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Abstract
Advancements in high-throughput data generation and physics-informed artificial intelligence and machine-learning algo-
rithms are rapidly challenging the status quo for how materials data is collected, analyzed, and communicated with the world. 
Machine-learning algorithms can be executed in just a few lines of code by researchers with minimal data science expertise. 
This perspective addresses the reality that the ecosystems which have been constructed to nurture new materials discovery 
and development are not yet well equipped to take advantage of the radically more powerful and accessible computational 
and algorithmic tools which have the immediate potential to enhance the pace of scientific advancement in this field. A 
novel architecture for managing materials data is proposed and discussed from the standpoint of how historical and emerging 
subfields of materials science could have been or might still significantly improve the impact of materials discoveries to the 
many human societal needs for new materials.
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Introduction

For decades, there has been a push in the materials science 
community to develop novel materials and fabrication pro-
tocols that meet future societal challenges ranging from sus-
tainability to clean energy to microelectronics [1–6]. Despite 
billions of dollars in public and private research investments 
over that period, it has been challenging to move the needle 
and enable the realization of “Moore’s Law for Scientific 
Discovery” [7]. Breakthroughs in computational power and 
the resulting improvement in efficiency of engineering hard-
ware led to a renaissance in combinatorial chemistry and 
materials science in the early 2000s and 2010s, respectively. 

Excitement for opportunity, however, quickly transitioned to 
realization within the field of materials science that vastly 
more data did not natively translate to vastly more informa-
tion. Rather, unguided combinatorics often led to libraries of 
data on infeasible, or inconsequential materials [8, 9]. Thus, 
the age of Machine Learning and Artificial Intelligence-led 
chemistry and materials science has dawned in the 2020s, 
with promises of curing the woes of unbridled combinato-
rics with guided exploration and exploitation of materials. 
Figure 1 shows how the body and momentum of literature on 
combinatorial and artificial intelligence-focused chemistry 
and materials science has evolved over the last 50 years.

The 100 Prisoners Problem

Material correlations which capture the complex relation-
ships investigated in materials science experimentation are 
commonly referred to as process–structure–property–perfor-
mance (psp2) relationships. Owing to the realities of stochas-
ticity, heterogeneity, and the enormous divergence in length 
scales between the number of atoms that form a molecule 
of material and the number of atoms in relevant engineer-
ing quantities of a material’s use, psp2 relationships are 
extraordinarily high dimensional. As an analogy, consider 
the recently re-popularized mathematical riddle commonly 
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known as the “100 Prisoners Problem” [10, 11]. A version of 
this riddle adapted from Analytic Combinatorics reads [11]:

“The director of a prison offers 100 death row prison-
ers, who are numbered from 1 to 100, a last chance. 
A room contains a cupboard with 100 drawers. The 
director randomly puts one prisoner’s number in each 
closed drawer. The prisoners enter the room, one after 
another. Each prisoner may open and look into 50 
drawers in any order. The drawers are closed again 
afterwards. If, during this search, every prisoner finds 
his number in one of the drawers, all prisoners are par-
doned. If just one prisoner does not find his number, 
all prisoners die. Before the first prisoner enters the 
room, the prisoners may discuss strategy—but may 
not communicate once the first prisoner enters to look 
in the drawers. What is the prisoners best strategy?”

If the prisoners chose fifty drawers at random, their col-
lective probability of success is calculated from their prob-
ability of success in any choice ( 50∕100 = 0.5 ) and the total 
number of choices (100), which simplifies to P(x) = 0.5

100 
or a miniscule 7.8 × 10

−31 ∶ 1—substantially smaller than 
the probability of finding a single atom of interest among one 
mole of that substance.

Even if one were to limit themselves to considering only 
Newtonian mechanics, the number of chemical, mechani-
cal, electrical, magnetic and other properties for a single 
material easily surpasses 100 dimensions. Exacerbating the 
complexity, materials themselves do not always reveal their 
true behavior easily. Opening the “box” may not be as simple 
as a quick measurement. Some material properties of interest 
require extraordinary effort and time to measure. Moreover, 
materials are naturally stochastic—each one has different 

properties according to the complex chaotic processes by 
which it was formed. Material phenomena controlled by sta-
tistically rare events have been described as “black swan” 
events, a reference to their statistically unexpected nature 
and the natural human bias to underestimate the importance 
of the tails of a distribution [12, 13]. Considering the sto-
chastic nature of materials, finding the right “box” is not as 
simple as opening a box and looking inside. Hundreds or 
thousands of observations may be necessary to isolate rare 
events, and each of those experiments or simulations can be 
expensive and time-consuming.

