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Abstract
Measured intensity in high-energy monochromatic X-ray diffraction (HEXD) experiments provides information regarding 
the microstructure of the crystalline material under study. The location of intensity on an areal detector is determined by the 
lattice spacing and orientation of crystals so that changes in the heterogeneity of these quantities are reflected in the spread-
ing of diffraction peaks over time. High temporal resolution of such dynamics can now be experimentally observed using 
technologies such as the mixed-mode pixel array detector (MM-PAD) which facilitates in situ dynamic HEXD experiments 
to study plasticity and its underlying mechanisms. In this paper, we define and demonstrate a feature computed directly 
from such diffraction time series data quantifying signal spread in a manner that is correlated with plastic deformation of 
the sample. A distinguishing characteristic of the analysis is the capability to describe the evolution from the distinct dif-
fraction peaks of an undeformed alloy sample through to the non-uniform Debye–Scherrer rings developed upon significant 
plastic deformation. We build on our previous work modeling data using an overcomplete dictionary by treating temporal 
measurements jointly to improve signal spread recovery. We demonstrate our approach in simulations and on experimental 
HEXD measurements captured using the MM-PAD. Our method for characterizing the temporal evolution of signal spread 
is shown to provide an informative means of data analysis that adds to the capabilities of existing methods. Our work draws 
on ideas from convolutional sparse coding and requires solving a coupled convex optimization problem based on the alter-
nating direction method of multipliers.
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Introduction

High‑Energy X‑ray Diffraction

High-energy X-ray diffraction (HEXD) is an invaluable tool 
for studying the phenomena that underpin the macroscopic 

behaviors and properties of structural materials. Diffraction 
peaks produced by individual grains of a polycrystal can pro-
vide valuable information about the intermittent motion of 
dislocations that occurs when a metal plastically deforms [6, 
14, 16, 17]. In the HEXD setting, a beam incident on a crys-
talline solid diffracts at an angle 2� determined by the lattice 
spacing and at an orientation � determined by the crystal 
orientation as shown in Fig. 1. Rotation in � can be used to 
change the set of crystals satisfying the diffraction condi-
tion in order to sample more of orientation space. Therefore 
changes in the heterogeneity of lattice spacing and misori-
entation can be captured by tracking the width of diffraction 
peaks in the Bragg angle coordinate (2� or r) and orientation 
coordinates ( � and � ), respectively [16].

Significance of Signal Spread

In a polycrystalline sample with relatively few lattice 
defects, an experiment may be designed to follow separable 
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intensity peaks, resolving grain-averaged lattice orientation 
and strain [22]. As a material plastically deforms and its 
crystals become misoriented, the morphology of a diffracted 
intensity signal transitions from individual diffraction peaks 

to something resembling a uniform powder (as in the data 
of Fig. 2b). Under these conditions a peak center-of-mass 
becomes increasingly difficult to even define and thus 
decreasingly relevant. Nonetheless, the spreading of the 

Fig. 1   HEXD setup to capture 
entire Debye–Scherrer rings. 
The diffraction angle 2� is 
determined by the lattice spac-
ing d

hkl
 according to Bragg’s 

law n� = 2d
hkl

sin � . The 
azimuthal diffraction angle � 
is determined by the azimuthal 
orientation of underlying crys-
tals. The sample can be rotated 
in � to change which crystals 
satisfy the diffraction condition. 
Adapted from [6]

Fig. 2   a MM-PAD experimental setup postioned to only capture 
partial Debye–Scherrer rings diffracting from the titanium sample. 
Adapted from [6] b Examples of partial Debye–Scherrer ring meas-
urements captured by MM-PAD at t = 0s, 25s . c � profile of {004} 
Debye–Scherrer ring obtained by summing in 2� (four pixel gap in 

the data is due to a four pixel gap in the detector). d First 25 s of the 
same {004} � profile highlighting the evolution of peaks from a col-
lection of discrete grains to a near-powder material. Red dotted line 
denotes 25s mark in both plots
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signal in � and � still remains linked to the evolution of lat-
tice defects in the material, regardless of whether the diffrac-
tion signal has distinct (but evolving) peaks associated with 
individual grains or represents the overlap of many grains 
having significant gradients in orientation. The goal of this 
paper is to define and demonstrate the utility of a meaningful 
feature capturing spread in a consistent manner across any 
morphological structure exhibited by the diffracted intensity 
of a deforming polycrystalline sample.

