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Abstract
In additive manufacturing, the part quality is highly dependent on process parameters. The morphology of the melt pool 
(depth and width) is highly affected by process parameter selection. Available scaling laws more or less overestimate or 
underestimate melt pool dimensions with the similar order of magnitudes in the errors. Depending on melt pool mode, either 
conduction or keyhole, and moving from one material to another, scaling laws might not perform well. To further analyze 
the performance of the available scaling laws, in this work, melt pool depth obtained from experiments is tested against three 
well-known scaling laws. The fidelity and error associated with the scaling laws are analyzed and discussed. To improve the 
accuracy of the prediction, we revised three scaling laws and the results are discussed. While in some cases the scaling laws 
might have reasonable errors roughly lower than 50%, in other cases, errors are very high signifying missing physics from 
the predictions. The revised version of the scaling laws improves the fidelity of the predictions. The analysis shows a careful 
attention is required when using scaling laws to avoid high percentage of error.
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Introduction

The quality of additively manufactured (AM) parts using 
laser powder bed fusion (LPBF) is highly dependent on 
process parameters such as laser power (P), scan speed (u), 
laser beam diameter ( D4� with � as variance of Gaussian 
intensity profile), hatch spacing, scan direction and powder 
layer thickness , and thermophysical properties. The best 
selections of these parameters, which often require intensive 
multiobjective optimization, dictate the fate of the AM part 
in terms of porosity level, residual stress, anisotropy, and 
mechanical properties. The morphology of the melt pool 
(depth and width) is consequently affected by these selec-
tions. Either computationally expensive micro/meso/macro-
scale simulations or simple analytical approaches are usually 

used to replace expensive trial-and-error experimentation 
to develop AM process maps by relating process param-
eters to melt pool characteristics. Numerical modeling has 
been widely used for process parameter effects on melt pool 
morphology, albeit with heavy computational cost. Compu-
tational approaches might therefore be insufficient for fast 
optimization. To accelerate parameter selections and AM 
process mapping, analytical/semi-analytical approaches are 
highly desirable as alternatives for time-consuming experi-
mental and computational work. Linear or volumetric energy 
density demonstrates the effect of various parameters (i.e., 
laser power, scan speed, hatch spacing, and layer thickness) 
on meltpool geometries and the part performance [1–5]. 
However, these approaches are not applicable for a broad 
range of LPBF parameters and may not correlate well from 
one material and machine to another [6]. Also, the effect of 
thermophysical properties and laser spot diameter are miss-
ing from these approaches [7]. Hence, scaling laws consider-
ing thermophysical properties and dimensional analysis have 
been emerged in the AM community. [8–13].

The research articles pertaining to process parameter 
selections and scaling melt pool geometry using analyti-
cal methods are abundant in the literature. These scaling 
laws articles aim to correlate the experimental measured 
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quantities and explain the effects of varying process param-
eters on final part performance using dimensionless param-
eters and simple thermal models. Among them, for instance, 
Hann et al. [8] proposed a relationship between normalized 
melt pool depth and normalized enthalpy. While the former 
refers to the ratio of the melt pool depth to the laser spot 
diameter, the latter refers to the ratio of deposited energy 
to the enthalpy of melting. Two normalized numbers can 
describe the transition from conduction to keyhole mode. 
King et al. [9] showed that the plot of normalized melt pool 
depth versus normalized enthalpy collapses to a useful curve 
to identify the transition from conduction to keyhole mode. 
They observed that the transition from conduction to key-
hole mode occurs around a normalized enthalpy ( ΔH∕hs ) of 
30 ± 4 for 316L stainless steel with powder layer thickness 
of 50 μm. Rubenchik et al. [11] applied the Eagar and Tsai 
[14] model to obtain the thermal distribution in a LPBF con-
duction mode and found a scaling law for melt pool depth, 
width, and length from simulations and experiments. Ye 
et al. [13] combined the work of King et al. [9] and Ruben-
chik et al. [11] and included a variable absorption coefficient 
from conduction to keyhole mode. They introduced a nor-
malized thermal diffusion length similar to thermal diffu-
sion depth of Rubenchik et al. [11] and proposed normalized 
depth as a function of normalized enthalpy and normalized 
thermal diffusion length. These dimensionless numbers can 
be derived from a dimensionless analysis using the Bucking-
ham � theorem [15]. Using Buckingham � theorem, Fabbro 
[12] used an approach based on an energy balance equation 
and derived an analytical model that gives the evolution of 
the keyhole depth as a function of the operating parameters 
and the thermophysical properties. Groβmann et al. [16, 17] 
performed dimensional analysis for single and two melt track 
and estimated the melt pool width using a scaling law, which 
is valid for certain regions of process parameters. Later, 
Yang et al. [18] extended the model developed by Groβmann 
et al. [16] to consider laser beam size independency into the 
scaling law for melt pool width estimation. Weaver et al. [7] 
investigated the influence of the spot size effects on the melt 
pool morphology and the use of scaling laws to explain the 
influence on the melt pool depth for IN625. They compared 
melt pool depth estimated from three scaling laws developed 
by Rubenchik et al. [11], Ye et al. [13] and Fabbro [12]. 
They also noticed that melt pool depth from all three scaling 
laws is highly dependent on the absorption coefficient and 
predicted melt pool depth showed around 50% errors, with 
some cases around 100%. Gan et al. [19] scaled melt pool 
aspect ratio with a "keyhole number" as normalized enthalpy 
and investigated keyhole stability and porosity development. 
It should be noted that the depth from Gan et al. [19] is the 
vapor depression depth, which is not the same as the melt 
pool cross-sectional depth. Coen et al. [20] incorporated the 
analytical models of Rubenchik et al. [11] for conduction 