Beyond Combinatorial Materials Science

Recognizing the grim realities of combinatorial explosion, 
materials and data scientists have begun pursuing a solu-
tion which takes advantage of, rather than suffering from 
dimensionality. That is, complex  psp2 relationships can be 
represented in reduced order latent spaces such as those used 
by artificial intelligence and machine learning algorithms 
to model large sums of data efficiently, and inferences can 
be made about novel  psp2 relationships that would other-
wise be beyond expert cognition [14, 15]. Notably, there has 
been a recent rise in ‘scientific’ machine learning. Scientific 
machine learning aims to incorporate physics constraints and 
models into AI/ML to enhance efficiency, applicability and 
explainability of reduced-order relationships for domain-
specific problems (such as fluid flow, plasma physics, etc.) 
[16, 17]. Breakthroughs continue to be made, such as Ben-
gio’s Generative Flow Networks which promise to greatly 
enhance the efficiency of exploring very high-dimensional 
search spaces [18].

Briefly returning to the riddle, the prisoners derive negli-
gible benefit from 50 opportunities to open drawers without 
an underlying strategy guiding them to turn data (in the form 
of drawer contents) into actionable information (to find their 
number). If the prisoners chose to collaborate on a strategy 
whereby each prisoner starts by opening the drawer cor-
responding to their own number and follows that loop (next 
opening the drawer corresponding to the first number they 
find, ad nauseum) until they either find their number or reach 
the fifty-drawer limit, the collective probability of success 
inflates substantially, to roughly 0.31 : 1. In other words, the 
probability of failure is capped by the probability that any 
loop the prisoners follow is greater than 50 boxes long. The 
prisoners, or the materials scientists, still fail more than they 
succeed, but with this approach intelligently optimize their 
chances of success.

To effectively navigate this combinatorial complexity, a 
common requirement for modern AI/ML frameworks is the 
ability to make informed decisions based on limited infor-
mation and efficiently explore a vast search space. Brute-
force methods such as Monte Carlo or other statistical 
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‘materials’, as of March 2023
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methods become intractable as size of the problem increases. 
Recent advancements in AI/ML have opened new avenues 
for developing algorithms that can tackle combinatorial 
problems more effectively. The primary idea is that these 
algorithms can learn from existing (limited) data, identify 
patterns within the datasets, and make predictions in order 
to guide the search process toward promising solutions 
[19–21]. One promising approach utilizes Bayesian optimi-
zation by combining probabilistic modeling with optimiza-
tion techniques (Fig. 2a). These algorithms build a model of 
the objective function based on past evaluations and use this 
probabilistic model to select the next point to evaluate, bal-
ancing the exploration and exploitation of the data [22, 23]. 
This approach has been successfully used for solving con-
strained multi-objective materials design problems for the 
discovery of novel alloys over a large compositional space 
[24]. Another approach is to employ reinforcement learning 
algorithms, which learn by interacting with an environment 
and receiving rewards or penalties for their actions. This 
class of algorithm adapts its search based on feedback to 
effectively navigate complex design space. This strategy has 
been recently used for example to predict optimal synthesis 
protocols for the synthesis of semiconducting monolayer 
 MoS2 film via chemical vapor deposition [25]. In this case, 
the reinforcement-learning agent learned deposition condi-
tions in terms of temperature and chemical potentials for 
onset of chemical reactions and predicted unknown synthe-
sis schedules. Both Bayesian optimization and reinforcement 

learning algorithms provide a principled framework for deci-
sion making to make the 100 prisoners problem in materials 
science more tractable.

Another emerging approach is to leverage subject matter 
expertise to design high-throughput experiments (synthesis 
and characterization) which produce large, information-
rich materials databases that can subsequently serve as 
input(s) into supervised and unsupervised learning models 
to discover new, hidden relationships between materials 
processes, structures and properties (Fig. 2b). These hid-
den relationships (or ‘fingerprints’) exist due to the sheer 
complexity and dimensionality of materials descriptors and 
a general inability of human experts to cognate beyond a 
few dimensions simultaneously [26]. With this approach, 
it was shown that novel materials and processes, such as 
photovoltaic thin-films and high-entropy alloys, were dis-
covered using an existing or freshly generated materials 
database without requiring a specific objective to optimize 
towards [27, 28]. For the 100 prisoners, this approach would 
be like using collective wisdom to discover the successful 
path toward freedom out of the near-infinite ocean of failing 
paths, irrespective of the arrangement of the boxes and slips 
of paper in their particular scenario.

