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Abstract
The research and development cycle of advanced manufacturing processes traditionally requires a large investment of time 
and resources. Experiments can be expensive and are hence conducted on relatively small scales. This poses problems for 
typically data-hungry machine learning tools which could otherwise expedite the development cycle. We build upon prior 
work by applying conditional generative adversarial networks (GANs) to scanning electron microscope (SEM) imagery 
from an emerging advanced manufacturing process, shear-assisted processing and extrusion (ShAPE). We generate realistic 
images conditioned on temper and either experimental parameters or material properties. In doing so, we are able to integrate 
machine learning into the development cycle, by allowing a user to immediately visualize the microstructure that would arise 
from particular process parameters or properties. This work forms a technical backbone for a fundamentally new approach 
for understanding manufacturing processes in the absence of first-principle models. By characterizing microstructure from 
a topological perspective, we are able to evaluate our models’ ability to capture the breadth and diversity of experimental 
scanning electron microscope (SEM) samples. Our method is successful in capturing the visual and general microstructural 
features arising from the considered process, with analysis highlighting directions to further improve the topological realism 
of our synthetic imagery.
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Introduction

We live in an age of unprecedented technological growth. 
This growth has changed the daily lives of people across 
the globe. Changes like more compact devices, improved 
battery life, and faster processing are accompanied by addi-
tional methods of communication and access to/sharing of 
information. The former are underpinned by exploiting new 
materials and advanced manufacturing technologies, while 
the latter come at the hand of increasingly sophisticated arti-
ficial intelligence (AI). Although there have been incremen-
tal advances in leveraging AI for specific analysis tasks in 
advanced manufacturing, there are no established, generaliz-
able frameworks for accelerating research and development 
across material systems and manufacturing processes.

Because of the physical regimes in which they operate, 
advanced manufacturing processes are supported by nas-
cent first-principle simulation capabilities instead of the 
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more conventional or established approaches due to their 
cutting-edge nature. Owing to the ongoing emergence of 
such simulation or physics-based models for advanced man-
ufacturing processes, practitioners are often forced to rely 
on their intuition and a small body of data when designing 
experiments which may or may not probe synthesis regimes 
that ultimately result in desires material microstructures and 
performance metrics. This can lead to a slower, more expen-
sive research and development cycle and a delay of advanced 
manufacturing deployment for pilot and commercial-sale 
applications.

It is well known in the materials science and manufactur-
ing fields that material microstructures play a central role 
in associating manufacturing process parameters used in 
synthesizing a component (or sample) and its performance. 
As such, microstructural features are crucial for guiding 
and interpreting manufacturing data. Of the multiple meth-
ods which enable determination of metal microstructures, 
scanning electron microscope (SEM) imaging is a popu-
lar approach for capturing information regarding important 
material features such as grain size distribution, precipitate 
morphology, and grain boundary density amongst others. 
However, SEM images must be analyzed to identify key 
features of interest, which requires domain knowledge and 
post-processing activities. All this makes SEM imaging a 
time and resource-intensive endeavor. Accordingly, there is 
great interest in reducing the number of SEM images that 
have to be obtained for a developmental process while also 
decreasing the cost of associated post-processing and analy-
sis efforts.

There are several models available for predicting the 
microstructures of materials manufactured in a specific 
process parameter regime or identify the microstructures 
of the materials demonstrating a specific combination of 
performance metrics using first-principles approaches for 
conventional manufacturing approaches. However, as dis-
cussed above, such models are readily available to gener-
ate microstructures corresponding to either specific process 
conditions or final performance for advanced manufactur-
ing. More recently, deep learning (DL) has found various 
applications to interpreting and understanding SEM images 
in the materials science and manufacturing applications, 
such as automatic classification of images [1–3] and seg-
mentation of images to identify different regions of interest 
[4]. Recently, DL methods have been used to generate SEM 
images of different materials [5] and more [6]; however, it 
is important to note that in most of these works, the DL 
approach deals with images in isolation and is not explicitly 
informed by the manufacturing technique. It is well under-
stood that microstructural features strongly depend on the 
manufacturing conditions used to produce them. Therefore, 
while it is a great advancement to use DL for generating 
SEM images, reducing the cost of associated research and 

