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Abstract
Materials scientists are facing increasingly challenging multi-objective performance requirements to meet the needs of 
modern systems such as lighter-weight and more fuel-efficient aircraft engines, and higher heat and oxidation-resistant steam 
turbines. While so-called second wave statistical machine learning techniques are beginning to accelerate the materials 
development cycle, most materials science applications are data-deprived when compared to the vastness and complexity of 
the search space of possible solutions. In line with DARPA’s vision of third wave AI approaches, we believe a combination 
of data-driven statistical machine learning and domain knowledge will be required to achieve a true revolution in materials 
discovery. To that end, we envision and have begun reducing to practice a system that fuses three forms of knowledge—fac-
tual scientific knowledge, physics-based and/or data-driven analytical models, and domain expert knowledge—into a single 
‘Compound Knowledge Graph’ in which contextual reasoning and adaptation can be performed to answer increasingly 
complex questions. We believe this Compound Knowledge Graph-based system can be the nucleus of a collaborative AI 
assistant that supports stateful natural language back-and-forth dialogs between materials scientists and the AI to accelerate 
the development and discovery of new materials. This paper details our vision, summarizes our progress to date on a steam 
turbine blade coating use case, and outlines our thoughts on the key challenges in making this vision a reality.

Keywords Knowledge representation · Third wave AI · Information fusion · Domain knowledge · Cathodic arc deposition

Introduction

Materials development has historically advanced as much 
by serendipity as through rigorous application of the sci-
entific method. Three examples from within GE include 
the development of silicon carbide, silly putty, and Lexan. 
In 1891, Edward Acheson was attempting to create artifi-
cial diamonds when he discovered silicon carbide, a light-
weight yet extremely hard abrasive compound used today 
in hard ceramics such as car brakes and bulletproof plating, 
that is also a semiconductor and thus used in many power 
electronics [1]. During WWII, in 1943, James Wright was 
attempting to invent a synthetic rubber to help with the war 
effort, and inadvertently invented what became silly putty 
[2]. In 1953, Dr. Daniel Fox was attempting to invent a mal-
leable protective wire coating and, in the process, invented 
Lexan, an extremely hard, highly durable clear plastic used 
in aircraft canopies, astronaut face shields, CDs, and DVDs, 
among many other applications [3].
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Even today, many discoveries continue to be the result of 
trial-and-error experimentation and the occasional surprise. 
As a result, developing a new material can be an arduous 
task that can take more than a decade for applications with 
complex, multi-objective performance criteria requiring a 
balance of properties. Over the last several decades, materi-
als have been considered as the limiting factor for achieving 
significant improvements in jet propulsion technologies, to 
name just one application domain. During jet propulsion’s 
history, the average rate of increase for turbine engine 
material temperature capability has been roughly 50°F per 
decade. For example, the development timeline of single 
crystal nickel (SX Ni) superalloys, the most used material 
in jet engine turbine blades, indicates that the endurance 
temperature increased from 1800°F for the first generation 
SX Ni superalloys in the 1970s to about 2050°F for the sixth 
generation superalloys in the 2010s [4]. Much of the SX 
alloy development has been incremental, e.g., adding one 
or two new elements (Re, Ru) or changing the content by 
a few percentage points to achieve a slightly better balance 
of properties.

Designing and developing new materials continues to 
be critically important for GE because we wish to continue 
pushing the boundaries of what is possible in the areas of 
the future of flight, the clean energy transition, and preci-
sion health. This includes producing the world’s first com-
mercial ceramic matrix composites (CMCs)—materials that 
are lightweight, durable, and highly heat resistant for more 
fuel-efficient aircraft engines, developing highly thermal 
resistant materials to improve the efficiency of gas and steam 
turbines, and new superconducting magnets to improve the 
speed and image quality of MRI medical scanners. Although 
with CMCs, GE increased jet engine temperatures by 150°F 
in one decade through systematic efforts during their peak 
development [5], CMC research and development dates 
to the 1970s when the US government first funded CMC 
research. Within the first 25 years, GE had run CMC tur-
bine shrouds in multiple industrial gas turbine applications 
for electricity production until it shifted CMC focus to jet 
engines to meet high-temperature heat resistant material 
demand. Today, CMC parts are flying in GE’s commercial 
jet engines all over the world. GE’s CMC turbine shrouds 
have surpassed 10 million flight hours in the hottest section 
of the CFM LEAP turbofan engines as of 2021 [6]. Interest-
ingly, the central element of CMCs is silicon carbide, the 
same material discovered by chance at GE in 1891.