mode and Fabbro [12] for keyhole mode to predict melt pool 
width and depth for Ti64V, SS316L, and In718. Simonds 
et al. [21] performed tests on Ti64 and used direct real time 
measurements to quantify the relationship between melt 
pool geometry and energy absorption. Mukherjee et al. 
investigated the influences of process parameters and alloy 
properties (Ti64, SS316L, In718) on the structure and prop-
erties of AM parts using four dimensionless numbers [2]. 
Yang et al. derived an improved dimensionless scaling law 
to correlate the meltpool width with material and process 
parameters. They performed experimental measurements 
and finite element models to validate the derived law [18]. 
Using dimensionless analysis, Wang and Liu [22] proposed 
four key dimensionless numbers to characterize the thermo-
dynamical behaviors during selective laser melting process. 
Hanemann et al. used normalized enthalpy to correlate melt-
pool width and depth with processing parameters consider-
ing the effect of scan direction and base plate location [10] 
during LPBF. Using Fabbro’s model [12] and high-speed 
camera image, Goossens and Brecht Van extracted meltpool 
width from images and estimated meltpool depths for LPBF 
of SS316L by multiplying meltpool width with meltpool 
aspect ratio [23]. Liu et al. [24] used an analytical model 
to predict molten pool geometry by establishing a heat bal-
ance within the front part of the molten pool for Ti64V. 
Their analytical model was validated through experiments 
and numerical simulations. Rankouhi et al. [25] presented 
two dimensionless numbers correlating process parameters 
to the density considering the Buckingham � theorem and 
the implementation of a matrix transformation method. In 
a recent review paper, Agrawal et al. [26] reviewed existing 
analytical equations and models that provide an estimate of 
the melt pool geometries as a function of material properties.

The above review shows analytical-based scaling laws 
have been widely used in the literature, and predictions for 
a wide range of parameters, and the accuracy of reported 
melt pool dimensions available in the literature are unsat-
isfactory and inconsistent. In this paper, we aim to com-
pare some of the available scaling laws based on the works 
of [8, 9], analyze the error associated with their predic-
tions, and suggest a scaling law differentiating conduction 
and keyhole modes. We compare three methods including 
Rubenchik et al. [11], Fabbro [12], and Ye et al. [13] with 
a variety of data obtained from different sources available 
in the literature. We chose these three scaling laws because 
they are popular scaling laws that account for the laser 
beam size and thermophysical properties. We then slightly 
revise the available scaling law differentiating conduction 
and keyhole modes.
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Background Overview

Scaling laws based on simple analytical approaches can 
be used to estimate melt pool dimensions. Among several 
scaling laws available in the literature for melt pool dimen-
sion estimation, we briefly describe the models proposed by 
Rubenchik et al. [11], Fabbro [12], and Ye et al. [13]. All 
three methods consider a dimensionless parameter called 
normalized enthalpy, ΔH∕hs , which was initially defined 
by Hann et al. [8]. The normalized enthalpy is written as 
follows.

where P is laser power, u is scan speed, � represents powder 
density, C is specific heat, Tm is powder melting tempera-
ture, T0 stands for initial substrate temperature, D represents 
thermal diffusivity, � is laser spot size, and A is material 
absorption coefficient. In the above equation, the enthalpy of 
melting is defined as hs = �C(Tm − T0) [7]. In Eq. (1), ther-
mal diffusivity is defined as D = �∕(�C) , where � is thermal 
conductivity. In this work laser spot diameter and radius are 
4� and 2� , respectively, with � as the variance of Gaussian 
intensity profile. Also, the laser power profile is assumed 
having a Gaussian profile for all the data considered in this 
work.

Rubenchik et al. [11] Model

Following Hann et al. [8] and King et al. [9], Rubenchik 
et al. [11] applied the Eagar and Tsai [14] model to obtain 
the thermal distribution in a LPBF conduction mode as 
follows.

with the boundary condition of

where T is temperature, I = P∕(�(2�)2) represents laser 
irradiance, and f(x, y) is a two-dimensional Gaussian beam 
shape. Rubenchik et al. [11] defined a thermal diffusion 
length � as

They then demonstrated that the temperature distribution in 
a melt pool can be specified with two dimensionless param-
eters: B and p. Using regression analysis by fitting the melt 
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pool depth, length, and width as a function of B and p, they 
proposed a universal polynomial function. Using the plot of 
melt pool depth normalized by thermal diffusion length, d∕� , 
versus normalized enthalpy, Rubenchik et al. [11] observed 
that test data for steel, Ti6Al4V, and IN625 collapsed on a 
linear curve with the slope of ≅ 0.25 . This empirical rela-
tionship can be expressed as:

It is noted that Rubenchik et al. [11] used 
√
2� instead of 2� 

throughout the derived equations. In Eq. (5), the constant, 
0.25, is extracted from Fabbro’s analysis of Rubenchik’s data 
[12]. Fabbro [12] analyzed the normalized melt pool depth 
( d∕2� ) versus normalized enthalpy ( ΔH∕hs ). Using a linear 
fit equation of Y = Y0 + �(X − X0) with the assumptions of 
X0 ≈ 25 − 30 , Y0 ≈ 2 for keyhole (KH) mode and X0 ≈ 10 , 
Y0 ≈ 0 for conduction mode extracted from the original data 
of King et al. [9], he found the slope of � ≈ 0.25 for the 
linear fit.

Fabbro [12] Model

Fabbro [12] used energy conservation inside a cylindrical 
keyhole based on the laser welding literature and derived 
an analytical model describing the evolution of the key-
hole depth as a function of the operating parameters and 
the thermophysical properties of the powder material. He 
showed that the solution of heat transfer analysis inside the 
keyhole configuration can be described by only three inde-
pendent dimensionless parameters. According to Fabbro 
[12], there exists a linear relationship among three dimen-
sionless parameters including Π1 = d∕(4�) , Π2 = Pe , and 
Π3 = AP∕(4��(Tv − T0)) . The first parameter is depth to 
laser spot radius, the second one is Peclet number, and 
the third one is the ratio of two powers [12]. According to 
Buckingham Π theorem, we can relate three dimensionless 
parameters as [12]:

Fabbro developed in the following equation to relate three 
dimensionless parameters:

where Tv is boiling or evaporation temperature. Two 
empirical constants m and n are 2.4 and 3, respectively, for 
2 ≤ Pe ≤ 10 . The above equations are derived based on the 
assumptions that the governed process is in keyhole mode 
where the recoil pressure generates a cylindrical void about 
the size of the laser beam diameter with the inner wall tem-
perature as the boiling temperature. Similar to Weaver et al. 

