowables

Creating seeded pore defect data can be beneficial in mul-
tiple scenarios for assessing the fatigue life of AM compo-
nents as it provides a means to consider unintentional varia-
tion observed within nominal process conditions. Moreover, 
microstructure-sensitive models provide additional regres-
sion data, enhancing confidence in the computed fatigue 
design allowables. Three such scenarios will be discussed 
in the following sections, each of which begins with a funda-
mental consideration of the design allowable curve discussed 
in section “Fatigue-Limited Parts and Design Allowables”.

The design allowable curve is intended to represent the 
nominal process conditions to build AM materials/compo-
nents. Therefore, the design allowable may not account for 
test bars containing off-nominal porosity and defect con-
centrations. As suggested in this methodology for rapid 
qualification, the design allowable should have margin to 
adequately cover scenarios where the NDE resolution tech-
niques cannot resolve pore defects due to off-nominal pro-
cess conditions. Physical testing and modeling at nominal 
and off-nominal conditions and at multiple stress/strain 
conditions can help establish a more robust set of design 
allowables. Accordingly, we distinguish between a design 
allowable curve determined using data at nominal process 
conditions, i.e., the nominal design allowable curve, and a 
design allowable modified based on experimental and/or 
model data with intentionally seeded pores, i.e., the aug-
mented design allowable curve.

In the first example below, model data are used alongside 
experimental data at a single loading condition to identify 
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Fig. 11  Augmenting experimental data with microstructure-sensitive 
models using the framework described in section “Fatigue Modeling” 
and depicted in Fig. 10. Statistically equivalent microstructure models 
without pores and seeded with keyhole pores are generated, and the 
former are used alongside experimental data to calibrate the critical 

value of a fatigue damage parameter. The calibration leverages data 
at 0.75% strain (shown in green) and is subsequently used to predict 
the fatigue lives of models seeded with pores at both applied strains 
(shown in magenta). (e) Compiled experimental and model results. 
Jitter is added to prevent marker overlap
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the statistically minimum fatigue life, which is often dif-
ficult to determine through routine coupon testing due to 
rare events. Subsequently, model data obtained under nomi-
nal process conditions is employed to ensure robustness in 
the experimentally derived fatigue design allowable curve. 
Finally, the fatigue design allowable curve is augmented 
by incorporating experimental data that includes seeded 
porosity.

Identifying Statistically Minimum Fatigue Life

Fatigue test campaigns can be extremely costly and time 
consuming, and finding ways to augment existing empiri-
cal data with microstructure-based model data can help 
reduce overall NRE costs and effort [39]. Since the mod-
els developed have a component that is microstructurally 
based, additional model data for nominal conditions could 
be generated. Given that a fatigue design allowable heavily 
relies on understanding the location of a statistical mini-
mum, as discussed in the section “Fatigue-Limited Parts 
and Design Allowables”, combining this “nominal” model 
data with empirical data for average regression and statisti-
cal minimum calculation results in a robust fatigue design 
allowable at nominal conditions without added experimental 
testing costs. Figure 12 depicts the probability of failure of 
AM alloy 718 specimens at a specific loading condition, in 
which the log-normal fit using both experimental and model 
data results in a higher confidence prediction of the B0.1 
life [6, 37, 39, 94]. It should be noted that the data depicted 
in Figs. 12 and 11a are identical. The advantage of such an 
approach is that once the model is developed and validated, 
numerous statistically equivalent microstructures can be 
created and simulated, in order to produce a more statisti-
cally robust fatigue response and subsequent life. This is an 
effective means to identify tails in the fatigue life distribu-
tion and probe extreme values associated with the statistical 
minimum, without requiring additional testing.

Ensuring Robustness of the Experimental Fatigue 
Design Allowables

The experimentally validated microstructure-sensitive 
models can be evaluated at multiple conditions, poten-
tially extending beyond those included in the original 
experimental campaign, to ensure robustness of the fatigue 
design allowable curve. Typically, due to practical limita-
tions in the number of experiments, the nominal fatigue 
design allowables only represent a set of experimental cou-
pons representing nominal loading, microstructure, and 
defect structure. Once the microstructure-sensitive mod-
eling framework is established, it is possible to further 

examine the effects of additional loading scenarios or 
microstructure variability on fatigue resistance. To ensure 
robustness, it is practical to compare the design allowables 
under additional loading configurations that are assessed 
by the model. Figure 13 illustrates this concept, utiliz-
ing the experimental and model data presented in Fig. 11a 
and 11b. In Fig. 13b, the fatigue design allowable curve 
is computed using both experimental and model data 
at nominal conditions. In another distinct scenario, the 
microstructure could vary from the standard condition, for 
instance due to departure from the target post-processing 
conditions, which often requires a materials review board 
assessment. In these cases, the microstructural features, 
such as grain size, twin density, the presence of crystal-
lographic texture, etc., may deviate from the character-
ized values depicted in Fig. 8. In this second scenario, 
the microstructure-sensitive model can be used to assess 
deviations in the microstructure feature distributions influ-
ence on the fatigue design allowables, thereby assessing 
robustness in the design allowables.