Materials Discovery Challenges

Materials discovery is challenging because the relationships 
between composition, processing, microstructure, and result-
ing material properties are not well understood in concert. 
This is due to the complexity, high dimensionality, and 

nonlinearity of the fundamental underlying mechanisms that 
drive material behavior. While some equations governing 
these relationships have been discovered for certain prop-
erties, in aggregate the equations known today are only a 
small fraction of what materials scientists would need to 
develop new materials through a purely analytical approach. 
Similarly, advances in computational materials science (e.g., 
density functional theory, molecular dynamics) have made 
significant contributions to the field, but are still limited to 
simple structures, small numbers of atoms, and short time 
scales. A computational approach that simulates all relevant 
material physics remains a distant future prospect.

To address these challenges, materials scientists are now 
partnering with artificial intelligence (AI) and machine 
learning (ML) experts to tap into AI/ML techniques driving 
successes in other fields. Recent advances in materials devel-
opment can be traced to the launch of the Materials Genome 
Initiative (MGI) in 2011 [7]. Since then, ML approaches 
have been successfully applied to a wide range of challenges, 
and academic leaders in the field [8–11] as well as a grow-
ing list of start-up companies [12–14] are changing the way 
materials science is performed. A growing infrastructure 
of datastores [8, 9, 15, 16], materials-specific utilities [17, 
18], and easy-to-use open source software tools,1,2,3 have 
democratized ML, making advanced data-driven approaches 
accessible to the materials scientist.

While the continuing progress in ML-driven materials 
science is exciting and productive, there are important limi-
tations to consider. Existing approaches excel at interpo-
lation—optimizing within a known and tested parameter 
space—but are fundamentally challenged when extrapo-
lating toward new understanding. DARPA recognizes the 
limitations of these so-called “second wave AI” approaches 
due to their lack of reasoning and contextual adaptation 
capabilities, and their dependence on massive quantities of 
data for training [19]. Most materials science applications 
are still data-deprived when compared to the vastness and 
complexity of the search space. Thus, new materials dis-
covery strategies are required that do not rely exclusively on 
data alone. With rare exceptions [20], current applications of 
ML in materials science largely neglect existing analytical 
knowledge and domain expertise in guiding model predic-
tions. This renders the system of discovery isolated from 
the governing laws of the physical world. It is becoming 
apparent that the incorporation of domain knowledge will 
be necessary to enable a step-change in the pace of materials 
development and true materials discovery.

1 https:// scikit- learn. org/.
2 https:// pytor ch. org/.
3 https:// www. tenso rflow. org/.

https://scikit-learn.org/
https://pytorch.org/
https://www.tensorflow.org/
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As one possible approach to address this challenge, we 
envision a system that fuses multiple forms of knowledge 
into what we call a Compound Knowledge Graph and ena-
bles contextual reasoning and adaptation over that combined 
knowledge to answer increasingly complex questions. Our 
concept is inspired by DARPA’s vision of “third wave AI” 
[19], in which second wave ML systems are combined with 
domain knowledge to allow for learning and abstraction of 
concepts to reason about areas never seen before. We believe 
the approach detailed in the following sections will acceler-
ate the discovery of new advanced materials to help solve 
our most pressing societal problems.

Vision: A Third Wave AI Assistant 
for Accelerated Materials Discovery

Inspired by DARPA’s third wave AI concept, our vision is to 
develop a collaborative AI assistant that can serve as a true 
partner in the scientific discovery process. This assistant will 
be able to answer increasingly complex materials science 
questions, ranging from simple queries requiring lookup of 
data to questions where complex contextual reasoning and 
inference outside the bounds of the provided data is required 
to produce an answer. Rather than being limited to interpo-
lating between data available within the system, our goal is 
to demonstrate substantial progress toward accelerating the 
AI-driven creative process by being able to help accomplish 
increasingly challenging tasks such as

1. Inferring previously unknown properties of known mate-
rials,

2. Estimating properties of new, user-defined materials, 
and

3. Proposing novel materials (and commensurate process-
ing methods) to meet increasingly challenging perfor-
mance requirements.