development activities, we also note that these prior works 
are unable to incorporate the valuable, process-dependent 
information necessary to expedite the development-valida-
tion cycle. Subsequently, there is a critical need to generate 
SEM images conditioned on specific manufacturing param-
eters as the next wave of DL development for materials and 
manufacturing image analysis. Incorporating a conditional 
component into SEM image generation enables the produc-
tion of synthetic SEM imagery which conditionally depends 
on either manufacturing process parameters or target mate-
rial properties as illustrated in Fig. 1. While conditional 
image generation models have been widely used, most DL 
techniques are data-hungry, which presents problems when 
applied to domains like materials science and advance man-
ufacturing which suffer precisely from scarce data. There-
fore, it is essential for any conditional SEM image genera-
tion to be feasible even when trained on small datasets.

In this paper, we present a rationale and approach for 
addressing these challenges in applying DL for SEM 
imagery given limited training data. We demonstrate an 
ability to produce realistic microstructures in synthetic 
images and provide methods to quantify consistency with 
experimental SEM images through the use of topological 
feature extraction. This work takes a critical step toward 
leveraging machine learning to help accelerate advanced 
manufacturing research and development in light of devel-
oping first-principles simulations. We develop generative 
models trained on SEM images of aluminum alloy AA7075 
tubes manufactured via the Shear-Assisted Processing and 
Extrusion (ShAPE) technology [7, 8]. ShAPE is an emerg-
ing advanced manufacturing process that an synthesize 
rods, bars, tubes, and wires [9–12] of different cross-sec-
tional areas and shapes from metallic (pure metals, alloys) 
feedstock in various forms such as powders, chips, films, 
discs, and solid billets [13–15]. ShAPE-synthesized parts 
demonstrate unique microstructures with minimal porosity 
and never-before-seen performance. Several publications 
are available describing the synthesis and characterization 
of ShAPE samples made from aluminum, magnesium, cop-
per, and steel, among others [16, 17]. ShAPE demonstrated 

Fig. 1   Process parameter–microstructure–material property triangle. 
In this diagram, we identify the process parameter and resulting mate-
rial property we consider for ShAPE manufacturing, namely “feed 
rate” and “ultimate tensile strength”, respectively
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enhanced performance in bulk-scale components, making 
their scale-up pathways relatively viable for industry. There-
fore, there is an urgent need to develop models which can 
associate ShAPE process parameters with resulting micro-
structures in order to reduce research and development time 
and deployment delays for ShAPE at an industrial scale.

Background and Related Work

Manufacturing with Shear‑Assisted Processing 
and Extrusion (ShAPE)

This work is focused on generating SEM microstructures of 
aluminum alloy AA7075 tubes manufactured using ShAPE 
[8]. During ShAPE, a rotating die impinges on a stationary 
billet placed within an extrusion container equipped with 
a coaxial mandrel. At the interface between the billet and 
the die, the billet is heated and plasticized by both the shear 
forces applied and by the resulting frictional heat. As the 
die moves into the plasticized billet material, the material 
emerges from a cavity in the die to form a tube extrudate. 
ShAPE process parameters are comprised of data streams 
such as tool rotation rate and tool traverse rate (feed rate), 
which result in specific extrusion temperatures, forces, tor-
ques, and power.

The data used in this study were developed by [7], which 
resulted in manufactured AA7075 tubes. The authors then 
obtained tube coupons and different locations and sub-
jected them to T5 and T6 heat treatment before finally test-
ing them to determine their ultimate tensile strength (UTS), 
yield strength (YS) and elongation. The coupons were also 
imaged using a scanning electron microscope to obtain the 
fore-scatter and back-scatter images of the microstructure of 
the samples. Of the several process-microstructure–property 

data streams available from the original study, in this work 
we narrowed our scope to consider a single ShAPE pro-
cessing parameter, the feed rate, a single resulting material 
property, the UTS, and the back-scatter modality of the SEM 
images. We also account for the post-ShAPE heat treatment 
(T5, T6 tempers) as it can strongly influence material prop-
erties for ShAPE materials and those from other processes 
more broadly. We illustrate the interplay of process param-
eters, material properties, and microstructures from SEM 
back-scatter images in Fig. 1 by generating conditioned SEM 
images corresponding to either specific feed rates and tem-
per at which the samples were manufactured or UTS (Fig. 2).