A complete picture of crystal reorientation would ideally 
be obtained by analyzing spread in two dimensions ( � and 
� ), as shown in "Real-Time HEXD" section. Such analysis 
would build upon an experimental plan that provided 360◦ 
coverage of � with temporal resolution sufficient to resolve 
transients developed in the course of in situ loading. The 
challenges of such an experiment are significant, but reali-
zation of such studies is on course with present advances in 
detector technology and mechanical load frame design [24]. 
In this work, temporal resolution necessary to characterize 
the onset of plasticity during continuous loading is achieved 
by sampling a limited range of � , obtained by oscillating the 
sample about � . X-ray diffraction measurements are then 
integrated in both 2� and � to produce a one-dimensional 
signal in � over which to characterize the development of 
spread in time. Integrating in 2� additionally nullifies any 
effect potentially arising due to the finite bandwidth of the 
nominally monochromatic X-rays. We demonstrate—using 
experimental data—that the one-dimensional spread signal 
can be relativity insensitive to the details of � integration 
providing useful insight into misorientation dynamics across 
time and between different modes of crystallographic slip. 
The present effort provides a foundation for (the more sub-
stantial effort) of integration in both � and � , here envisioned 
as a prospective analysis technique to accompany developing 
experimental capability.

Motivation

Our work is motivated by the increasing availability of 
HEXD data sampled at rates on the order of 1kHz [11, 12, 
21] which provide unprecedented opportunities for in situ 
experiments capable of resolving the detailed dynamics of 
plastic deformation. As a concrete example, we consider in 
"Real-Time HEXD" section data from an in situ experiment 
at the advanced photon source (APS) where a commercially 
pure Ti sample was deformed under tensile loading, fol-
lowed by stress relaxation. The experiment was designed 
to observe the transients that occur during plastic deforma-
tion by taking HEXD data with the mixed-mode pixel array 
detector (MM-PAD) which allows for rapid, high dynamic 
range imaging of high-energy X-rays [21, 26]. The experi-
mental setup of Fig. 2a [6] shows the arrangement of X-ray 
beam, sample, and MM-PAD placed to capture partial Bragg 

diffraction patterns. An initial pre-load was applied to the 
sample, and crystallographic orientations of grains within 
the diffraction volume were determined using the technique 
of high-energy diffraction microscopy [25], as detailed in 
[6]. Under displacement control, the sample is first deformed 
in tension with a nominal strain rate of 10−3 s−1 and then 
held with fixed cross-head displacement. During the load-
ing and subsequent stress relaxation, the sample was oscil-
lated at 2 Hz about a rotation axis aligned with the loading 
direction. This rotation aids in maintaining the diffraction 
condition for distinct spots throughout the course of loading 
as images are collected with the MM-PAD. As plastic flow 
develops during tensile loading, the diffraction spots of dis-
crete grains evolve into one another as shown in the raw data 
of Fig. 2b and one-dimensional � profiles of Fig. 2c and d. 
Note that the partial Debye–Scherrer rings shown in Fig. 2b 
are developed by summing images collected over the sample 
rotation, to be detailed below. Further condensing the images 
into one-dimensional � profiles of Fig. 2c and d, we track a 
data-derived indicator that serves to characterize the evolu-
tion of plasticity.

Previous Work

To address the challenges of this type of data, we build on 
our previous work [2] where ideas from compressed sensing 
[5, 9] were used to characterize the distribution of � and 2� 
spread in samples under static loading. Of particular interest 
were materials that possessed mixed micro-structure char-
acteristics at different locations in space. Previously, meas-
urements were taken with minutes passing between each 
time step. The problem of interest in this work is to take 
advantage of the fast in situ measurements taken at a single 
location on the sample. The approach in [2] models each 
diffraction measurement as an independent sparse superpo-
sition of two-dimensional Gaussian peak functions in order 
to compute a signal spread feature. In practice, the spread 
feature is prone to “noise” as we do not account for the fact 
that the material state is, in a sense, correlated from one 
time point to the next (see Fig. 6a to see the “noisy” feature 
computed for real data).

Contributions

In this paper, diffraction images are modeled jointly in time 
to leverage temporal correlations and reduce variability in 
spread estimation. By treating the entire time series of dif-
fraction images simultaneously, we find a cohesive global 
representation instead of many independent ones. Further-
more, we introduce a feature of peak spread that is com-
puted over a region by averaging the widths of constituent 
peaks weighted by their amplitudes. In simulations with 
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measurements taking the form of Gaussian peaks, we dem-
onstrate that our recovered feature faithfully reproduces true 
peak width for simulated data with Poisson statistics.