(5)
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[7], high absorption coefficient of 0.8 is used in Fabbro’s 
model, since this model is based on laser welding, which 
primarily works in keyhole mode. Equation (7) can be writ-
ten as the following [12].

with R0 =
AP

n(4�)�(Tv−T0)
 and V0 = 2

n

m

�

4��C
;for usual LPBF 

parameters, one can show u >> V0 and Eq. (8) can be written 
as:

Equation (9) can be converted to Rubenchik’s dimensionless 
parameters of d∕� and ΔH∕hs as follows.

Ye et al. [13] Model

The highlight of Ye et al. [13] work is to consider a non-
constant absorption coefficient in the scaling law using an 
empirical fit to calorimetry-based laser energy absorption 
measurements for different laser parameters. The melt pool 
behavior strongly depends on the process parameters during 
LPBF. The combination of the process parameters can estab-
lish either conduction mode or keyhole mode [27]. Within 
a certain combination of process parameters, the melt pool 
heats up excessively, and vaporized materials impose recoil 
pressure on the molten pool and a keyhole (cavity) forms [9]. 
The keyhole caused by vaporization-induced recoil pressure 
increases the laser absorption process. Therefore, models 
considering non-constant absorption coefficient might reflect 
somehow the influence of the recoil pressure especially dur-
ing the keyhole regime. Laser energy absorption increases 
with the transition from conduction mode to keyhole mode 
due to multiple reflections inside the cavity or keyhole [13, 
28–30]. Ye et al. [13] proposed a normalized enthalpy, � , 
considering non-constant absorption,Ae , and normalized 
thermal diffusion length, Lth , after combining the work of 
King et al. [9] and Rubenchik et al. [11] as follows.

where Pe is Peclet number ( Pe = u2�∕D ). Considering two 
above dimensionless parameters, Ye et al. [13] found the 
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existence of a linear relationship between the depth-to-spot 
radius ratio ( d∕(2�) ) and the normalized thermal diffusion 
length multiplied by normalized enthalpy through an empiri-
cal constant K0 = 0.6.

Note that the above equations proposed by Ye et al. can 
be derived from Buckingham Π theorem (Appendix A). 
The effective absorptivity, Ae in the above equation, can be 
expressed as follows [7].

where Am represents a constant absorption during conduc-
tion mode. The keyhole threshold in Eq. (14) is based on 
d∕(2�) as defined by Weaver et al. [7]. Other equivalent 
thresholds can be used to differentiate conduction mode 
from keyhole mode. It is noted that the coefficient K0 = 0.6 
in Eq. (13) can be derived from Fabbro’s equation (10). One 
can relate the normalized ΔH∕hs to normalized � through 
ΔH∕hs =

√
�23∕2� and substitute into Eq. (9) to derive the 

following relationship among d∕2� and � and Lth.

Note that the above equation is derived based on the defini-
tion of ΔH of Eq. (1) and assumes the laser spot diameter is 
equal to 4� . Slightly different from Eq. (10), we considered 
the effect of initial substrate temperature ( T0 ) within hm . If 
one uses roughly the average value of the melting and boil-
ing temperature reported in Table 1, coefficient K∗

0
≈ 0.6 

which is compatible with K0 of Eq. (13).

Materials and Experiment

In this work, two materials including IN625 and IN718 
are used for LPBF testing and melt pool measurements. 
For nickel superalloy 625 (IN625), two different LPBF 
machines including an EOS M270 and a custom research 
platform named the additive manufacturing metrology test-
bed (AMMT) [7, 31] were used.1 An EOS M270 machine 
was used to create tracks at four laser powers (122 W, 179 
W, 150 W, and 195 W), four laser scan speeds (200 mm/s, 
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1 Certain commercial equipment, instruments, or materials are iden-
tified in this paper in order to specify the experimental procedure ade-
quately. Such identification is not intended to imply recommendation 
or endorsement by NIST, nor is it intended to imply that the materials 
or equipment identified are necessarily the best available for the pur-
pose.
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400 mm/s, 800 mm/s, and 1200 mm/s), and spot diameters 
ranging from 80 µm to 322 µm. Not every combination was 
produced. The NIST (National Institute of Standards and 
Technology) AMMT was used to create tracks at 195 W, 
800 mm/s, and spot diameters ranging from 50 µm to 256 
µm. The laser spot diameter is the D4� diameter, which is 
approximately equivalent to the Gaussian diameter since the 
power distributions for both LPBF machines are nominally 
Gaussian. The laser spot diameter for the EOS machine was 
estimated based on machine specifications. The spot size 
was varied by using the machine’s variable focus setting as 
well as by positioning the sample at different locations along 
the beam caustic. The AMMT laser spot size was measured 
by first attenuating the power by pulsing at 1/1000 duty cycle 
and placing neutral density filters in the collimated section 
of the optical path. The power distribution is then measured 
at the build plane by exposing the laser to a charge-coupled 
device (CCD) array. The measured power distribution was 
later verified using a commercial off-the-shelf laser beam 
sampler. Single tracks on IN625 substrates were produced 
and characterized with the same procedure described for 
IN718 substrates. More details are provided in the work of 
Weaver et al. [7]. Figure 1 shows several melt pool cross 
sections with different laser process parameters that range 
from deep keyholing to conduction mode.