Finally, the 100 prisoners might decide that they can dis-
cover the most effective solution to the Problem by employ-
ing an informational sleight-of-hand. In this case, the cor-
rect solution maybe be too time-consuming or complex to 
‘discover’ and communicate to every other prisoner. An 

Fig. 2  Three examples of existing frameworks for AI/ML-guided 
materials discovery: a chemical simulations, such as DFT and based 
upon human intuition or algorithmic optimization protocols, are run 
to identify new materials of interest, which are then synthesized, 
characterized and used to identify new classes of materials to simu-
late; b A large variety of materials are synthesized and characterized 

in a high throughput manner in order to build new materials data-
bases which are explored in disentangled latent spaces to discover 
new materials relationships; c Multi-modal data are fed to deep neu-
ral networks or autoencoders which develop surrogate or generative 
models between two disparate types of materials information
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emerging solution to this challenge for the prisoners or the 
materials community is to utilize models which can act as 
surrogates for or generate predictions of one type of infor-
mation from another, thus cutting down the complexity of 
the search space significantly (Fig. 2c). It has been shown 
that multi-modal data types can be fused together in deep 
neural networks (DNN) and variational autoencoders to dis-
cover novel connections between them that enable replace-
ment of one (more complex) kind of information for another 
(less complex) type [29, 30]. For example, it has been shown 
that a DNN model could replace a computationally intensive 
finite-element model to accurately predict structural material 
properties [30].

Without doubt, AI/ML has already been shown as a 
proven strategy to reduce the experimental burden of solv-
ing the world’s most important materials science challenges. 
However, recognizing the solution is only a small part of the 
task. The next ‘big challenge’ in the integration of materi-
als science and AI/ML, to accelerate materials discovery 
and utility, is addressing the social and engineering chal-
lenges that hinder the implementation of more efficient, AI/
ML-enabled materials discovery platforms. In the follow-
ing, we identify and propose solutions for the biggest social 
and engineering challenges standing in the way of AI/ML-
enabled materials discovery.

Social Challenges: Communication, Conflict 
and Communities of Practice  (C3)

The social challenges facing the field of AI/ML-enabled 
materials discovery can largely be divided into those regard-
ing efficient communication, prevention or mitigation of 
conflict, and the establishment of diverse and effective com-
munities of practice. While each of these subjects has been 
addressed to varying extents by others, it is important to 
consider them together as a social strategy for materials 
discovery.

Communication

In materials science, unexpected dead ends happen more 
often than researchers would like to admit. For example, 
months of research into a novel materials chemistry may 
yield a conclusion that the synthesis pathway will not fea-
sibly yield a material at relevant quantities, and a research 
team must pivot to a new approach. The daunting nature of 
discovery and its high failure rate, compounded by fund-
ing agency expectations to achieve returns of research 
investments, have led modern discovery science to be 
exceptionally risk averse [31, 32]. However, risk aversion 
is antithetical to discovery [33]. Ultimately, funding agen-
cies, universities, senior research leadership and principal 

investigators must engage in more open and honest dialog 
on the expectations of discovery science, and failure must be 
embraced as an information gain rather than a monetary loss.

Siloing is another monumental communication challenge. 
For one, discovery of most classes of materials is rarely—
if ever—siloed into a single research lab and can be quite 
spread out not only geographically but also in desired out-
comes. Generally, discovery benefits from borrowing and 
permutating on successful paths taken from other groups 
pursuing similar goals. Contrary to this, the current para-
digm for data sharing is through after-the-fact publishing 
of research findings in peer reviewed publications. There 
are incentives for some communities to withhold portions 
of data or methodology which may contain potential intel-
lectual property or work intended for future publication. The 
reality of commercial and academic scientific structures in 
the real world are in direct conflict with an optimal paradigm 
for materials discovery.