Temporally coupling reconstructions using the MM-PAD 
measurements taken during the HEXD experiment described 
above improved the recovery of spreading dynamics and 
produced smooth distributions of peak function variances 
across time in which spurious variations due to detector 
noise and signal variation are effectively removed. As a 
result, we are able to show that the extent of the plasticity 
displayed in the azimuthal spreading of signal is consistent 
with the deformation modes of the titanium sample.

Despite our own experimental focus on HEXD, the 
method is general: it can be applied to any imaging tech-
nique involving intensity peak measurements and has the 
potential to be extended to two spatial dimensions at a com-
putational cost. In reality any one-dimensional data could be 
processed using our temporal dictionary method in this man-
ner to extract spread information or other features depending 
on the dictionary used. Furthermore, as the quantity of data 
captured in modern HEXD experiments exceeds research-
ers’ ability to analyze it, automated methods such as ours 
that can extract information from even the most unclean or 
challenging data are valuable in enabling next-generation 
analyses.

Paper Outline

As a preliminary, we will review the overcomplete diction-
ary model of [2] before presenting the proposed model that 
imposes smoothness on the dictionary representation as well 
as a one-dimensional spread feature. Simulated examples of 
measurements with Poisson statistics will then be used to dem-
onstrate the behavior of the spread feature. Finally, our focus 
will shift to the dynamic MM-PAD experiment; the spread 
estimates extracted from the HEXD data let us relate the devel-
opment of orientation heterogeneity in each lattice plane to 
the deformation modes of titanium. Detailed descriptions of 
algorithmic implementations will be included in Appendix A, 
and MATLAB code with data is available at https://​github.​
com/​dbanco/​Dynam​icSig​nalSp​read

Method

In the following section we will review the X-ray diffraction 
data model proposed in our previous work [2], describe a new 
model for temporal measurements, and introduce a feature for 
characterizing signal spread. The general approach is to model 
the X-ray diffraction data as a superposition of Gaussian peak 
functions drawn from a dictionary. The recovery algorithm 
selects a minimal number of entries from the dictionary to 

represent the signal where the elements of the dictionary as 
well as associated amplitudes are taken to evolve smoothly 
in time. Finally, the variances of the selected Gaussian peak 
functions are used to evaluate the degree of spread in the dif-
fraction signal.

Problem Setup

We employ a model in which the X-ray detector signal is 
represented as a superposition of a small number of shifted 
Gaussians of varying widths. As we demonstrate in "Real-
Time HEXD" section, the temporal evolution of the width 
parameters for the selected Gaussians provides insight into 
the evolution of lattice defects in the material sample itself. 
While the implemented model is discrete in time and space, 
we begin with a continuous formulation in an attempt to 
clearly connect the discrete model to the underlying sensor 
data. To that end, with b(�, t) being the diffraction signal 
from a given Debye–Scherrer ring (assuming we have inte-
grated in 2� and � ) at azimuth angle � and time t, our model 
takes the form

where ∗ denotes convolution in the � variable, 
a�(�) =

1√
2��2

e
−

1

2�2
(�−�)2 and x�(�, t) encodes “how much” of 

a Gaussian with parameters � and � is contained in the dif-
fraction signal at time t. The function x�(�, t) is constrained 
to be non-negative, x�(�, t) ≥ 0 , as measured intensity sig-
nals are non-negative.

To obtain a discrete form of the model, we start by taking 
K equally spaced values for the Gaussian scale parameters: 
�k = � +

k−1

K−1
(� − �) for k = 1, 2,… ,K . Using a Riemann 

approximation to the integral and absorbing the differential 
in � into a�k gives

To discretize in angle, we assume that the HEXD data are 
sampled N times between some minimum angle, � , and 
maximum angle, �  . We define �n = � +

n−1

N−1
(� − �) for 

n = 1, 2… ,N  as the set of sampling points. Discretizing 
the convolution integral in (1) and collecting the samples in 
� into column vectors, (1) becomes

b(�, t) = ∫
�

�
∫

∞

−∞

1√
2��2

exp
�
−

1

2�2
(� − �)2

�
x(�, �, t)d�d�

= ∫
�

�

a�(�) ∗ x�(�, t)d�

(1)b(�, t) =

K∑
k=1

a�k (�) ∗ x�k (�, t).