For nickel superalloy 718 (IN718), an EOS M290 
machine was used to create tracks at 285 W, 960 mm/s, 
and spot diameter of 80 μm. The AMMT of the NIST was 
used to create tracks at three laser powers (245 W, 285 W, 
and 325 W), three laser scan speeds (800 mm/s, 960 mm/s, 
and 1200 mm/s), and several spot diameters ranging from 
48 µm to 131 µm. The laser spot diameter is the Gaussian 
diameter, which is approximately equivalent to the D4� 

since the power distributions for both LPBF machines are 
nominally Gaussian. The laser power of both machines 
was measured with calibrated thermal power meters with 
a standard measurement uncertainty (k = 2) of ±5% . The 
scan speed was measured via high-speed imaging of the 
melt pool and for both machines is estimated to have a 
standard measurement uncertainty of ±2.5% . The laser 
spot diameter for the EOS machine was estimated based 
on machine specifications. The laser spot diameter for the 
AMMT was measured with the laser operating at ≈ 100W 
at a low duty cycle (100 μs pulses at 5 Hz) and high attenu-
ation (optical density of > 10 ). The laser was focused onto 
a windowless focal plane array positioned on the build 
plane. The laser spot diameter was changed by calibrating 
the default position of the inline dynamic focusing lens. 
The laser spot diameter standard measurement uncertainty 
is estimated to be ±8% . Single-track laser scans were made 
on IN718 substrates (25.4 mm×25.4 mm×3.175 mm). The 
surface was ground with 320 grit paper to create a uni-
form matte finish. Tracks were at least 10 mm in length 
and cross-sectioned perpendicular to the scan direction. 
Most tracks were cross-sectioned at the approximate 
center along the scan direction. Some tracks were cross-
sectioned at multiple locations along the scan direction. 
No dependence on location for melt pool depth and width 
was observed in these cases. The variation in depth and 
width along the scan direction are estimated to be 5 % and 
2 % , respectively (see Appendix B). Cross sections were 
metallographically prepared and etched with aqua regia 
(1 part nitric acid to 3 parts hydrochloric acid). The melt 
pool depth and width were measured using bright field 
or dark field optical microscopy. The depth is measured 
perpendicular to the top surface and defined as the greatest 

Fig. 1  Bright field optical micrographs of melt pool cross sections on 
IN625 ranging from deep keyholing to conduction mode. The laser 
power, speed, and Gaussian spot diameter are: a 195 W, 200 mm/s, 

100 µm, b 195 W, 800 mm/s, 50 µm, c 195 W, 800 mm/s, 100 µm, d 
195 W, 800 mm/s, 118 µm, e 195 W, 800 mm/s, 256 µm
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distance from the top surface to the bottom of the melt 
pool. The width is measured parallel to the top surface and 
defined as the widest distance of the melt pool. Figure 2 
shows several melt pool cross sections with different laser 
process parameters that range from deep keyholing to con-
duction mode. About 160 melt pool depth measurements 
are discussed in the next section.

Results and Discussion

In this section, we first analyze the melt pool depth and 
the associated errors estimated from three scaling laws 
for our experimental data of IN625 and IN718. We plan 
to compare estimated melt pool depth against test data 
using the previously explained three scaling laws. We 
will then discuss a revised version of the scaling laws to 
improve the fidelity of the predictions. After that, we apply 
the proposed revised version of the scaling laws for two 
other materials, namely Ti6Al4V and SS316, with the data 
obtained from Ye et al. [13]. The scaling laws are accord-
ing to Rubenchik et al. [11], Ye. et al. [13], and Fabbro 
[12]. For convenience, we will simply name these scal-
ing laws Rubenchik, Fabbro, and Ye model later in this 
paper. Material properties are summarized in Table 1. The 
range of laser parameters for different tests are presented 
in Table 2.

Results of IN625

Melt pool depths and percent difference (or error) are esti-
mated using previously mentioned scaling laws as presented 
in Fig. 3a, b, respectively. The solid line on Fig. 3a is the 
linear fit line. The percent difference or error is the absolute 
difference between calculated and measured depth divided 
by the measured depth, ||(dtest − dsim)∕dtest

|| . Absorption  
coefficient of 0.4 is used in the Rubenchik model. A high 
absorption coefficient of 0.8 is used in the Fabbro’s model, 
since this model is based on laser welding, which primar-
ily works in keyhole mode. For the Ye model, absorption 

Fig. 2  Dark field optical micrographs of melt pool cross sections on 
IN718 ranging from deep keyholing to conduction mode. The laser 
power, speed, and Gaussian spot diameter are: a 285 W, 960 mm/s, 
49 µm, b 285 W, 800 mm/s, 67 µm, c 325 W, 960 mm/s, 67 µm, d 

285 W, 960 mm/s, 67 µm, e 285 W, 960 mm/s, 110 µm, f 245 W, 960 
mm/s, 110 µm, g 285 W, 1200 mm/s, 110 µm, h 285 W, 960 mm/s, 
131 µm

Table 1  Bulk material properties [7, 13, 20]

IN718 IN625 Ti6Al4V SS316L

�(kgm−3) 7727 8440 3920 8000

C(JKg−1K−1) 650 720 830 830

�(Wm−1K−1) 29 28 33 31
T
m
(K) 1526 1563–1623 1877–1923 1633–1683

T
v
(K) 3070 3500 3573 3090

A
m

0.28 0.28 0.26 0.28

Table 2  Range of laser parameters [7, 13]

IN718 IN625 Ti6Al4V SS316L

P(W) 245–324 30–300 30–550 30–520
u(mms−1) 800–1200 200–1200 400–1500 100–1500
4�  (μm) 48–131 50–322 60–100 15–300
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coefficient function of Eq. (14) with minimum absorption of 
Am = 0.28 is used. As seen in Fig. 3a, calculated depth based 
on Rubenchik is qualitatively more compact than calculated 
depth based on Fabbro and Ye model. For calculated data 
based on the Fabbro model, the reason can be attributed to 
the range of applicability for Peclet number, which is from 2 
to 10. The range of Peclet number for measured data points 
is 2.1 to 27.2. Deviation from test data is even worse for 
calculations based on the Ye model compared to the Fabbro 
model with a shift in the curve at the keyhole transition. 
Analyzed errors presented in Fig. 3b provide information 
regarding the accuracy of the scaling laws. The Rubenchik 
model provides better accuracy than other scaling laws. In 
the Rubenchik model, the majority of the errors are less 
than 20%, while in the Fabbro model, the majority of errors 
are less than 30%. Errors based on the Ye model is roughly 
around 50% and much higher than the two other models. The 
reason might be related to absorption coefficient asymptotic 
exponential fitting extracted from different data points of 
three different materials reported by Ye et al. [13]. Weaver 

et al. showed that modifying the absorption function coef-
ficients within reason improved the model predictions [7].