Generative Adversarial Networks

Generative adversarial networks (GANs) [18] are designed 
to model a training data distribution by way of an adversarial 
game played by two neural networks: a generator and a dis-
criminator network. The generator takes as input a noise vec-
tor, typically sampled from a standard normal distribution, 
and uses this entropy source to generate a unique data sam-
ple—for our purposes, an image. The discriminator takes as 
input a data sample and predicts whether it is a real sample 
from the training set, or whether it is a fake sample produced 
by the generator. The networks are adversarial in that they 
are optimized to fool one another, with the goal of producing 
a generator which can sample data indistinguishable from 
the original training distribution.

Since their introduction, GANs have undergone multiple 
extensions and improvements: some aimed to stabilize their 
training dynamics, others to improve their generation quality, 
and others still to allow GANs to incorporate new sources of 
domain information. Conditional GANs (CGANs) [19] pro-
vide side channel information, typically class labels, to both 
the generator and discriminator networks. This facilitates 

Fig. 2   A high-level overview of our GAN model’s component and data flow. Blue elements are associated with input data, while green elements 
are trainable neural network components. Blue arrows constitute the model’s forward pass, whereas orange arrows represent backpropagation 
updates to the model’s parameters
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sampling from sub-distributions of the original training data. 
This approach was improved upon by auxiliary classifier 
GANs (AC-GANs) [20], which only provide side channel 
information to the generator and task the discriminator with 
learning to determine both authenticity and the side channel 
information of a given sample.

Another avenue for GAN improvement arrived with the 
introduction of the Wasserstein GAN [21], which introduced 
a new loss formulation based on the Wasserstein distance 
[22] to improve training stability. This formulation changed 
the discriminator to produce an authenticity score rather than 
a simple real-fake classification, lending these particular 
discriminators the title of “critics”. Later work in this vein 
introduced a gradient penalty to the WGAN’s loss function 
(WGAN-GP) [23], improving training stability yet further.

Microstructure Topological Feature Analysis

Persistent homology is a popular tool from topological data 
analysis used to study the shape of data [24]. In particular, 
sublevel set persistent homology is a technique frequently 
applied to grayscale image data to study the variation in intensity 
of patches (neighboring pixels) in an image.1 In this context, 
a m × n persistence image (PI) is often used to represent the 
persistence of topological features of the data across scaling [25]. 
It summarizes the creation time (or birth) on the horizontal axis 
and persistence time on the vertical axis as topological features.

Recent work [26] has demonstrated that persistence 
images can act as powerful and robust feature descriptors for 
microstructures like those collected from ShAPE AA7075 
tubes—specifically microstructures well characterized 
by precipitate intensity/contrast and precipitate density/
distribution. Given the interpretability, generalizability, and 
noise robustness provided by these methods, we leverage them 
in evaluating the fidelity between experimental and synthetic 
SEM microstructures. By comparing PIs from experimental 
and synthetic SEM images, we are able to visualize and discuss 
similarities and differences between the two image types 
(real and generated) in a feature space that preserves domain 
knowledge [26]. The relationships between PIs are visualized 
by using principal component analysis (PCA) to perform 
dimensionality reduction so that both groups can be visualized 
together in 3-dimensions.

Experimental Methods

SEM Image Dataset

We took as our GANs’ input data a collection of SEM 
images of 32 AA7075 ShAPE tubes manufactured using 
32 different process conditions followed by T5 and T6 

heat treatments. The SEM microstructure images are large 
(2560×1920 pixels), grayscale, and were taken at 500× 
magnification. The most important feature of interest in 
the AA7075 ShAPE tube SEM images are the intermetallic 
precipitates which are seen as lighter particles with varying 
morphology and topology. However, 32 samples is far too 
little to train a deep learning model, but due to the relatively 
small precipitate size in these images and the lack of large 
salient precipitates we cropped each large SEM image into 
smaller chips of size 128×128. The chips were partially over-
lapped and yielded a training set of 437,000 images which 
we used in our experiments.