(2)�(t) =

K∑
k=1

�k ∗ �k(t) =

K∑
k=1

�k�k(t) = ��(t)

https://github.com/dbanco/DynamicSignalSpread
https://github.com/dbanco/DynamicSignalSpread
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where �k and �k(t) are column vectors holding discrete ver-
sions of their continuous counterparts, a�k (�) and x�k (�, t) , 
respectively. With some abuse of notation, ∗ denotes discrete 
circular convolution; �k is the N × NK matrix implementing 
the operation “convolve with �k ” and � =

[
�1 |�2 | ⋯ |�K

]
 . 

The matrix � can be viewed as an overcomplete dictionary 
containing K different entries located at every point in dis-
crete � space. In this case, each of the entries of the dic-
tionary is a discrete Gaussian function with variance �2

k
 and 

corresponding dictionary block �k . Within each block, �n,m,k 
denotes the entry on row n and column m of matrix �k and 
is defined according to

where the normalization in the denominator assures that all 
columns of � have unit l2-norm. Similarly �(t) is comprised 
of K blocks of N components a piece;

and we let �m,k(t) denote the entry on row m of the column 
vector �k(t) . Thus, �m,k(t) indicates the “amount” of the 
Gaussian centered at �m and of width �k contributes to the 
HEXD data at time t. Figure 3 shows an example signal 

(3)�n,m,k =

exp
�
−

(�n−�m)
2

2�2
k

�

�∑N

n=1
exp

�
−

(�n−�m)
2

�2
k

�

�(t) =
[
�1(t) �2(t) … �K(t)

]⊤

represented using a Gaussian peak dictionary, breaks down 
the representation according to peak width, and highlights 
�2(t) values with delta functions. Assuming that data are 
acquired at times t1, t2,… , tT , gathering all representations 
in time gives

Our goal is to recover the coefficients � and in turn a sparse 
superposition of Gaussian functions that represent a time 
series of diffraction signal measurements.

Boundary Handling

In the event that the data do not span a complete ring, discon-
tinuities will be present at the boundaries as wrapping occurs 
between � and � during circular convolution. Extending the 
data at � and � assuming that the data are mirrored at the 
boundaries prevents discontinuities and any resulting artifacts. 
This symmetric extension approach for dealing with boundary 
artifacts is also used in [29]. To make this concrete, if

then the symmetric extension of �(t) , �̂(t) , has elements

� =
[
�(t1) �(t2) … �(tT )

]⊤
.

�(t) =
[
b1(t) b2(t) … bN(t)

]⊤
,

Fig. 3   Data �(t) are represented by a dictionary of peak functions 
�1, �2, ..., �K . Representing �(t) as 

∑K

i
�
i
∗ �

i
(t) , the signal is decom-

posed into the components �
i
∗ �

i
(t) to capture the contributions of 

Gaussian peak function of varying widths. Coefficient values �2(t) 
are overlaid on the corresponding representation component; the 
weighted delta functions show each position where �2 contributes 

signal. The un-normalized variance distribution function (UVDF), 
defined as �(t) in (3), shows the sum of coefficient values for each 
dictionary entry �

i
 with variance �2

i
 in this case highlighting the pre-

ponderance of structures with widths of �1 , �2 , and �
M

 in this particu-
lar signal
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for even valued N. The boundaries are handled in this man-
ner in "Real-Time HEXD" section where the measurements 
taken by the MM-PAD detector capture at most about a 4◦ 
arc in �.

Variance Distribution Function

In preparation for defining our approach for recovering � 
and using this result to characterize the degree of diffrac-
tion signal spread, we define the following two quantities 
derived from �:

where 1 is the vector of all ones and � is the matrix that 
implements this summing operation. The first vector �(t) 
can be interpreted as an un-normalized amplitude-weighted 
probability distribution function over the K different Gauss-
ian functions in the representation �(t) . Each entry in �(t) 
is obtained by summing spatially over the coefficients �i(t) 
associated with dictionary entry �i . The second vector �(t) is 
then obtained by normalizing �(t) to sum to 1. The quantities 
�(t) and �(t) will be referred to as the un-normalized vari-
ance distribution function (UVDF) and variance distribution 
function (VDF). An example UVDF in Fig. 3 summarizes 
the scale components used to represent the data �(t) . The 
UVDF is a reduced form of the original representation that 
solely tells how much of each scale component has been 
chosen. The degree of spread present in the diffraction sig-
nal should evolve smoothly; therefore, we would like to to 
enforce smoothness in the distribution of scale components 
(UVDF) in time. Intuitively, variations in peak width caused 
by noise will not persist in time, while the effects of real 
signal changes will be present across time steps. Ultimately, 
we will compute a scalar that measures the degree of signal 
spread (described in Sect. Signal Spread Feature). Smooth-
ing the UVDF in time will reduce the variation we observe 
when modeling diffraction signals independently in time (as 
we will see in Fig. 6a).