Discussion on Rubenchik and Fabbro Model

Several notes can be observed from error analysis pre-
sented in Fig. 3. (1) All three models have poor predic-
tions, with high percentage of error for conduction regime 
when compared to the keyhole regime. Here d∕2� ⪅ 1 
refers to conduction mode, while d∕2� ⪆ 1 represents key-
hole mode. It is assumed that the threshold between con-
duction and keyhole occurs at the aspect ratio d∕2� ≈ 1 . 
(2) Roughly around the border between conduction and 
keyhole regime, Rubenchik and Fabbro model seem to 
work better and for most cases produce errors below 50%. 
For high aspect ratios, the error even gets smaller particu-
larly for Rubenchik models. (3) There is a knee-type trend 
in errors associated with Fabbro’s model. Moving away 
from the border between conduction and keyhole regime 
and for high aspect ratios ( d∕2� ⪆ 4 ), the errors associated 

Fig. 3  a Estimated versus measured melt pool depth, b Percent differ-
ence between the predicted and measured melt pool depth versus the 
depth-to-spot radius ratio obtained from Weaver et al. [7] for IN625 

using scaling laws of Rubenchik et al. [11], Fabbro [12], and Ye. et al. 
[13]. Percent difference for d∕2� ⪅ 1 represents conduction mode, 
while percent difference for d∕2� ⪆ 1 represents keyhole mode



18 Integrating Materials and Manufacturing Innovation (2023) 12:11–26

1 3

with this model increase toward a steady level of the error. 
The reason could be related to the recoil pressure imposed 
on the keyhole (cavity) which pushes away molten metal 
from the keyhole and increases the laser absorption. To 
improve the predictions, we first discuss the threshold 
between conduction and keyhole mode in a normalized 
enthalpy type graph following the work of King et al. [9] 
and Fabbro [12]. We then revise the predictions using 
newly established relationships.

The semilog plot of normalized melt pool depth ( d∕� ) 
versus normalized enthalpy ( ΔH∕hs ) is presented in Fig. 4a 
for IN625. The semilog plot is provided for better visualiza-
tion of the conduction and keyhole region. While fitting a 
line for each mode, we extended the threshold roughly from 
±10 − 20% where �+� is for conduction mode and �−� is for 
keyhole mode to assure the transition from conduction to 
keyhole is fairly captured. Green triangles are representa-
tive of conduction mode, while blue circles are representa-
tive of keyhole mode. The dashed red line is the linear fit 
on all the data points regardless of conduction and keyhole 
mode. Black and blue solid lines are the linear fit on keyhole 
mode data points and conduction mode data points, respec-
tively. Fabbro [12] showed that with m ≈ 2.5 , Tv ≈ 3100 , 
Tm ≈ 1800 , and T0 ≈ 300 , the slope of ≈ 0.27 can be derived, 
which is close to the value of 0.25 as the slope of linear fit. 
The slope of the linear fit of all data points is ≈ 0.26 , which 
is close to Fabbro’s finding. The graph of linear fit on all data 
points cannot fit well the data conduction regime data points. 
That is why predictions based on a single linear fit with the 
slope of 0.25 result in high percentage of error. Hence, to 
lower the level of the errors especially in the conduction 
regime, we revise Rubenchik model with two linear fits, one 
for conduction mode and one for keyhole, as follows.

where a0 is the slope of linear fit and b0 is y-intercept of the 
linear fit. Depending on the condition of d

2�
 either ⪅ 1 or ⪆ 1 , 

the slope a0 and y-intercept b0 of linear fit are adjusted. From 
Fig. 4, one can observe that most of the errors are related to 
the conduction region where the deviation of the linear fit to 
all data and to conduction region data is considerable. The 
slope of linear fit to all data points and to keyhole regime 
is close the slope of 0.25 of Eq. (5). Hence, the percent of 
error for keyhole mode remains less affected. Decompos-
ing the linear fit of all data point into conduction and key-
hole linear fit improves the accuracy of the predictions and 
errors roughly fall below 30% for conduction mode as seen 
in Fig. 4b. The higher value of the slope slightly improve the 
fidelity of the predictions for higher aspect ratios in the key-
hole regime. In contrast, the linear fit slope lower than 0.25 
of Eq. (5) enhances the predictions. Table 3 summarizes 
the coefficients of linear fits of Eq. (16) along with their R2.

Since the Fabbro model is mostly developed for the 
keyhole regime, we expect to observe more errors for the 
conduction mode. To improve the predictions and reduce 
the error in Fabbro’s method for conduction regime, we 
employ the revised Rubenchik model of Eq. (16). For high 
aspect ratios, Fabbro-based predictions can be improved 
by increasing the absorptivity coefficient from 0.8 to 1. 
This can be explained by the knee type trend in the error 
which is discussed later. Recoil pressure at high aspect 
ratios where deep keyhole occurs helps to push molten 
materials on the side of the cavity and maximize the 
absorptivity at the bottom of the keyhole. We therefore 

(16)
d

�
= a0

ΔH

hs
+ b0

Fig. 4  a Semilog plot of normalized melt pool depth as a function of 
normalized enthalpy for IN625, and revised version of percent differ-
ence between the predicted and measured melt pool depth versus the 

depth-to-spot radius ratio for based on b revised Rubenchik model, c 
revised Fabbro model. Note that the linear fit appears curved in the 
semilog scale
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revise Fabbro’s model to calculate the melt pool depth as 
follows:

For d
2�

⪅ 1 , the absorption coefficient A takes the same value 
of 0.4 used in Rubenchik model. While, for d

2�
⪆ 1 , the value 

of 0.8 of Fabbro model is used for the absorption coefficient 
before any steady state region. The threshold for the steady 
state region within the keyhole regime roughly takes place 
for aspect ratios ⪆ 5 observed in the knee type trend of per-
cent difference figures. Figure 4c shows the revised version 
of errors based on the above equation. It is seen that the per-
cent difference graph and the level of the errors are improved 
especially for conduction and slightly for high aspect ratios. 
The level of the errors is decreased below 50%.