Fig. 12  Probability of failure for additively manufactured alloy 718 
specimens produced with minimal stochastic porosity alongside cor-
responding model data. Specimens and models were cyclically loaded 
to 0.75% strain at a strain ratio of Rε = 0. The extrapolated log-normal 
fits can be used to predict the probability of failure of 1/1000 (i.e., the 
B0.1 life) [94]. The fit using both experimental and model data results 
in a higher confidence prediction
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Augmenting Fatigue Design Allowables Using 
Off‑Nominal Process Conditions

Testing off-nominal process conditions that represent poten-
tial AM pore defect distributions and including these distri-
butions into an overall average regression result in a wider 
window of potential variation from the stochastic AM pro-
cess. The combined data set of nominal and off-nominal 
conditions, albeit empirical and/or model based, likely 
results in a lower fatigue design allowable compared to a 
fatigue design allowable established solely from nominal 
test data. Figure 14 illustrates experimental enhancements 
to a fatigue design allowable using specimens seeded with 
keyhole and LOF pores representative of off-nominal pro-
cess conditions [37]. Figure 14a depicts test data at nominal 
process conditions and the associated nominal design allow-
able. In Fig. 14b, data from specimens seeded with keyhole 
and LOF pores are considered, and the mean and minimum 
fits are reevaluated using all the data, resulting in a lower, 
augmented design allowable. On the other hand, Fig. 14c 
depicts an augmented design allowable in which the stand-
ard error is recomputed using all the data with respect to 
the mean fit of just the baseline data. The design allowables 
can additionally be augmented using both experimental and 
model data seeded with pores leveraging the microstructure-
sensitive modeling framework and data depicted in Fig. 11. 

While testing off-nominal conditions may add to upfront 
NRE costs, strategic test planning and model execution can 
lead to downstream cost and time savings to provide a means 
for increasing confidence in AM material qualification.

Application of the Hybrid Methodology 
for Zone‑Based Life Analysis

In AM, material qualification and part certification are inher-
ently coupled; as the part is being built, the microstructure 
and defects in the material will vary. For instance, contour 
practices and local geometric features like overhangs or 
internal cooling passages will influence local heat conduc-
tivity and therefore influence the presence of local defects 
and microstructure. Thus, standard homogeneous material 
qualification may not be applicable across a part. The pre-
sent approach utilizes a baseline AM build process (e.g., 
target microstructure given the AM build parameters) and 
associated allowable fatigue life. For part certification, loca-
tion-specific debits should be assessed on the local mate-
rial fatigue allowables based on the local presence of pore 
defects. Moreover, this approach can be extended to include 
the role of bulk residual stresses [61] or variability in the 
microstructure [87] across the part. Hence, a zoning meth-
odology is produced, where a part is discretized to identify 

Fig. 13  Fatigue design allowable curve for additively manufactured alloy 718 determined using a experimental data and b both experimental and 
model data. The model data leveraged are also depicted in Fig. 11a and b
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the stress state in a specific region, as well as probability of 
defects existing in that particular region [95]. The advantage 
of the zoning method is that it can account for the probabil-
ity of detection of such defects based on the location and 
part geometry.

For the structural analysis of the part, a finite element 
(FE) simulation can examine the role of loading applied on 
the part’s geometry. From the resulting spatial–temporal 
fields from the FE analysis, the cyclic principal stress/strain 
is calculated at each material point. A second sub-scale 
material modeling approach assesses the micromechanical 
response of the material via the microstructure-sensitive 

fatigue model (“Fatigue Modeling” section). Hence, a 
hierarchical approach is taken [87], where the FE analysis 
provides component level data, and at the critical material 
points, sub-scale hybrid experimental and material models 
are used to assess the role of local pore defects on the fatigue 
life. For this sub-scale material model, CPFE simulations are 
conducted on a series of virtual microstructures.