Optimization Problem

The signal recovery problem is formulated as the constrained 
optimization

�̂(t) =
[
bN

2

… b2(t) b1(t) b2(t) … bN(t) bN−1 … bN

2
+1

]⊤
,

(4)�(t) =

⎡
⎢⎢⎢⎣

1
T�1(t)

1
T�2(t)

⋮

1
T�K(t)

⎤⎥⎥⎥⎦
= ��(t) and �(t) =

�(t)

1
T�(t)

where � ≥ 0 means each element of the matrix � should be 
non-negative. The objective function contains three terms: 
the first is a data fidelity term, the second is a sparsity term, 
and the third is a temporal coupling term designated by �(�) 
and with parameter � that specifies the magnitude of the 
regularization. The first two terms form the approach origi-
nally proposed in [2]. Combining a squared error term with a 
�-weighted l1-norm penalty encourages the use of a minimal 
number of peak functions. The expression ‖�‖1 is the l1-norm 
of the vector � , that is, the sum of the absolute values of 
the elements of the vector. Given our choice of peak func-
tion dictionary, parsimonious representations resulting from 
sparsity are those utilizing the broadest possible peaks from 
the dictionary. Ultimately, decomposing diffraction inten-
sity into a sparse superposition of dictionary entries encodes 
information about signal spread. The time-dependent �(tk) 
parameter manages the trade-off between data fidelity and 
sparsity. As the data evolve, so too does the signal-to-noise 
ratio, thus �(ti) must be chosen at each time step ti . Similarly, 
the data fidelity term is normalized to account for signal 
magnitude variations that could lead to biased solutions once 
temporal coupling is introduced. Recalling (3), one choice 
for temporal coupling term � is

The expression is desirable because it is a meaningful metric 
between probability mass functions: the total variation dis-
tance [19]. By penalizing VDF differences in time, we seek 
to mitigate the sporadic change in representations caused 
by signal noise while capturing signal changes that persist 
in time. To avoid complications of non-convexity in the 
optimization function introduced by the presence of �(t) in 
the denominator of �(t) , we replace �(t) in (5) with its un-
normalized counterpart to arrive at

where we emphasize that (3) indicates that �(t) is a linear 
function of the components of �.

The parameters �(t) and � are selected by constructing 
L-curves [27] and finding values that balance the sparsity 
or UVDF total variation with reconstruction fidelity. More 
details are provided in Appendix B. The data fidelity term 
is normalized by ||�t||2 and a separate sparsity parameter 
�(ti) is used at each time step to address imbalance in the 
error and sparsity terms that can occur due to changes in 

(5)

�̂ = arg min
�≥0

T�
i=1

�‖�(ti) − ��(ti)‖22
‖�(ti)‖22

+ 𝜆(ti)‖�(ti)‖1
�
+ 𝛾𝛺(�)

(6)�(�) =

T−1�
i=1

‖�(ti+1) − �(ti)‖1.

(7)�(�) =

T−1�
i=1

‖�(ti+1) − �(ti)‖1
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the magnitude of the overall signal in time. An alternat-
ing direction method of multipliers (ADMM) algorithm 
is used to solve the optimization problem with the details 
provided in Appendix A. Once a Gaussian peak represen-
tation has been computed, the coefficients � are used to 
compute a scalar feature that quantifies the spreading of 
signal.

Signal Spread Feature

Upon recovering a sparse representation, we can take 
advantage of the known variances of the constituent 
Gaussian peaks to compute a spread feature. Each diction-
ary entry contributes a value proportional to its standard 
deviation �k and weighted by corresponding coefficients 
�k . Hence, we refer to this spread feature as the amplitude-
weighted mean variance (AWMV) and compute it as