(17)d =

{
(a0

ΔH

hs
+ b0)�

d

2�
⪅ 1

AP

�(Tv−T0)(mPe+n)

d

2�
⪆ 1

Discussion on Ye Model

Extending the above discussion to the Ye model, one can 
plot the normalized depth ( d∕2� ) versus the normalized 
thermal diffusion length ( Lth ) and normalized enthalpy ( � ) 
as seen in Fig. 5a. We plot the data on the semilog scale 
to have better visualization of conduction and keyhole 
mode. Similar to Fig. 4, we separated the data points for the 
conduction and keyhole regime based on the aspect ratio 
d∕2� ≈ 1 . Green triangles are representative of conduction 
mode, while blue circles are representative of keyhole mode. 
The dashed red line is the linear fit on all the data points 
regardless of conduction and keyhole mode. Black and blue 
solid lines are the linear fit on keyhole mode data points 
and conduction mode data points, respectively. The slope of 
linear fit on all data points and keyhole regime data points 
is 0.67 and 0.66 which are fairly close to value 0.6 seen as 
K0 and K∗

0
 in Equations 13 and 15. In contrast, the slope 

of the conduction mode is 0.48, which is further from the 
value of 0.6.

Table 3  Coefficients of the linear fits for revised Rubenchik model

The range of variation has a confidence level associated with coefficient of determination ( R2)

Linear fit on conduction region Linear fit on keyhole region Linear fit on all data

a0 (variation 
range)

b0 (variation 
range)

R2 a0 (variation 
range)

b0 (variation 
range)

R2 a0 (variation 
range)

b0 (variation range) R2

IN625 0.16  
(0.148, 0.173)

0.35  
(0.21, 0.49)

0.9 0.26  
(0.24, 0.29)

−0.27  
(−0.8, 0.26)

0.92 0.25  
(0.24, 0.26)

−0.27  
(−0.49, −0.045)

0.95

IN718 0.235  
(0.22, 0.24)

 −2.37  
(−2.7, −1.97)

0.97 0.26  
(0.24, 0.29)

−2.37  
(−2.7, −1.97)

0.97 0.25  
(0.24, 0.26)

−2.37  
(−2.7, −1.97)

0.97

Ti64 0.12  
(0.095, 0.13)

0.012  
(−0.22, 0.26)

0.9 0.3  
(0.29, 0.31)

−1.6  
(−2.1, −1.2)

0.97 0.3  
(0.29, 0.31)

−1.8  
(−2.2, −1.5)

0.97

SS316L 0.12  
(0.072, 0.18)

0.06  
(−0.75, 0.87)

0.64 0.32  
(0.29, 0.34)

−2.2  
(−3.2, −1.2)

0.95 0.33  
(0.31, 0.35)

−2.6  
(−3.3, −1.8)

0.95

Fig. 5  a Semilog plot of nor-
malized melt pool depth ( d∕2� ) 
as a function of �L

th
 , b Revised 

percent difference between the 
predicted and measured melt 
pool depth versus the depth-to-
spot radius ratio using revised 
Ye model for IN625
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where a0 is the slope of linear fit and b0 is y-intercept of the 
linear fit. Depending on the condition of d

2�
 either ⪅ 1 or ⪆ 1 , 

the slope a0 and y-intercept b0 of linear fit are adjusted.
As seen from Fig. 5b, the magnitude of the errors on 

the revised percent difference (error) are below 50% with 
a majority approximately lower than 30%. There are still a 
couple of data points with nearly 50% error. It is also seen 
that prediction improvements are not significant for high 
aspect ratio, since the slope of keyhole regime linear fits is 
close to slope of 0.6 in Ye et al. [13] model. Table 4 sum-
marizes the coefficients of linear fits of Eq. (18) along with 
their R2.

Results of IN718, Ti6Al4V, SS316L

Following the above discussion, in what follows we per-
form error analysis on the melt pool depth predictions 

(18)
d

2�
= a0�Lth + b0

utilizing both original and revised three scaling laws. 
The data of Ti6Al4V and SS316L are obtained from 
the work of Ye et al. [13] who carried out in situ opti-
cal absorptivity measurements in Ti6Al4V and stainless 
steel 316L as a function of incident laser power, scan 
velocity, and laser beam diameter. Laser power ranges 
from 30 W to 300 W, scan speeds are 500 mm/s, 1000 
mm/s, and 1500 mm/s with laser beam radius in the 
range of 29–54 μm. Figure 6a–c presents semilog plot of 
normalized melt pool depth as a function of normalized 
enthalpy. Semilog plot of normalized melt pool depth 
( d∕2� ) as a function of �Lth is plotted in Fig. 7a–c. Note 
that for IN718, the data corresponding to conduction 
region were about 10 out of 155 data point. Hence, due 
to the lack of data points for the conduction region, for 
this material, we consider only the linear fit on all data 
for error analysis rather than individual linear fits for 
conduction and keyhole. All the linear fits are based on 
Eqs. (16), (18), and (17). Tables 3 and 4 summarize the 
coefficients of linear fits along with their R2 . It is seen 

Table 4  Coefficients of the linear fits for revised Ye model

The range of variation has a confidence level associated with coefficient of determination ( R2)

Linear fit on conduction region Linear fit on keyhole region Linear fit on all data

a0 (variation 
range)

b0 (variation 
range)

R2 a0 (variation 
range)

b0 (variation 
range)

R2 a0 (variation 
range)

b0 (variation 
range)

R2

IN625 0.98  
(0.93, 1.02)

0.067  
(0.047, 0.086)

0.96 0.54  
(0.51, 0.56)

0.61  
(0.5, 0.72)

0.95 0.58  
(0.57, 0.6)

0.32  
(0.27, 0.38)

0.96

IN718 0.5  
(0.49, 0.52)

0.19  
(0.084, 0.29)

0.98 0.5  
(0.49, 0.52)

0.19  
(0.084, 0.29)

0.98 0.5  
(0.49, 0.52)

0.19  
(0.084, 0.29)

0.98

Ti64 0.55  
(0.35, 0.74)

0.16  
(−0.02, 0.34)

0.8 0.65  
(0.63, 0.67)

0.4  
(0.2, 0.6)

0.98 0.66  
(0.65, 0.68)

0.27  
(0.12, 0.42)

0.98

SS316L 0.56  
(0.4, 0.72)

0.17  
(0.005, 0.34)

0.8 0.69  
(0.65, 0.74)

0.3  
(−0.065, 0.64)

0.96 0.73  
(0.69, 0.77)

0.1  
(−0.16, 0.38)

0.96

Fig. 6  Semilog plot of normalized melt pool depth as a function of normalized enthalpy for a IN718 of current work data, b Ti6Al4V of Ye et al. 
[13] data, c SS316L of Ye et al. [13] data
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that the slope of conduction and keyhole regime linear 
fits are very much different. Keyhole mode slopes have 

closer tendency toward the slopes of linear fits on all 
data compared to the conduction mode slopes.