Our data preprocessing choices were enabled by the pre-
cipitate form and structure itself. In the ShAPE AA7075 
tube microstructures, the critical microstructures can be 
observed over a fairly limited, local spatial extent. We 
arrived at our crop size by identifying the smallest chip that 
a human expert would be capable to effectively evaluating. 
This choice further depends on the magnification level. If, 
for another manufacturing process, the entire SEM image 
is needed for microstructure evaluation, it may be more 
practical to learn to generate descriptions or features of the 
SEM images rather than the entire image when only a small 
number of training samples are available. Future efforts 
will explore ways to numerically determine these parameter 
choices.

Even with a larger number of images to work with, we 
still have a very small number of overall experiments, which 
are the source of the experimental parameter and material 
property values we use for conditioning information—
namely ShAPE feed rate and UTS. Initial experiments where 
we conditioned our models on normalized scalar values did 
not perform well. We suspect this was because the condition-
ing information was simply too sparse, and that the models 
overfit and were unable to extrapolate beyond this small 
experiment set.

As has been done elsewhere in the literature [27–30], 
we relaxed the desired regression problem into a classifi-
cation problem by discretizing the feasible range of values 
into categorical variables. In doing so, we transformed the 
conditioning information (either process parameters values 
or property values) into three categories: “low”, “mid”, and 
“hi”. These bins divided the scalars observed in our experi-
ments into lower, middle, and upper thirds. This is a coarse 
binning, but one that could still significantly accelerate 
manufacturing research if predicted accurately by provid-
ing guidance about possible SEM microstructures that can 
be obtained when a samples is manufactured in a specific 
regime that demonstrates UTS above or below a certain user-
specified number.

Additionally, nine of the ShAPE experiments produced 
extrudates which did not undergo further T5 or T6 
tempering. Since UTS was not available for the ShAPE tubes 1  In our analysis, we use one-dimensional homology H

1
.
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that were not heat treated further, we only include these “as 
extruded” experimental microstructures when learning the 
effects of ShAPE feed rate on resulting microstructures. This 
temper imbalance, combined with imbalances between our 
“low”, “mid”, and “hi” conditioning labels, gave us the per-
setting experiment counts depicted in Table 1.

GAN Architecture and Training

For our generative models, we used Wasserstein GANs 
with gradient penalty [23] and an auxiliary classifier, 
abbreviated ACWGAN-GP. Its generator module takes as 
input the concatenation of two inputs: a 100-dimensional 
noise vector sampled from a standard normal distribu-
tion, as well as learned, 20-dimensional dense embedding 
vectors for two tempering conditions (corresponding to 
T5 and T6 treatments) and similarly learned 20-dimen-
sional “low”, “mid”, and “hi’ label embeddings for either 
a manufacturing experimental parameter or a material 
property. From these inputs, which we concatenate along 
the feature dimension, the generator produces a grayscale 
image. The GAN’s critic module takes as input a grayscale 

image and produces separate scores for: the WGAN critic 
score (scalar), temper classification (two logits), and the 
correct binning label for the experimental parameter or 
material property (three logits). We trained two GANs in 
our experiments: one conditioned on feed rate and one 
conditioned on desired UTS.

We trained all GANs for 400 epochs over our training 
set of SEM crops, with a batch size of 64 and the AdamW 
optimizer [31]. During training, we upweighed each 
model’s gradient penalty by a factor of 10 and the critic’s 
classification losses by a factor of 5. We found these values 
gave an effective training speed as well as diversity and 
quality of synthetic images.

Our approach is similar to that of [5], with differences 
emerging from our data and our particular framing of the 
conditional generation problem. The ShAPE data afforded us 
a significantly greater number of training samples (437,000 
vs approx. 7,000), each of which has a “simpler” visual 
structure (ex. Figures 3 and 4) than samples from the Ultra 
High Carbon Steel DataBase (UHCSDB) [32]. Our work 
examined two tempering conditions (T5 and T6) instead of 
five, though we explored joint conditioning over both tem-
per and parameter or material property conditions. That our 
work explores conditional generation over process param-
eters and material properties is novel in itself.