To achieve this vision, our strategy is to capture and fuse 
three distinct, complementary forms of knowledge—factual, 
analytical, and human expert knowledge—together into a 
single Compound Knowledge Graph that supports con-
textual reasoning and adaptation about as yet unexplored 
areas such as novel chemistries and/or unique processing 
combinations.

Knowledge Representations and Knowledge Graphs

While powerful, most data-driven ML techniques produce 
black box models, meaning the representation of the pat-
terns derived from the training data are opaque to humans 
and therefore the ‘knowledge’ embedded in the patterns 
cannot be rationalized. Knowledge-driven approaches take 

a different approach and are designed from the ground up 
to be transparent and explainable and can be interpreted by 
humans to understand what knowledge is captured and how 
and why certain conclusions are reached.

Many diverse knowledge representation approaches exist, 
including those that are logic-based (e.g., semantic mod-
els), and graph-based (e.g., Bayesian networks). While they 
have been in use for over 50 years, semantic models have 
soared in popularity over the last decade with the growth in 
popularity of ‘knowledge graphs’, a term re-popularized by 
Google [21]. Knowledge graphs can be construed as captur-
ing knowledge in a graphical structure in which nodes rep-
resent distinct pieces of knowledge and the edges represent 
connections between nodes [22]. Semantic models or ‘ontol-
ogies’ are used to define the classes and relationships within 
a domain of interest and provide the underpinning of many 
popular knowledge graphs in use today (e.g., DBpedia,4 
Wikidata5). Ontologies define a set of concepts (classes) 
in a specific domain (which become nodes in a graph), the 
attributes (properties) of those concepts, and the links or 
relationships (edges) between them. The semantic model 
defines the classes and relationships of knowledge in a mod-
eled domain, and the data in the model represent specific 
instances of knowledge, but the model itself is also a very 
important form of knowledge as it represents how experts 
within a specific domain think about their field and details 
the terminology they use to describe the concepts in that 
field. A number of teams have explored using ontologies to 
represent and capture materials data6 though the breadth of 
coverage and maturity of the models varies widely [23–25]. 
Additional information about materials ontologies can be 
found in a survey paper by Zhang et al. [26].

The Compound Knowledge Graph

Our Compound Knowledge Graph (CKG) approach involves 
first capturing factual scientific materials knowledge by 
extracting (a priori or at query time) and fusing information 
from multiple complementary public and private materials 
data sources. Factual materials knowledge includes quanti-
ties such as material chemistry, processing details, character-
ization data, and properties of materials. Capturing diverse 
factual knowledge requires developing tools to model and 
align data from different internal and external sources, and 
building interfaces and connectors to query, retrieve, and 
merge data from those sources.

Second, our approach involves augmenting the factual 
materials knowledge with physics-based and/or second wave 

4 https:// www. dbped ia. org/.
5 https:// www. wikid ata. org/.
6 Many of which can be found at https:// matpo rtal. org/ ontol ogies.

https://www.dbpedia.org/
https://www.wikidata.org/
https://matportal.org/ontologies
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data-driven machine learning models describing relation-
ships between material processing, structure, and properties. 
Semantic descriptions of analytical models can be described 
within the CKG and used to derive properties using the cor-
responding known models and analytical equations, to ena-
ble the automatic derivation of unknown properties [27, 28]. 
Within the CKG, analytical models are linked to the exist-
ing factual knowledge by being connected directly to their 
specific input and output variables, which are themselves 
defined as properties of entities such as a material. Thus, if 
a user requests the value of a property that is not explicitly 
available through the knowledge graph, then if an analyti-
cal model or set of models exist that can be used to derive 
the desired property value, a reasoning engine can execute 
the model(s) and return the desired value. We use the term 
‘reasoning’ to mean any kind of computational processing 
performed over existing knowledge to infer new knowledge.

Third and finally, our approach involves overlaying those 
two forms of knowledge (factual and analytical) with expert 
knowledge in the form of experience and intuition pro-
vided by domain experts. Expert knowledge encapsulating 
previous experiences and intuition about the relationships 
between different material elements and properties is the 
most challenging type of knowledge to gather and codify 
and thus is missing from most knowledge-driven systems 
but will be critical to enable a truly third wave AI solu-
tion. Without capturing and modeling some form of expert 

intuition, a system would be unable to contextually reason 
about areas it has not seen before to draw original conclu-
sions and make novel recommendations.