Fig. 7  Semilog plot of normalized melt pool depth ( d∕2� ) as a function of �L
th

 for a IN718 of current work data, b Ti6Al4V of Ye et al. [13] 
data, c SS316L of Ye et al. [13] data

Fig. 8  Percent difference between the predicted and measured melt 
pool depth versus the depth-to-spot radius ratio for IN718 a using 
original Rubenchik, Fabbro, and Ye models, b using revised Ruben-

chik, Fabbro, and Ye models. The percent difference is the absolute 
difference between the estimated and measured depth divided by the 
measured depth
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IN718

The percent difference between original and revised three 
scaling laws is compared in Fig. 8 for IN718. Except the Ye 
model which produces errors lower than 50%, the two other 
models show a similar trend as observed in IN625. Using the 
revised version of the scaling law with two separate linear 
fits for each mode, the errors in the conduction regime are 
lowered below 30% for all models. For the Fabbro model, 
slight improvements are seen in the data of conduction mode 
while the rest of the data point are unaffected. The coef-
ficients of linear fits for IN718 are summarized in Tables 3 
and 4

Ti6Al4V

Figure 9 compares the fidelity of original and revised version 
of three scaling laws for Ti6Al4v data points obtained from 
[13]. The percent difference of the Ye model is lower than 
Rubenchik and Fabbro models especially for conduction 
mode. Separating linear fits lowers the conduction regime 

errors below 50% especially for Rubenchik and Fabbro mod-
els. Also, there is a clear knee-type trend in errors associated 
with the Fabbro model. The knee-type trend shows that error 
decreases around the border between the conduction and 
keyhole regimes. Moving toward keyhole regime and at high 
aspect ratios, the error reaches to a steady state stage, which 
might suggest the recoil pressure reaches a saturation level. 
This behavior can explain the maximum absorptivity coef-
ficient of one considered for the steady state regime of the 
Fabbro model. These graphs, if represented by error func-
tions, can signify the steady state region within the keyhole 
regime. By analyzing the knee type trend, one can express 
the knee type trend using an error function as follows:

where erf and erfc are a Gaussian error function and its 
complementary function, defined as erfc(x) = 1 − erf (x) . 
The first term on the right hand side describes the descend-
ing part of the knee trend and the second term expresses 
the acceding part. Coefficients a1 − a6 are correspondingly 

(19)
Error ≈ a1 ∗ erfc(x + a2) + a3 ∗ erf (a4 ∗ x + a5) + a6

Fig. 9  Percent difference between the predicted and measured melt 
pool depth versus the depth-to-spot radius ratio for Ti6Al4V data 
obtained from Ye et al. [13] a using original Rubenchik, Fabbro, and 

Ye models, b using revised Rubenchik, Fabbro, and Ye models. The 
percent difference is the absolute difference between the estimated 
and measured depth divided by the measured depth
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70,−0.67, 30, 0.25,−0.58 , and 10.2. The R-squared corre-
sponding to this error function is about 0.7.

SS316L

Figure 10 compares the fidelity of original and revised ver-
sion of three scaling laws for SS316L datapoints obtained 
from [13]. Similarly, the revised scaling laws improves the 
fidelity of the predictions by lowering the level of the errors. 
Note that the predictions from all three revised scaling laws 
discussed above are comparable, and any of them could 
be used from conduction to keyholing for meltpool depth 
analysis.

Conclusions

In this work, the fidelity of some available scaling laws 
including Rubenchik et al. [11], Fabbro [12], and Ye et al. 
[13] are evaluated. Melt pool depths are estimated and the 
percent differences or errors are assessed for three different 
materials including IN625, Ti64, and SS316L taken from 

the literature and current experimental tests on IN718. The 
analysis showed that while the majority of the errors are 
below 50% for the keyhole regime, the errors associated with 
the conduction regime are roughly very high, particularly 
for Rubenchik and Fabbro models. It was seen that the Ye 
model produces errors qualitatively below 50%, except for 
some data points in conduction mode obtained from Weaver 
et al. [7] with above 50%. In an attempt to reduce the fidelity 
of the predictions and reduce the percentage of the errors, 
we carefully looked at the normalized melt pool depth ( d∕� ) 
versus normalized enthalpy ( ΔH∕hs ) for Rubenchik and 
Fabbro models and the normalized melt pool depth ( d∕2� ) 
versus normalized enthalpy ( � ) times normalized thermal 
diffusion length ( Lth ). In a semilog plot, we defined two dis-
tinct linear fits for each conduction and keyhole regime. The 
revised version of the scaling law showed that the linear 
fits have lower slope in conduction mode than in keyhole 
mode. If combined with the Rubenchik model, the Fabbro 
model results in reasonable fidelity. While the revised Ye 
model improves the accuracy, the original Ye model should 
produce errors lower than 50%. Machine learning (ML) 
can be an alternative approach for the analysis of process 

Fig. 10  Percent difference between the predicted and measured melt 
pool depth versus the depth-to-spot radius ratio for SS316L data 
obtained from Ye et al. [13] a using original Rubenchik, Fabbro, and 

Ye models, b using revised Rubenchik, Fabbro, and Ye models. The 
percent difference is the absolute difference between the estimated 
and measured depth divided by the measured depth
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parameters effects on the meltpool morphology. Comparison 
between scaling laws and ML remains a topic for our future 
work. The following conclusions are made. 