Using such an approach can enable material qualification 
based on a nominal set of design allowables, in which the 
material exhibits minimal porosity, as well as rapid assess-
ment of the role of local porosity in specific locations across 
the part, based on a quantified debit in the allowable fatigue 

Fig. 14  Augmenting fatigue design allowable curves using off-nom-
inal process conditions to seed pore defects into additively manufac-
tured alloy 718 specimens. The data in this figure come exclusively 
from physical experiments, and the legend indicates the specimen 
build orientation. a Experimental data of specimens produced at 

nominal conditions with minimal stochastic porosity. In b and c, off-
nominal process conditions are employed to seed specimens with 
keyhole and lack of fusion pore defects. The combined data are then 
used to augment the fatigue design allowable curve



355Integrating Materials and Manufacturing Innovation (2024) 13:335–359 

life. Figure 15 provides an illustrative example of this con-
cept. The zoning approach enables an easy framework to 
account for the dependence of pore defects occurring due to 
different contour practices, near distinct geometrical features 
such as overhangs, limitations of porosity detection based on 
expected size and location, and a nucleating crack propagat-
ing into a dominant crack based on local stress fields and 
geometric correction factors.

In the augmented design allowables discussed in the sec-
tion “Augmenting Fatigue Design Allowables Using Off-
Nominal Process Conditions”, additional fatigue life scatter 
is added to the nominal set of design allowables to account 
for intentionally seeded pore defects that may occur from 
off-nominal conditions. While this additional variability 
may result in a more robust set of design allowables, it will 
reduce the fatigue life that is acceptable in design, requiring 
additional material (thereby increasing weight and cost and 
reducing potential energy efficiency) or reducing service life 
(adding cost). While this methodology provides rapid quali-
fication, it could come at the expense of cost.

The benefit of the rapid material qualification guideline is 
a closer coupling with part certification through zone-based 
lifing. At specific locations within the part, advancements 
with process modeling tools can predict the expected pore 
defects [96–98], which can be integrated within the present 
modeling approach to provide a complete process-structure-
properties-performance linkage. These path forward will be 

bolstered with advancements in NDE or in operando-based 
sensing techniques (as discussed in section “Non-Destruc-
tive Evaluation”) that will reduce the range in off-nominal 
process parameters required in the DOE to produce smaller 
intentionally seeded defects. Thus, with the close connection 
between material qualification and part certification in the 
AM process, this methodology presents a promising path 
forward for employing AM components into fatigue-limited 
applications.

Conclusions

The variability in the additive manufacturing (AM) build 
process, due to the large number of process parameters (e.g., 
laser power and speed, powder layer thickness, hatch spac-
ing, part orientation and location on build platform, etc.) and 
intricate component geometry such as overhangs and thin 
walls, creates porosity that poses challenges in determining 
reliable fatigue design allowables. Conventional material 
qualification approaches assume a relatively homogeneous 
microstructure and a uniform distribution of defects such 
as pores, which may not be applicable to AM components. 
This limitation hinders the qualification of AM materials and 
their adoption in fatigue-limited applications.

This work proposes a hybrid approach that combines 
experiments and microstructure-based simulations to 

Fig. 15  Two regions in a part are depicted: Location A exhibiting 
baseline low levels of porosity and Location B exhibiting higher lev-
els of porosity due to the geometric overhang. Due to the presence 

of porosity and the local stress fields, the fatigue life at Location B 
is debited as shown, along with confidence intervals. Image of part 
courtesy of GE Additive
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facilitate rapid qualification of AM components. The hybrid 
approach features three aspects: (1) intentionally seeding 
pore defects into AM specimens based on deviations from 
nominal process conditions, (2) a combination of destructive 
(e.g., optical metallography, microstructure characterization, 
mechanical fatigue testing) and non-destructive (e.g., com-
puted tomography) techniques for material characterization, 
and (3) microstructure-based simulations of models seeded 
with representative pore defects resulting from the off-nom-
inal AM process conditions. We discuss the development 
of AM process parameters and fatigue design allowables 
and demonstrate the hybrid approach using data from Ni-
base alloy 718. Supplementing experimental data obtained 
at nominal process conditions with specimens and models 
that include seeded pore defects enhances confidence in the 
computed fatigue life predictions. The approach is used to 
more rapidly assess a set of design fatigue allowables via: 
(1) modeling predictions to develop a larger statistical distri-
bution to identify the statistically minimum fatigue life, (2) 
model predictions to examine additional loading conditions 
or deviations outside microstructure specifications beyond 
the experimental test campaign, and (3) seeded defect 
materials to develop a more robust set of design allowables 
beyond the bulk, nominal processing conditions. Moreover, 
the presented approach enables zone-based life analysis by 
considering variations in defect distribution and microstruc-
ture due to local geometric features such as overhangs or thin 
walls. In the zone base lifing approach, a closer connection 
between material qualification and part certification is estab-
lished. The porosity defect distribution can be identified at 
specific locations near geometric features, either via charac-
terization, process modeling, or in operando sensing within a 
part. Afterward, via seeded defect pore defect experimental 
tests and/or microstructure-based modeling, coupled with 
knowledge of the stress state at the specific location of the 
part, the fatigue life is predicted, in order to provide a loca-
tion specific life distribution across the part.
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