Most of the summands in the above expression are zero 
because of the sparsity enforced on each �(t) . Additionally, 
the AWMV can be viewed as the expectation of the VDF 
�(t) as in (7). As a result, smoothing the UVDF in time has 
the effect of indirectly smoothing the AWMV in time. The 
degree of signal spread as indicated by the AWMV has some 
dependence on experimental design choices, such as the 
extent to which we integrate in � , and thus does not provide 
a quantitative estimate of a physical, material property of 
the sample. Rather, the AWMV provides a feature that is 
easily computable directly from the data and, in the case 
of HEXD, is reflective of meaningful processes within a 
material sample. In the present setting, the process of inter-
est is the onset and evolution of plasticity and association 
with particular crystallographic slip modes. However, as we 
demonstrate in "Robustness to ! Sweep Length" section, 
the AWMV exhibits some robustness to sweep length in this 
experimental data. Regardless of the structure of signal in a 
Debye–Scherrer ring, the one-dimensional intensity signal 
will be represented parsimoniously by Gaussian peak func-
tions. Even if the detector pixels themselves do not appear 
to be sparse, a sparse representation can be ascertained 
regardless. More specifically, even in the case of a more full 
Debye–Scherrer, �(t) will still remain sparse as the diction-
ary is highly over-complete. Moreover, the degree of sparsity 
will be accommodated by our algorithm through the selec-
tion of the �(ti) and � parameters. In the case when peaks 
are truly Gaussian and non-overlapping, we will show that 
this model recovers the true AWMV in Sect. Simulations. 
Section Simulations. In order to recover an accurate AWMV, 
the dictionary needs to be defined following a few guidelines 
that will be laid out in the following section. Afterward, we 

(8)AWMV(t) =

K∑
k=1

�⊤�k(t)𝜎k

�⊤�(t)
=

K∑
k=1

�k(t)𝜎k.

will demonstrate the advantage of modeling measurements 
jointly in time in Sects. Simulations and Real-Time HEXD. 
It is noteworthy that these considerations imply the capabil-
ity of the AWMV to span the distinct peaks associated with 
a “rotating crystal” experiment to the (non-uniform) rings 
found in a polycrystalline powder-like diffraction—a capa-
bility that will be leveraged in the present work.

Dictionary Construction

The dictionary of Gaussian peak functions needs to be 
appropriately constructed in order for the AWMV to cap-
ture meaningful signal spread information. Given that each 
dictionary entry is defined according to (3), there are three 
parameters to be chosen: a minimum standard deviation 
� , maximum standard deviation � , and number of differ-
ent variances K. To ensure that the smallest entry is just 
larger than a single point, we choose the minimum standard 
deviation for the dictionary to be half the distance between 
detector pixels

The maximum standard deviation is chosen so that the 
higher intensity values of the peak remain within the domain 
of the data

In our HEXD measurements, the detector only captures a 
small arc of the diffraction data and the signal spreads out 
significantly almost becoming a powder. Therefore, choosing 
� =

1

6
� is appropriate, but when the signal is not expected 

to broaden significantly, a smaller � can be chosen to gain 
resolution in the dictionary entries. Finally, the number of 
dictionary entries should be chosen to be the largest number 
that keeps the problem computationally practical. For the 
data presented in Sect. Real-Time HEXD, sufficient peak 
width resolution is achieved with K = 20.

Simulations

To develop an understanding of the performance of our 
approach, in this section we consider the recovery of the 
AWMV for a pair of model problems for which ground truth 
is known. We demonstrate success in tracking smoothly broad-
ening peak functions and in detecting anomalous broadening 
events. In HEXD, it is important that the algorithm is able to 
detect anomalies so as to be able to identify events taking place 
during the deforming of a sample such as during the elasto-
plastic transition. Both simulations employ a signal in the form 

� ≥ �i − �i−1.

� ≤ 1

6
�.
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of a single, temporally evolving one-dimensional Gaussian 
peak which is used to generate Poisson distributed data. We 
emphasize that the model is not aware the data contain only 
a single Gaussian and a Gaussian of the same variance is not 
present in the dictionary. As the AWMV is computed as a con-
vex combination of dictionary entry standard deviations, the 
AWMV is expected to recover the standard deviation of these 
Gaussian peaks. Therefore, the true AWMV is the standard 
deviation of the Gaussian peak, AWMV(t) = �(t) . In the fol-
lowing section, we show that leveraging temporal information 
improves recovery, specifically for Poisson distributed data.

Generating Simulated Data

The simulated data are modeled as time-varying Gaussian 
functions with Poisson statistics defined by

where Poisson(�) generates a vector of N independent Pois-
son random variables, � is a scaling factor, and �(ti) ∈ ℝ

N 
is a Gaussian function at time ti . Examples of the Gaussian 
peak simulations can be seen in Fig. 4a and 5a. The Gaussian 
functions are defined by

(9)�(ti) = Poisson(��(ti)), i = 1, 2, ..., T

where

for N = 101 equally spaced samples �j between ±50◦ . The 
scaling factor � serves to vary the average and thus deter-
mine the signal-to-noise ratio (SNR) of the simulations such 
that SNR increases with � . We define the SNR for the simu-
lated measurement �(ti) to be

With this scheme, we produce two time series described in 
Table 1: the first with a linearly increasing AWMV and the 
second with a step function AWMV.