Even without the constraints on communication that exist 
because of real-world incentives, Brooks Law informs us 
that communication will almost always become a bottleneck 
as the number of collaborators grows [34, 35]. Therefore, 
the democratization of professional materials science must 
be pursued together with the emergence of low barrier to 
entry sharing platforms. The Materials Data Facility is an 
excellent early example of the kind of platform needed; 
however, peer reviewed journals—particularly open access 
journals—must continue adding requirements for sharing 
data as part of the publishing process and principle inves-
tigators must make data sharing an innate part of scientific 
communication [36, 37].

Conflict

Issues with communication naturally lead to conflict. Con-
flict between optimal and realistic discovery environments 
has a direct impact on the spin-up costs of AI/ML-enabled 
autonomous materials discovery. For one, the reality of 
sparsely communicated collective knowledge in the materi-
als science community implies that optimal training data 
sets may almost never exist a priori to train a desired AI/ML 
model. A few notable exceptions exist, for example NIST’s 
mass spectrometry libraries, Argonne National Lab’s Modu-
lar Constitutive Modeling Library for Structural Materials, 
and the Materials Genome Initiative [38–40]. The ethical 
debate on equal access to scientific domain knowledge has 
led to notable policy changes by the United States govern-
ment in 2022 to enforce open access on publicly financed 
research [41]. Overall, these are exceptions that demonstrate 
the enormous undertaking required to retrieve and compile 
collective knowledge at scale.

In some ways, limited access to domain knowledge has 
led to a recent surge in interest in the use of Deep Transfer 
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Learning and Generative Adversarial Networks which can 
train from large unrelated data sets or small initial data sets 
where a generative model can be leveraged to enhance the 
network [42–46]. Additionally, many materials science prob-
lems can leverage the possibility of ab initio and even multi-
scale predicted data sets using first principles calculations. 
However, the trade-off for these solutions is a generalized 
need to increase the scope and resource costs for expertise 
and computing power included on a project aimed at any 
materials discovery. To mitigate the natural challenges of 
conflict in materials discovering, building open, valuable, 
voluminous, and diverse training data sets must be built into 
the cost of discovery.

Communities of Practice

For the 100 prisoners, building communities of practice 
would be a bit like consulting a statistician and a clairvoy-
ant during the planning stage—unlikely to be approved by 
the prison warden. However, materials scientists are not pris-
oners and can build communities of expertise which could 
optimize multiple, converging approaches toward a success-
ful outcome(s) in materials discovery. As recent examples, 
Berlinguette et al.’s development of self-driving laboratories 
for the accelerated discovery of adhesive and thin film mate-
rials involved a community of subject matter experts from 
multiple universities, institutes, and industry and was sup-
ported by an equally diverse set of funding sources [47, 48]. 
The concept is now commonly referred to as ‘co-design’—
involving stakeholders such as engineers and industry in the 
material development process. Co-design illustrates the need 
for investment areas and materials science leaders to accept 
that high-consequence materials discovery (i.e., low prob-
ability of success) will require sufficiently diverse expertise 
and funding to support broad coalitions of collaborators to 
accomplish truly aspirational goals.

Engineering Challenges: Stewardship, 
Standard Data Architectures, and Science 
and Technology Innovation Centers  (S3)

In addition to social challenges, there exist opportunities to 
engineer systems and structures that empower AI/ML-ena-
bled materials discovery platforms. Engineering opportuni-
ties include stewardship of training and mentoring programs 
at all levels of education, establishment of standard data 
architectures for improved organization, handling and pre-
processing of data files, and foundation of science and tech-
nology innovation centers which dedicate facilities, labor, 
equipment, and computing resources to support virtual-hard-
ware-virtual ecosystems to integrate AI/ML and materials 
science in an autonomous and/or artificially intelligent way.

Stewardship

As it relates to the 100 prisoners’ problem and stewardship, 
there's a question of the expected number of drawers that'll 
need to be investigated before a solution is found, far from 
an easy thing to know beforehand. Below a certain number, 
which will likely be different for every project, there's a cer-
tain up-front cost to generating large data sets and selecting 
and training an algorithm that will surpass that of a more 
traditional approach. Beyond that point the ML assistance 
is justified. Developing a familiarity among data generators 
(materials scientists) with constraints grappled with by data 
scientists in developing AI/ML-guided solutions—so that all 
problems aren’t viewed as a nail and AI/ML the hammer—is 
an overlooked, critical step.