Once these three forms of knowledge—factual, analyti-
cal, and expert—have been fused within a single Compound 
Knowledge Graph, we will make this knowledge actionable 
by enabling reasoning and interactive question-answering by 
materials scientists and other interested users.

A representative example of a Compound Knowledge 
Graph is shown in Fig. 1. A simplified underlying materi-
als ontology is shown in gray with branches off of the core 
tenets of materials science—processing, microstructure, and 
properties—showing some examples of the types of infor-
mation that could be modeled. This is not meant to be an 
all-inclusive example and is intentionally limited in scope 
for clarity. On top of this ontology are examples of knowl-
edge—factual (blue), analytical (red), and domain expert 
(green)—connecting relevant nodes in the knowledge graph. 
A domain expert may suggest that an increase in rolling 
reduction during thermo-mechanical processing (TMP) 
generally leads to a reduction in grain size of the resulting 
processed metal. This smaller grain size can be linked, via 
the Hall–Petch equation, to an increase in low temperature 
yield strength. If the specific metal of interest were the com-
mon nickel-based superalloy IN718, we might further access 
factual knowledge such as the yield strength at 200 °C is 
equal to 1124 MPa.

Fig. 1  Example of a simplified Compound Knowledge Graph con-
taining factual (blue), analytical (red), and domain expert knowledge 
(green) all fused into a single unified representation. The fusion of 
these different forms of knowledge into a single CKG will allow a 

system to reason and infer new knowledge and make recommenda-
tions about new materials to meet increasingly challenging perfor-
mance requirements
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A second example in Fig. 1 links an electron beam addi-
tive manufacturing parameter (beam current) to porosity 
and, subsequently, thermal conductivity. Many more exam-
ples like this can be incorporated into increasingly detailed, 
inclusive, and complicated CKGs to extract useful informa-
tion and make connections that would be difficult to see with 
one type of knowledge alone.

Enabling Technologies

We are building upon two open-source knowledge represen-
tation and reasoning packages to build out our vision. First, 
the Semantics Toolkit (SemTK) [29] facilitates the devel-
opment of knowledge-driven data management solutions, 
including enabling data across multiple external sources to 
be seamlessly accessed as though they were sitting in a sin-
gle knowledge graph. SemTK enables data to be transpar-
ently stored in its most suitable location, while enabling that 
data to be referenced in semantic domain terms and linked 
with other disparate datasets [30]. Second, to ease the devel-
opment of semantic models (‘ontologies’) by non-semantic 
experts, we use SADL—the Semantic Application Design 
Language [31]. SADL is a formal, structured English-like 
language and development environment for authoring 
semantic models that allows non-semantic domain experts 
to read, write, and/or provide feedback on ontologies without 
requiring extensive training in semantic technologies such 
as the World Wide Web Consortium’s (W3C) Web Ontol-
ogy Language (OWL). These two technologies together—
SemTK and SADL—were used extensively in the case study 
described in the section “Progress Toward Our Vision”.

Sources of Knowledge

To populate the Compound Knowledge Graph, there are 
three primary sources from which we expect to extract dif-
ferent forms of knowledge, each of which will require dif-
ferent methods and techniques. These are given as follows:

1. Structured databases and data repositories,
2. Unstructured sources such as publications, textbooks, 

and technical reports, and
3. Human domain experts such as materials scientists.

These three sources each present their own unique chal-
lenges to extract meaningful knowledge and are described 
below in order of expected increasing difficulty.

Structured Sources

Extracting factual data from databases and other reposi-
tories is typically the easiest, as it involves systematically 

interacting with application programming interfaces (APIs) 
that have been built to enable the automatic querying of 
structured data. This is not trivial, however, because each 
data source typically has its own unique API and thus 
requires its own custom connector. Multimodal data fusion 
enabled by semantic models describing the data and using 
SemTK as the technical backbone is an effective mechanism 
to address this challenge as it supports the seamless querying 
and integration of data from multiple federated data sources 
[32]. To demonstrate the effectiveness of this approach, we 
developed a proof-of-concept fusion of data from two pub-
licly available materials repositories—The Materials Pro-
ject [8] and Materials Data Facility [15]—through a single, 
easy-to-use graphical user interface with SemTK retriev-
ing user requests through a UI, translating those into que-
ries against the two sources using their own custom API’s, 
and finally extracting, fusing, and returning the results on 
demand. This approach can be extended to other external 
data sources (potentially using OPTIMADE [33]), as well as 
other internal repositories to link factual knowledge physi-
cally or logically into the CKG.