The first data sequence contains a Gaussian peak with 
standard deviation that increases linearly in time. This 
example was chosen to explore the utility of the temporal 
regularization term in (2) when the AWMV of the signal in 
question evolves smoothly. The second data sequence con-
tains a Gaussian peak with standard deviation that follows 

(10)�(ti) =

⎡
⎢⎢⎣

g(�1, ti)

⋮

g(�N , ti)

⎤
⎥⎥⎦

g(�j, ti) = exp
{
−�2

j
∕2�2(ti)

}

(11)SNR =
||�(ti)||2

||A(ti)�(ti) − �(ti)||2

Fig. 4   Linearly broadening peak under Poisson statistics. a Gener-
ated data are shown alongside the recovered signal identified using 
the VDF smoothed model. b The relative mean squared error between 
the AWMV and standard deviation of the Gaussian peak is plotted as 

a function of the SNR. c The standard deviation of the Gaussian peak 
(black), AWMV computed with � = 0 (blue), and AWMV computed 
with � = �∗ (red) are all plotted as a function of time for each SNR
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a step function in time. That is, the width of the Gaussian 
peak is piece-wise constant with a single jump. At lower 
SNRs, the sudden broadening is not evident from looking 
at the data. We demonstrate that the AWMV step is more 
identifiable and does not become smoothed out in time 
with the addition of temporal regularization.

Recovery experiments were conducted with the follow-
ing SNRs

obtained by choosing the scaling factors

(12)SNR = [10, 5, 2.5, 2, 1.75, 1.5, 1.25, 1.1]

(13)� = [136.55, 33.35, 8.34, 5.44, 4.07, 3.08, 2.08, 1.63].

Furthermore, we report the average results for 100 different 
random instances of the noisy data. In all cases, the diction-
ary � was constructed according to (3) with K = 20 different 
entries with parameters

With a dictionary defined we can apply the approach 
described in Sect. 2. Initially, the optimization problem (4) 
is solved for a single instance, and then those same selected 
parameters are used across 100 random instances.

Results and Discussion

The resulting reconstructions of the data are displayed for 
three SNRs on the right of Figs. 4a, 5a. We evaluate recovery 
by computing the relative squared error (RSE),

of AWMV estimates; the average RSE for 100 trials is plot-
ted in Figs. 4b, 5b. For a single instance, the AWMV is com-
puted from each of the representations according to (7) to 
arrive at the AWMV curves shown in Figs. 4c, 5. Regardless 
of temporal regularization, the true AWMV can be recovered 

(14)�i =
49

38
(i − 1) +

1

2
for i = 1, 2, ...K.

(15)RSE =
||�(t) − AWMV(t)||2

||�(t)||2 ,

Table 1   Parameters defining each simulated dataset

T is the number of simulated diffraction measurements in the time 
series. The last column defines the standard deviation (or true 
AWMV) of the peak in each of the two datasets as a function of time 
index t = 1, 2, ...,T

Simulated dataset T AWMV(t) = �(t)

Linear AWMV evolution 30 �(t) =
12

29
t +

75

29

Step AWMV evolution 30
𝜎(t) =

{
7 t ≤ 15

12 t > 15

Fig. 5   Step broadening peak under Poisson statistics. a Generated 
data are shown alongside the recovered signal identified using the 
VDF smoothed model. b The relative mean squared error between the 

AWMV and standard deviation of the Gaussian peak is plotted as a 
function of the SNR. c The standard deviation of the Gaussian peak 
(black), AWMV computed with � = 0 (blue), and AWMV computed 
with � = �∗ (red) are all plotted as a function of time for each SNR
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with RSE of 0.05 or less beyond an SNR of 10. Naturally, as 
the count values are scaled down, the AWMV is recovered 
with increased RSE on average. However, enforcing tempo-
ral smoothness reduces the RSE, especially in lower SNR 
cases. Recovery improvements are present in both simula-
tions with the step function simulation of Fig. 5 seeing a 
reduced RSE by as much as half with temporal regulariza-
tion. From the simulation with linearly increasing AWMV, 
we demonstrate the ability of our algorithm to identify a 

smoothly broadening signal in noise. From the simulation 
with step function AWMV, we show that by globally mod-
eling in time our model can more readily detect sudden 
anomalous broadening.