Results and Analysis

Synthetic Image Quality

Figures 3 and 4 show synthetic images conditioned on T5 
and T6 temper conditions jointly with “low”, “mid”, and 
“hi” ultimate tensile strength (UTS) or feed rate, respec-
tively. We pair the synthetic images with experimental ones 

Table 1   The number of experiments within our “low”, “mid”, and 
“hi” label binnings for feed rate and ultimate tensile strength (UTS) 
conditions for both T5 and T6 temper treatments

As a process parameter selected before an experiment begins, feed 
rate is independent of tempering. Bin values correspond, respectively, 
to lower, middle, and upper thirds of observed values

Temper Feed rate label counts Ultimate tensile 
strength label 
counts

T5 9 / 8 / 15 11 / 7 / 3
T6 9 / 8 / 15 12 / 5 / 4

Fig. 3   Paired columns of synthetic (left) and experimental (right) ultimate tensile strength-conditioned SEM images under T5 and T6 temper 
settings
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for comparison. Among some notable differences between 
the experimental and synthetic images, we see that excep-
tionally large precipitates appear more artifacted and less 
frequently in synthetic images than in experimental ones, 
especially under the T6 condition.

Despite the heavy imbalance of binned labels across 
experiments shown in Table 1, we saw synthetic T5 and 
T6 samples consistently display high and low degrees of 
sample diversity, respectively, regardless of the number of 
experiments associated with a given label bin. We suspected 
this was because T6-tempered microstructures tend to have 
far fewer salient precipitates against a background of tiny, 
visually near-random precipitates. This produces less varia-
tion throughout an uncropped SEM image, and by extension 
less variation among our training crops. This hypothesis is 
also consistent with the lack of mode collapse (a common 
issue encountered when training GANs wherein the model 
learns to produce a single plausible output at the expense 
of output diversity) in the T5 setting, where the presence of 
many larger, irregular precipitates means crops from within 
a single SEM image will be highly diverse. Additionally, 
the artifacting of large precipitates in the T5 condition 
could benefit from differentiable data augmentation [33] as 
a way to upsample rare phenomenon in our experimental 
data. Incorporating recent GAN techniques targeting effi-
cient use of unbinned, scalar conditioning labels [34] could 
further improve performance by removing the need for a 
discretely-conditioned, categorical latent space in favor of 
more continuous ones, able to better leverage what is pres-
ently unwieldy conditioning information. Recent GAN regu-
larization techniques based on consistency [35] and separat-
ing the discrimination and classification tasks [36] could 
supplement these approaches more generally.

While visual quality is an important indicator of our 
GANs’ performances, it does not tell the full story. In order 
to be useful for experimental design and property analysis, 

our models must produce images which are physically 
meaningful, not just visually plausible. Our remaining 
evaluations are focused on understanding the degree to 
which our GANs’ image distributions align with our 
experimental ShAPE data.

Topological Fidelity Experiments

We average the 10 × 10 PIs of experimental and synthetic 
images: Fig. 5 shows average PIs derived from experimental 
samples as well as all of our GANs. Briefly, each PI is 
constructed by gradually increasing a threshold which is 
used to capture spatially contiguous pixels with intensity 
up to the threshold. As the threshold increases, more 
pixel clusters (precipitates in our case) will fall below the 
threshold and be “born”. This is captured by the horizontal 
axis: pixels further to the right capture pixel clusters that 
are ”born” under a later threshold—in our case, it captures 
brighter precipitates. The PIs also capture how long a 
given cluster “lives” before eventually merging with 
other clusters as the threshold continues to increase. This 
merging is based on the proximity and relative intensity 
of these neighboring clusters and so captures their spatial 
distribution. Pixels higher along the vertical axis represent 
precipitates that have longer “persistence”. For example, we 
would expect a microstructure with a blend of low and high-
brightness precipitates to have a PI with clusters of pixels 
on both the left and right; we would also expect the PI of a 
microstructure with a few large, distant, bright precipitates 
to have more pixels concentrated toward the top of the 
image than a microstructure with many small precipitates 
evenly sprinkled throughout, even if the brightness of these 
precipitates were the same in both cases.