Imagine a near future in which programming language 
instruction is as normalized in education as learning a for-
eign language. Interacting effectively with structured data-
bases and AI/ML algorithms requires a baseline knowledge 
of programming languages that may be addressed at all lev-
els of education. The availability of foundational computer 
science courses has increased in primary and secondary 
educational systems, though opportunities exist to address 
disparities in offerings and enrollment of groups underrep-
resented in STEM fields [49, 50]. Once in higher educa-
tion, students should be given the opportunity to continue 
their education in more advanced topics and apply those 
skills in other courses outside the confines of a computer 
science program. Educators are encouraged to bring a foun-
dational materials science concept—stochasticity—to all 
fields of STEM, which may ultimately encourage greater 
bridge-building between the sciences and applied math-
ematics. Finally, effective mentor–mentee relationships in 
the workplace will help ensure that the barriers to entry 
for data science at all stages of learning remain reasonably 
low. Addressing stewardship requires material scientists to 
actively engage the data sciences at all levels of hypothesis 
generation, experimental design and data analysis.

Standard Data Architectures

The prisoners can’t read each other’s minds to discover 
which drawers they’ve previously investigated. Likewise, 
algorithms can't read details that've only been scribbled in 
a lab notebook and raw, digital data rarely starts in a con-
sumable form for input into AI/ML algorithms. Materials 
characterization tools are generally designed for the niche 
fields of science in which they are most applied. Those niche 
fields carry with them nuanced data treatment practices 
supported by decades of literature precedence. As technol-
ogy—particularly software and computational speeds—has 
advanced it has become increasingly likely that exported 
data has already undergone some form of normalization, 
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pre-processing or subject matter expert-facilitated analysis 
by the time it is shared with a broader community [51]. In 
many cases the native data files from an instrument inten-
tionally obscure the raw (i.e., columnated for x–y data, un-
filtered or uncompressed images) data behind proprietary 
file types or layers of compression algorithms [52]. Materi-
als scientists commonly generate non-homogenous (i.e., dif-
ferent native resolutions, variable ranges, or test conditions) 
data sets, particularly in pursuit of higher data fidelity for 
publications.

Figure 3a and b illustrates two examples of how data can 
flow from source to AI/ML algorithm. Figure 3a is a clas-
sic example where many research groups contribute similar 
data types on materials to published literature, which can be 
captured in public or private databases. In this example, the 
project team must determine how the different sources of 
data were pre-processed and design a scheme to homogenize 
it for AI/ML. Figure 3b represents a specific case where data 
generation and AI/ML are intended to happen concurrently 
(or on similar time scales). In this case it is extremely impor-
tant to define two separate databases—the materials science 
repository where raw data can be efficiently dumped and the 
data science library where curated data sets can be queried 
seamlessly. The data management infrastructure underlies 
these databases and facilitates the task of meeting the mate-
rials and data scientists in the middle, reducing the intrusion 
of Brooks’ Law. Developing standard data architectures will 
ensure that materials scientists capture the processed data 
and associated metadata in a format which can be easily 

queried and utilized by ML algorithms in a manner which 
does not burden data scientists with wondering if they have 
violated underlying physical or chemical laws.

Science and Technology Innovation Centers

Training a sustainable cohort of AI/ML ready materials 
scientists and engineers loses significant value without the 
presence of facilities designed to optimally translate their 
skills into discovery. Science and engineering laboratories 
have become much more compartmentalized in the last 100 
years, in part due to a desire to increase control over the 
local environment as the pursuit of more sensitive equip-
ment has led decision making [53, 54]. However, the social 
challenges previously addressed mandate consideration of 
laboratories that are communally minded.

There is room for reasonable debate on what the optimal 
design of a communal science and engineering laboratory 
might be. However, early exemplars of self-driving labora-
tories give insights into a few of the key factors to consider 
[55–59]. For one, there are decisions about the balance of 
human or expert-driven versus machine-driven decisions 
[57, 60]. A simple example is that equipment experiences 
drift over time and must be calibrated, and while there has 
been some success in automating this task, successes have 
been generally limited to a single piece of equipment in the 
loop [61]. Of larger consequence, perfectly autonomous 
decision making implies the encoding of extensive expert 
knowledge into the algorithm; however, this knowledge is 
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built on an expectation of what has already been discovered. 
How an AI agent will recognize and differentiate useful dis-
covery from unhelpful discovery without expert input is still 
an open question supporting the near-term need for spaces 
that support hybrid (human/machine) science and engineer-
ing [62, 63].