Unstructured Sources

Extracting data from unstructured sources is considerably 
more challenging, as it requires first structuring highly vari-
able data through techniques such as natural language pro-
cessing. Textual sources such as books, conference and jour-
nal publications, and websites each have their own distinct 
style, formatting, as well as access controls and usage terms 
and conditions, making it challenging to build parsers that 
work across multiple sources. Information extraction mod-
ules must be built to parse unstructured text and structure it, 
and then natural language modules must contextualize the 
structured text to align it to the existing knowledge in the 
knowledge graph. We would need to enable the extraction 
of equations from text, tables, algorithms and pseudo-code 
in text, and raw source code, which requires the automated 
understanding of what variables from the attributes in the 
knowledge graph serve as the input to the resulting model, 
and what attribute or variable serves as the output.

Extracting knowledge from text, whether factual, analyti-
cal models, or expert knowledge, is a challenging problem 
and while not solved, it has been extensively researched, 
e.g. [34, 35].

Domain Experts

The most challenging knowledge to tackle is extracting and 
codifying human expert knowledge. Typically, expert knowl-
edge is approximate knowledge acquired by experts through 
years of experience and often expressed as “rules of thumb.” 
Extracting knowledge from domain experts may sound as 
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straightforward as interviewing and surveying a community 
of expert materials scientists, but in practice is quite chal-
lenging. It requires knowing what are effective questions 
to pose to domain experts to elicit useful information, and, 
once useful nuggets of wisdom and experience have been 
documented, it is challenging to digitalize those nuggets 
and embed them into a knowledge graph. This challenge 
of building a computable representation of expert intuition 
has been studied in academic circles [36, 37] and to a lesser 
extent in industry but remains a largely unsolved problem.

The CKG will use the expert knowledge to bridge the 
gaps in factual/analytical knowledge to reach an approximate 
answer when a more precise answer is not available. The 
CKG may also use expert knowledge as a heuristic short cut 
when computational resources do not permit a more expen-
sive computation using more precise knowledge. In either 
case, inconsistency is unlikely to appear, and if it does, pre-
cise knowledge would have preference.

Figure 2 schematically illustrates the different sources of 
information and how they link to the three forms of knowl-
edge—factual, analytical, and expert. Examples from the 
CKG in Fig. 1 are also included for each knowledge type. It 
is expected that all forms of knowledge will come from all 
sources of information but to varying degrees as represented 
qualitatively by the thickness of each colored connector.

These three forms of knowledge also require different 
styles of representation in the CKG. Factual data will be 
represented as direct instance data, analytical knowledge 
will be represented in a computable form such as executable 
code or algorithms that can be turned into code on demand, 
and the expert knowledge will be represented as meta-level 
information that can be reasoned over.

Progress Toward Our Vision

The reduction to practice of our CKG vision is motivated by 
an applied case study seeking to develop new coatings for 
high pressure steam turbine blades. Steam turbine blades 
are subject to aggressive oxidation and erosion in service 

and the team is attempting to improve upon existing fielded 
coatings. This case study has all the elements of a ‘typical’ 
materials science project: a manufacturing process produc-
ing a coating with a certain microstructure that responds 
to external stimuli through its properties. The coatings are 
produced by a cathodic arc deposition process and character-
ized by one or more layers of varying chemistry with micro-
structure and defects quantified through microscopy. Coated 
test coupons are subject to oxidation and erosion testing to 
mimic service conditions.

While a traditional second wave AI approach is underway 
in parallel, an interdisciplinary collaboration between the 
material development team and knowledge representation 
and reasoning experts at GE Research is exploring how a 
third wave AI approach might be implemented—to adapt 
and reason like a human expert would—to discover new 
coatings outside the realm of the training dataset. The team 
is working on multiple aspects of our envisioned CKG-ena-
bled system including a foundational semantic model for the 
CKG that fuses multiple knowledge modalities, user inter-
faces for Q&A dialogs and conversational interactions with 
the CKG, and mechanisms to capture and reason over expert 
knowledge. The work presented below describes progress to 
date on these fronts, and while much is left to be done, we 
believe this lays the groundwork for general implementation 
of a third wave AI approach for materials development and 
discovery.