At a high level, we can see that in our synthetic and 
experimental images, the general shape of the persistence 
pattern is preserved; however, the synthetic images do 

Fig. 4   Paired columns of synthetic (left) and experimental (right) feed rate-conditioned SEM images under T5 and T6 temper settings
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not have precise agreement with the experimental image 
distributions. Interestingly, we see that our synthetic images 
produce an overly concentrated persistence pattern in the T5 
case, but an overly diffuse persistence pattern in the T6 case. 
Since these are average persistence images, we conclude that 
our distribution of synthetic T5 images exhibit insufficient 
levels of structural variation (mild mode collapse), whereas 
the T6 distribution exhibits unrealistically high levels of 
variation. The overly “tall” T6 persistence patterns are 
consistent with our observation that our GANs are able 
to rely too heavily on producing a blanket of tiny, noisy 
precipitates compared to experimental references. Partial 
mode collapse is also visible in Figs. 3 and 4 in the form of 
synthetic samples of a consistent, high average brightness. 
Some experimental samples have a comparable degree 
of brightness but the synthetic image distribution fails to 
capture the experimental diversity in both precipitate and 
background brightness. This problem might be alleviated 
by denoising the backgrounds of experimental images which 
would free the generator and discriminator from needing to 
model blankets of noise, especially in the T6 setting. Such 
denoising would not introduce additional training signal, but 
reducing the degree of confounding or task-irrelevant visual 
information could aid the GAN optimization process.

At the same time, the synthetic persistence patterns are 
still close to their experimental counterparts. The exception 
would be the PI for the synthetic images corresponding to 
T6 condition conditioned on UTS, which exhibits an oddly 
bimodal persistence pattern indicative of partial mode col-
lapse. These results are consistent with GANs which are 
trained to mimic the visual distribution without access to 

topological or physical regularization, which could better 
align them with experimental SEM data.

Equipped with PIs as features, we perform principal 
component analysis (PCA) [37] to reduce the dimensions 
of experimental imagery so that it can be visualized. We 
can then inspect the alignment between our experimental 
and synthetic data. Figure 6 visualizes the projection of our 
synthetic and experimental PI images onto the experimen-
tally-fit components for either feed rate or ultimate tensile 
strength (UTS)-based conditioning. We can see in both cases 
that our synthetic PIs do not overlap well with the experi-
mental PIs for both T5 and T6 temper conditions; indeed, 
they appear nearly orthogonal in component space. We also 
note that there is exceptionally less agreement between T5 
and T6 projections for the synthetic, feed rate-conditioning 
case than all other settings. This is consistent with the aver-
age PIs in Fig. 5 and with the visual samples in Figs. 4 and 
3. The average PIs reflect a similar dynamic due to the feed 
rate-conditioned T6 PIs having an unrealistically high spread 
of intensities compared to all other settings, whereas the 
image samples show that the feed rate-conditioned T6 model 
is poor at capturing the larger precipitates in the experimen-
tal data—even compared to our UTS-conditioned model.

These PCA results provide evidence that our model 
generators learn a manifold which is visually similar to the 
ground truth data distribution, at least in the T5 setting, but 
which is topologically quite distinct. This is counter to intui-
tion around GANs where in theory the discriminator will 
pressure the generator into matching the true data distribu-
tion, in all is aspects, over time. However, in general the 
history of GAN research shows the myriad ways in which 
this process can fail to live up to its theoretical potential: 
unstable optimization dynamics, imbalanced generator-
discriminator training, and other difficulties can produce 
unsuccessful or only partial alignment between the generator 
and ground truth data distributions. While issues of imbal-
anced generator-critic steps are largely accounted for by our 
Wasserstein GAN architecture, we experimented with more 
powerful critics to verify that this issue was not caused by 
underparameterization. Specifically, we replace our several-
layer convolutional network with a ResNet-18 [38] either 
randomly initialized or pretrained on ImageNet [39] and 
see degraded performance compared to our initial, smaller 
architecture. We hypothesize that this discrepancy is not due 
to lack of model capacity but rather due to challenges in the 
optimization process: the generator can only be pressured 
into adopting topologically realistic data if the critic itself 
can distinguish disparate topological features. Incorporate 
explicit topological regularization, or a second small critic 
network providing feedback on derived persistence images, 
would be a useful avenue for future work to enforce a more 
physically plausible synthetic image distribution.