1. Errors are inherent within the available scaling laws due 
to simplicity, lack of physics, or experimental errors 
propagating through the scaling laws. However, the 
magnitude of the errors could be reduced. Collapsing all 
the data of different material types weakens the fidelity 
of the predictions and might result in high error while 
generalized as a universal curve. Each material should 
be treated separately if high fidelity is desirable.

2. For the Rubenchik model, a separate linear fit for con-
duction and keyhole regimes lowers the errors and 
improves the accuracy. While using one linear fit for 
both conduction and keyhole regimes could fairly cap-
ture meltpool depth for high aspect ratios, it might 
worsen the predictions for the conduction regime.

3. The Fabbro model worked better if combined with the 
Rubenchik model. That is, for the conduction regime the 
Rubenchik model can be used. Also, a high absorption 
coefficient close to one can improve the accuracy of the 
predictions for high aspect ratios.

4. Similar to the Rubenchik model, separate linear fits 
based on the Ye model for conduction and keyhole 
regimes could result in better accuracy. Note that the 
Ye model usually produces errors lower than 50%. The 
revised version of the Ye model can be used if better 
accuracy is desirable.

Appendix A: Dimensional Analysis, 
Buckingham 5 Theorem

Dimensional analysis as a powerful tool can identify the 
governing quantities of a system and allow for deriving sim-
ple connections among physical parameters. It is noted that 
a sufficient number of parameters should be considered for 
efficient analysis. The more the parameters, the less efficient 
is the dimensional analysis. Hence, for a LPBF process, only 
practical and important parameters need to be considered.

Suppose we plan to relate melt pool depth to laser power 
P, scan speed u, laser spot radius a, temperature difference 
ΔT = Tm − T0 , thermal conductivity � , and specific heat 

capacity �Cp using the following function 20 representing 
the well-known Buckingham Π theorem.

According to the above equation, the fundamental system 
of dimensions summarized in Table 5 is [LMTΘ] where L 
represents length, M is mass, T represents time, and Θ is 
temperature.

Equation (20) states that melt pool depth can be 
related to other parameters through dimensionless param-
eters Π1 , Π2 , and Π3 . Therefore, dimensional analysis can 
reduce the number of involved quantities from seven to 
three dimensionless parameters. Additional parameters 
such as hatch distance, recoil-pressure, surface tension, 
and layer thickness can be considered albeit with more 
complexity involved in the analysis. The relationship 
among the parameters can be described by solving the 
following equation and finding the null space of matrix 
A with:

with

Equation (21) has infinite solution ( Xn ) in the null space 
as a linear combination of the solutions. Depending on the 
quantities of interest, three dimensionless parameters can 
be constructed through linear combination of the following 
vectors.

(20)d = f (P, u, �, �Cp,ΔT , a)

(21)Ax = 0

(22)A =

⎡⎢⎢⎢⎣

1 2 1 1 − 1 0 1

0 1 0 1 1 0 0

0 − 3 − 1 − 3 − 2 0 0

0 0 0 − 1 − 1 1 0

⎤⎥⎥⎥⎦

(23)AX =

⎡⎢⎢⎢⎣

1 2 1 1 − 1 0 1

0 1 0 1 1 0 0

0 − 3 − 1 − 3 − 2 0 0

0 0 0 − 1 − 1 1 0

⎤⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d

P

u

�

�Cp

ΔT

a

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Table 5  Dimensional analysis 
table of parameters

d P u � �Cp ΔT a

L 1 2 1 1 − 1 0 1
M 0 1 0 1 1 0 0
T 0 − 3 − 1 − 3 − 2 0 0
Θ 0 0 0 − 1 − 1 1 0



25Integrating Materials and Manufacturing Innovation (2023) 12:11–26 

1 3

To be consistent with terminology used by Ye et al. [13], 
three dimensionless parameters can be constructed from the 
following three independent solutions.

Dimensionless parameters of Eqs. (25), (26), and (27) are 
very similar to dimensionless parameters of Eqs. (11), (12), 
and (13) developed by Ye et al. [13].

Appendix B: Experimental Measurements 
Error

Lane et al. [32] discusses the uncertainty of melt pool depth 
and width measurements from optical images. The main 
sources of uncertainty include the optical resolution, vari-
ability along the track length, user selection, and the stand-
ard uncertainty of the mean for repeat measurements. The 
variability along the track tends to be the largest component 
(e.g., 5 % ), and the variability in depth tends to be higher than 
the width (e.g., 2 %).

(24)

Xn = c1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

1

−1

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ c2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

0

1

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ c3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1

0

0

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= c1x1 + c2x2 + c3x3

(25)d∗ =
d

a
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

0

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= −x3

(26)L∗
th
=

1

Pe
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−1

1

−1

0

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= −x1 − x3

(27)�∗ =
AP

hmaD
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

−1

0

1

0

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The variation in melt pool depth depends on the process 
parameters. The greatest variation in melt pool depth along 
the length of the track is expected for unstable keyholing. 
King et al. [9] showed a variation in depth of ± 27% for a 
single laser track (316 stainless steel powder on a bare plate) 
under process conditions that created significant keyhole 
porosity defects (i.e., unstable keyholing). Another consid-
eration is the transient regions at the start and end of the 
track. Shrestha and Chou [33] studied the transient regions 
during single tracks with powder and found these transient 
regions are typically contained to < 1 mm with a steady state 
region in between. In the absence of powder (i.e., bare plate 
scans), in a more stable process regime, and ignoring the 
transient regions at the start and end of tracks, we estimate 
the variation in depth to be significantly less at ± 5 % . This 
was confirmed to be a reasonable estimate based on repeat 
tracks cross-sectioned at multiple locations. Figure 11 shows 
an example of repeat tracks measured at different locations 
along the scan distance. Melt pool depth and width were 
measured on both halves (n = 18 for each measurand). The 
average %standard deviation depth and width were 141.3 μm 
± 2.7  μm and 122.4  μm ± 2.1  μm, respectively. Porosity 
defects caused by unstable keyholing were not observed for 
any of the process parameters in this study. No cross sec-
tions were taken in the transient regions at the start and end 
of tracks.
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