Modeling the Compound Knowledge Graph

Our objective in modeling the CKG was to start with as 
generic a foundation as possible. Our intention was not to 
build an ontology that exclusively addressed the steam tur-
bine blade coating use case, rather we started by building 
the framework of a general-purpose materials ontology and 
then fleshed out the specifics required for the coatings use 
case. We are building a framework that can expand and grow 
over time to tackle more materials science challenges in the 
future.

Fig. 2  Examples of knowledge 
being extracted from different 
sources—structured data stores, 
unstructured text and docu-
ments, and human experts—to 
populate a Compound Knowl-
edge Graph
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The semantic model is written in SADL, an English-like 
language that made it easy for the materials scientists and 
knowledge representation and reasoning experts to col-
laborate [31]. The model was written and evolved through 
several collaborative sessions over a period of six months. 
The modeling was driven largely by the materials science 
domain experts who understand the process important attrib-
utes, such as cathode material, bias voltage, and chamber 
pressure. Once we had the model in place, the data ingestion 
and equation mapping, while not trivial, were able to move 
relatively quickly. Examples of the case study ontology in 
SADL are shown in Fig. 3.

Fusing Factual and Analytical Knowledge

Analytical models are formally described in terms of the 
concepts captured in the Compound Knowledge Graph. 
Each description of an analytical model, e.g., an equation, 
formally specifies the model’s inputs and outputs, explic-
itly linking the analytical models to the factual data in the 
knowledge graph.

The CKG specification of an analytical model makes 
explicit all the references to objects that are normally left 

implicit when written for human reading. For example, an 
equation in a book may say “deposition rate = thickness/
time”, implicitly referring to a coating deposition process 
applied to an object. Here, thickness refers to a property of 
a particular coating microstructure of a particular part. Both 
the coating microstructure and the part would be represented 
in the CKG, as is the deposition process that was applied to 
the part. Similarly, time informally refers to the duration of 
the coating deposition process that was applied to the same 
part. This deposition process instance is also represented 
in the CKG, with deposition time as one of its properties. 
The part instance would be linked to the deposition process 
instance, thereby making the connection between the coat-
ing thickness and the deposition time explicit. Finally, the 
deposition rate would be formally represented in the CKG 
as another property of a deposition process associated with 
the same part. By formalizing these relationships, the CKG 
enables the correct reasoning required for the automated 
selection of the necessary models and their assembly into a 
complex model to compute a desired final property.

The deposition rate equation, encoded in SADL, is given 
as follows:

Fig. 3  Example extract of classes and attributes from the steam turbine coatings case study SADL model
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external depositionRateEq(double totThickness (averageTotalThickness of the

actualCoating of the microstructure of a Part {um}),

double depTime (depositionTime of the processing of the Part {min}))

returns double (depositionRate of the processing of the Part {"um/min"}): "http://...".

depositionRateEq has expression (a Script with language Python

with script
"def depositionRateEq(totThickness, depTime):

    return float(totThickness) / float(depTime) 

"). 

such as matminer [18]. We encoded each of the models in 
SADL, including Python functions implementing the equa-
tions. In what follows we show three examples, in increasing 
order of complexity, of how a user might interact with the 
CKG, ranging from extracting factual knowledge to retriev-
ing results automatically derived from the fusion of factual 
knowledge and analytical equations when the desired factual 
knowledge does not exist.

Figure 4 shows a Q&A dialog interface where the user 
has queried the CKG for the chamber pressure used in the 
deposition processing of a particular part identified by its ID. 

Fig. 4  User queries the CKG in which the answer is stored directly in the graph and the answer can be returned

Fig. 5  User queries the system in which the answer is not stored directly in the CKG but an analytical model is available to solve for the answer

Notice the use of the definite article (“the Part”) to refer 
to the same object mentioned before. The SADL equation 
precisely describes each of the two inputs and the output 
using properties and classes explicitly defined in the CKG 
ontology. The analytical model also explicitly defines a piece 
of Python code that can be retrieved to perform the actual 
calculation.