Fig. 5   Average persistence images (PIs) over experimental (top) and 
synthetic (bottom) ShAPE SEM chips. The PIs we use detect the num-
ber of “holes” in an image, a statistic that has been shown to aligned 
with scientifically salient features. PIs that are similar indicate that the 
number and scale of “holes” between two images is similar. We com-
pare across synthetic imagery conditioned on either feed rate or ulti-
mate tensile strength (UTS) and across T5 and T6 temper conditions
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Finally, we examined the area fractions of bright pixels 
across synthetic and experimental microstructures; this is 
done because such area fractions are a common heuristic 
used in material science applications to evaluate precipi-
tate density in microstructures. Because we were interested 
in comparing area fractions across conditions in order to 
ascertain the prevalence of bright precipitates against the 
microstructures’ darker backgrounds, we performed feature 
scaling within each condition such that images share a center 
mean and pixel intensities lie in the range [0, 1]. In order to 
measure the area fraction of a given image, we then set a 
threshold t ∈ [0, 1] and calculated the percentage of pixels 

with intensity i ≥ t . We used ten evenly spaced thresholds 
in [0, 1], with the results captured by Fig. 7.

The results show that the variation in mean area frac-
tion between synthetic and experimental T5 microstructures 
is less than 10 percent. This implies that in the generated 
SEM images, the precipitates occupy an area fraction that 
roughly coincides with that of the experimental images. This 
is not the case for T6 microstructures, where we observe that 
experimental datasets have consistently higher area cover-
age of darker to mid-tone precipitates. This is consistent 
with both our visual observations in Figs. 3 and 4 and in the 
persistence images in Fig. 5. We suspect this phenomenon is 
caused by the lower precipitate density in our experimental 

Fig. 6   We project persistence images into a 3D space using principal component analysis to reduce the dimensions of our experimental data, 
with synthetic images sampled from our models conditioned on either ultimate tensile strength (left) or feed rate (right)

Fig. 7   Area fraction statistics for our synthetic and experimental data 
across T5 and T6 temper conditions. Fractions are calculated using 
1,000 images randomly selected from each condition. We performed 

mean centering and scaling to [0,  1] within each condition for the 
sake of comparison
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T6 data: when each image has low precipitate density, our 
models are able to minimize their loss functions by produc-
ing disproportionately large amounts of background noise in 
all cases. Regularizing our models by including loss terms 
for persistence image patterns or for area fraction scores 
could alleviate this problem and would be productive ave-
nues for future work.

These results indicate that, despite an intuitive visual 
plausibility, albeit one that does not fully capture the natural 
variation of experimental data, our models are learning a 
distribution over SEM images that is topologically distinct 
from experimental data. The generated images show 
precipitate morphology and distribution which result in 
similar area fractions as those observed in T5 experimental 
microstructures, though less so for T6 microstructures. 
Given the utility of topological features for characterizing 
SEM imagery [26], we pose improving this alignment as a 
useful avenue for future work. However, these limitations are 
unsurprising for a generative model trained on largely visual 
stimuli alongside a simple conditional embedding; the visual 
quality of our synthetic data indicates that it is possible to 
train generative deep learning models even on the relatively 
small data scale afforded by the advanced manufacturing 
domain, and our ability to pinpoint deficiencies in terms 
of latent space or topological feature alignment allows us 
to see actionable steps toward more physically realistic, 
deployment-ready development of this approach.

Conclusion

This work takes a critical first step toward a functional 
machine learning-accelerated advanced manufacturing 
experimental pipeline. We trained multiple conditional 
Wasserstein GANs (ACWGAN-GPs) on SEM microstructure 
image crops derived from AA7075 manufactured using the 
advanced ShAPE process. This is an advance over prior 
work which focuses on unconditional SEM generation 
for steels, marking a step toward a generative system 
that scientists can query to predict how either process 
parameters or properties impact a material microstructure. 
We observe that our synthetic images are visually plausible, 
though with some visual artifacting of rare precipitate 
phenomena. Additionally, we observe through topological 
methods of inquiry that our synthetic image distributions 
do not uniformly align with experimental SEM images. 
Specifically, we see dissimilarity between experimental and 
synthetic images in ways consistent with the small number of 
unique experiments present in most advanced manufacturing 
datasets. In future work, we propose exploring two avenues 
to address these limitations: differentiable data augmentation 
and recent developments in GAN regularization as a way 
to better leverage limited advanced manufacturing data and 

to increase model sample efficiency, as well as topological 
and physical regularization to encourage the GANs to 
produce synthetic data which expresses even higher fidelity 
to experimental data distributions.
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