Modularity is another impactful factor. Imagine if our 
100 prisoners had the capability to reconfigure the drawers 
such that the numbers on the slips of paper were matched 
to that of the drawer. Without access to infinite resources, 
AI/ML-enabled autonomous laboratories must be able to 
efficiently reconfigure virtual and physical layouts to support 
re-prioritization of materials discovery. Modularity in all 
aspects of science and technology innovation centers appears 
likely to be a blossoming topic in the coming years [64, 65]. 
One can envision that next-generation materials innovation 
centers will house not only autonomous workflows consist-
ing of many modular blocks, but also flexible workspaces 
supporting the development of scientific and engineering 
solutions to wholly new modular blocks.

Applications: Past, Present, and Future

We now provide 3 examples—past, present, and future—
for which properly addressing these social and engineering 
challenges could have, is, or will enable (-ed,-ing,-e) a more 
rapid exploration/exploitation of the application space.

Past: Metal Organic Frameworks

Beginning in earnest during the mid-1990s, growth in 
the field of metal–organic frameworks led to multiple 
review articles summarizing synthetic approaches, struc-
ture–property relationships, and applications by the mid-
2000s [66–69]. Despite the breadth of literature at that time, 
Yaghi et al. highlighted a dilemma analogous to that facing 
the 100 prisoners, “of the almost unlimited possible net-
works, which can be expected to form and how can they be 
synthesized?” [66]. While expert and intuition-driven trial 
and error-based exploration of this class of materials has led 
to their implementation in real world applications, autono-
mous AI/ML-enabled research platforms likely would have 
accelerated the process had the ability to implement such an 
approach existed at the time.

Present—Sandia National Labs’ Beyond 
Fingerprinting Grand Challenge

Currently, the Beyond Fingerprinting Grand Challenge at 
Sandia National Laboratories is seeking to discover new 
materials and manufacturing process through an AI-guided 
approach that integrates human-subject-matter expertise 

with physics-based constraints to unearth process–struc-
ture–property correlations. Algorithms are being trained 
on high-throughput experiments to efficiently detect key 
“fingerprints” in materials data, prognose materials perfor-
mance, and guide effective adaptations [29]. Efforts thus 
far have demonstrated the application of genetic algorithms 
for learning time-dependent deposition protocols in thin 
film design, neural operators and autoencoder architectures 
for learning two-phase microstructure evolution, and self-
supervised learning for inferring topological transitions in 
pattern-forming process [20, 21, 70].

Future: Microelectronics Hubs

With the passage of the CHIPS and Science Act, the United 
States government has authorized $280 billion to be appro-
priated over five years in new funding for domestic research 
and manufacturing of semiconductors [71, 72]. While con-
gressional spending panels have yet to appropriate much of 
the money, the NSF has received a $200 million appropria-
tion to boost workforce training programs in microelectron-
ics. This is an important first step, but if the United States 
desires technological preeminence in this space, adequate 
funding needs to be appropriated for the development of 
autonomous AI/ML-enabled research platforms that address 
the highlighted social and engineering challenges. While 
the United States has a very large population of prisoners 
(er, scientists and engineers), these numbers are dwarfed 
by its geopolitical rivals throughout the world. Addressing 
these challenges quickly will help ensure that the United 
States maintains worldwide leadership in the co-design of 
microelectronics and will increase the utility of researcher’s 
discoveries [73].

Conclusions

In many ways, the recent re-popularization of the 100 Pris-
oners Problem exemplifies the tenacity in which modern 
materials scientists are searching for elegant and efficient 
solutions to the immense challenge of discovery. Past us 
are the days in which purely combinatorial methods bear 
fruit for enormous, urgent problems such as sustainability, 
alternative energy, or next generation microelectronics. Here 
are the days of materials science integration with Artificial 
Intelligence and Machine Learning. While computational 
power, algorithms and technology will continue to advance 
at the cutting-edge, it is imperative that the field of materials 
science stays committed to solving the social (communica-
tion, conflict, and communities of practice) and engineering 
(stewardship, standard data architectures, and science and 
technology innovation centers) issues with as much enthu-
siasm as it gives discovery.
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