For the current case study, we identified 25 models in 
collaboration with domain experts, including equations 
from the literature and models that call external services 
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In this instance, the chamber pressure value for that part is 
already present directly in the CKG and the system retrieves 
and displays the value and units to the user.

The next example, shown in Fig. 5, shows a query asking 
for the deposition rate used in the processing of the same 
part. In this instance, the system does not find the requested 
value in the CKG, so it then considers analytical models 
that may be used to compute the deposition rate for the part. 
It finds the equation we described earlier, and it also deter-
mines that the input values for this analytical model, i.e., 
the averageTotalThickness and depositionTime associated 
with this part, are present in the CKG. It concludes that the 
required inputs for this single equation model are available 
and proceeds to execute the model, resulting in the automatic 
fusion of two forms of knowledge—factual and analyti-
cal—to answer the user’s question without the user having 
to explicitly request that this calculation be performed.

The answer in this case includes a link to a dynamically 
generated diagram (Fig. 6) that shows the structure of the 
assembled model. The inputs are highlighted in yellow. The 
equation is shown as a square box with the model’s name, 
and the output value is an oval.

The system is capable of dynamically assembling sophis-
ticated model chains. Consider a more complex example 
where the user queries for the fluxRatio of the deposition 
process for a part. The system dynamically discovers that it 
can compute the flux ratio from a part’s available property 
values by chaining five analytic models into the model chain 
depicted in Fig. 7.

Capturing and Reasoning Over Expert Knowledge

While large volumes of expert knowledge are captured in 
reports and other textual sources, domain experts them-
selves are still the best source of such knowledge because 
they can provide proper contextual information such as 
sensitivity, controllability, and valid ranges of parameters 
for domain knowledge. Such information is often lacking 
in text. Encoding expert knowledge, such as “if a coating 
has higher macroparticles it will tend to have a higher pre-
steam erosion rate,” requires the ability to model directional 
relationships between attributes in the CKG. We do this by 
using a rule to programmatically generate a new class cor-
responding to each relevant property in SADL. This allows 
us to elevate properties to be first-class objects so we can 
then capture metadata about properties and relationships 
between the properties. Once we capture rules that relate 
properties, we then define rule patterns to reason over linear 
directional expert knowledge rules. We expect other types of 
expert knowledge can also be similarly encoded but signifi-
cant research is needed to understand the spectrum of expert 
knowledge patterns that must be encoded.

Enabling Natural Language Interactions

To make the CKG actionable, users must have easy mecha-
nisms through which they can interact with the CKG, pose 
questions, and receive answers. By using a natural language 
dialog interface, the CKG will be able to pose questions back 
to the user to clarify the user’s request and help narrow down 
to a precise answer. Figure 8 shows example aspirational 
dialogs with different levels of complexity, from a simple 
one question-one answer back-and-forth to a more extensive 
dialog to provide property information.

We have reduced to practice an initial natural language-
powered interface to provide seamless interactions with the 
CKG. The natural language interface alleviates the need for 
materials scientists to learn Semantic Web standards such 
as the knowledge graph query language SPARQL7 and/or 
requiring knowledge of the exact terminology used in the 
CKG ontology (as required in the examples in Figs. 4 and 5 
above), thereby allowing users to pose questions using famil-
iar materials science terms. This component is comprised 
of three modules: (i) a front-end web interface to capture 
user questions and display answers (an example of which is 
shown in Fig. 9), (ii) a question parser module to interpret 
user questions, including mapping entities in the questions 
to the appropriate concepts and properties in the CKG, and 
(iii) a query generation module which leverages the output 
of the question parser to generate the appropriate SPARQL 
queries to retrieve answers.

Consider the question “What partID had the minimum 
post-steam erosion rate?”. The question parser extracts 
the question word (What), the requested returns (partID), 

Fig. 6  Model diagram showing the inputs in yellow, an analytical 
model being executed as a white box, and finally the output generated 
as an oval from a chain of equations. In this example, only a single 
equation is executed

7 https:// www. w3. org/ TR/ sparq l11- query/.

https://www.w3.org/TR/sparql11-query/
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constraints/conditions (post-steam erosion rate), and any 
aggregate functions (minimum) from the question. The 
parser further maps the phrases extracted as returns and con-
straints to either appropriate concepts, properties, or entities 
in the CKG. The CKG parameters needed for return and/or 
constraint along with the aggregate functions are passed onto 
the query generation module. The query generation module 
uses this information to automatically generate a query to 

retrieve the answer from the CKG. The natural language 
component currently supports questions whose answers can 
be directly retrieved from the CKG. A natural evolution of 
this module is the ability to support questions for which 
answers do not exist in the CKG but can be obtained by 
assembling and executing equations and models, and eventu-
ally answering questions that require reasoning over all three 
forms of knowledge in the CKG.

Fig. 7  Model diagram showing the inputs in yellow, analytical models being executed as white boxes, and final output generated as an oval from 
a dynamically generated chain of equations. In this example, five analytical models are executed from nine inputs to generate the output

Fig. 8  Examples of aspirational natural language dialogs between users (blue and green) and an AI assistant enabled by the CKG
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Conclusions and Future Work

Inspired by DARPA’s third wave AI vision, we aim to 
develop an AI assistant that can perform contextual reason-
ing and adaptation in areas outside the limitations of the data 
available in the system. This will be possible only through 
the fusion of three forms of knowledge—factual, analytical, 
and expert—into a single Compound Knowledge Graph over 
which we can reason and infer new knowledge to answer 
increasingly complex materials science questions.

We have begun reducing our vision to practice, focusing on 
a steam turbine blade coating use case. Materials scientists and 
AI experts have partnered to model the CKG in a generalizable 
way such that the model can be expanded to other materials 
use cases over time. We integrated factual data with sixteen 
analytical models embedded in the CKG, as well as nine attrib-
utes from matminer [18] for a total of 25 models. We built a 
structured query parser in SADL to answer both factual and 
analytical model-driven questions that required the system to 
automatically determine if an answer could be retrieved through 
a simple lookup in the CKG or if it required dynamically assem-
bling sophisticated model chains to dynamically calculate new 
answers on the fly.

We interviewed materials science domain experts to 
extract expert knowledge and explored techniques to model 
those in the CKG, and finally built a natural language inter-
face to allow users to submit natural English questions and 
obtain answers without requiring familiarity with the struc-
ture or terminology of the CKG.

While we have made meaningful progress toward the 
demonstration of our vision, we have only scratched the 
surface and substantial work remains. There are two major 
and several minor areas that will require significant research 
and development.

The first major challenge is we must develop strategies to 
both collect and semantically model domain expert knowl-
edge so that it can be reasoned over in conjunction with 
the factual and analytical knowledge. This is particularly 

challenging because we must be able to model many differ-
ent forms of patterns/relationships that humans retain, and 
we must be able to model the context (circumstances) in 
which that knowledge applies, and the confidence or uncer-
tainty associated with that knowledge.

The second major challenge is we must enable reasoning 
and inference over the different forms of knowledge in the 
CKG in unison to be able to answer complex questions, and 
we must be able to perform that reasoning in the presence 
of uncertainty. We need to develop mechanisms for the AI 
assistant to understand what question the materials scien-
tist is asking, introspectively understand what knowledge it 
has at its disposal to answer the question, determine what 
is missing and therefore what it needs to ask back to the 
human for clarification and guidance, and then pose those 
questions back to the user in natural language to receive new 
information. This complex reasoning and inference chal-
lenge requires the fusion of second wave machine learning 
and expert domain knowledge. Further, since the reasoning 
depends on different nuggets of knowledge each with their 
own levels of uncertainty, we must understand the com-
pounding effects of individual uncertainty propagation on 
the final answers/recommendations that the system provides.

There are other challenges that also need to be addressed 
to make this vision a reality but are not at the same level of 
complexity as the two mentioned previously. These include 
enabling data and equation extraction from structured and 
unstructured sources in a scalable manner so that the CKG 
can grow without manual intervention. This will require 
dynamic ontology alignment between the CKG and newly 
extracted knowledge, which will depend upon advanced text 
mining and natural language processing.

There is a significant potential for third wave AI to revo-
lutionize materials science, but the challenges are substan-
tial, and success will require significant investment and 
partnerships between government, industry, academia, and 
national labs. We recognize that no single organization is 
going to solve these grand challenges by themselves, and so 
we need to work together to develop open standards, tools, 
and ontologies to develop third wave AI solutions and apply 
them to the most pressing materials science challenges that 
we as a community and as a nation face.
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