Real‑Time HEXD

Experiment

The goal of the experiment is to study the behavior of a com-
mercially pure titanium sample deformed in uniaxial tension 
through the elasto-plastic transition and subsequent stress 
relaxation (under fixed cross-head displacement). From the 
in situ HEXD measurements, we apply our algorithm to 
extract signal spread information in order to study the plas-
ticity behavior of the sample. In the titanium sample, prism 
slip and tensile twinning are expected to be the dominant 
deformation modes.

Table 2   Domain parameters of each Debye–Scherrer ring captured by 
the MM-PAD during experiments

Lattice plane 2� �� � � � − �

{004} 7.52◦ 0.0142◦ 12.76◦ 16.44◦ 3.68◦

{021} 7.14◦ 0.0149◦ 12.66◦ 16.54◦ 3.88◦

{112} 7.05◦ 0.0151◦ 12.64◦ 16.56◦ 3.93◦

{020} 6.89◦ 0.0155◦ 12.59◦ 16.61◦ 4.02◦

Fig. 6   Results computed from MMPAD measurements of commer-
cially pure titanium under uniaxial tension. a �AWMV plotted for 
� = 0 (independent in time) and � = �∗ (coupling reconstructions in 
time) for each of the four Debye–Scherrer rings to make evident the 
benefit of temporal modeling. Variations in the independent solu-
tions are reduced. b �AWMV plotted for � = �∗ for each of the four 
Debye–Scherrer rings alongside the stress curve associated with the 
loading of the sample. Different events can be observed in each of the 

four rings as well as co-occurrence between the stress curve reach-
ing the plastic regime and the development of AWMV. c The average 
lattice strain computed based on the radial shift of the portion of the 
individual Debye–Scherrer rings visible to the MMPAD. The strain 
matches the behavior of the stress curve as one would expect. d �
AWMV plotted against the average lattice strain for each of the four 
Debye–Scherrer rings
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A total of 146 frames are captured per cycle over a sam-
ple rotation of ±2.5◦ . For each half cycle, we sum over 73 
frames (covering the full 5◦ arc) giving a sampling rate of 
4Hz. Additionally, the measurements are summed radially in 
the 2� coordinate to produce a diffraction signal profile that 
varies only in the azimuthal � coordinate. The experimental 
setup and summed measurements are previously shown in 
Fig. 2. In Fig. 2a, the detector centered at 14.6◦ is visible.

The Debye–Scherrer rings corresponding to four dis-
tinct lattice planes are present in the MM-PAD measure-
ments; {004},{021},{112},{020}. We apply our algorithm 
to each one. The resolved shear stress experienced in each 
of the lattice planes due to prism slip and tensile twinning 
is expected to be distinct. That is, the stress undergone by 
the sample can be expected to manifest differently in each 
of the Debye–Scherrer rings of the sample’s lattice planes. 
The azimuthal domain slightly differs for each of the four 
Debye–Scherrer rings and is shown in Table 2.

Processing

In order to avoid boundary effects, the intensity profiles are 
symmetrically extended by mirroring at the boundaries as 
described in Sect. 2.2. This way we can guarantee the signal 
to be continuous across the edges of the domain. As a result, 
the domain is doubled from about 4◦ to 8◦ . The Gaussian 
peak dictionary � was constructed according to (3) with 
K = 20 different entries with parameters given by

so that the widths increase linearly from �1 =
��

2
 to 

�K = 100�� . Solving the optimization problem of (4) ren-
ders an AWMV in the azimuthal � coordinate for each time 
step (Fig. 6b).

In addition to spread, we extract the strain by tracking 
the radial shift in each of the Debye–Scherrer rings. The 
radial position of the signal in 2� is computed by locating the 
center of mass of the measured intensity signal. The radial 
shift is the change in this angle �� and, given an initial dif-
fraction angle �0 , then

From the plot of strain in Fig. 6c, we can observe the direct 
dependence of strain on the stress curve associated with 
loading.

Results and Discussion

As crystal or ientation determines the azimuthal 
position of intensity signal, changes in the AWMV 

(16)�i =
100�� −

��

2

K − 1
(i − 1) +

��

2
for i = 1, 2, ...K

�Strain = − cot (�0)��.

are indicative of changes in orientation hetero-
geneity. Figure  6a shows the change in AWMV, 
�AWMV(t) = AWMV(t) − AWMV(t = 0)  ,  f o r  e a c h 
Debye–Scherrer ring with/without temporal smoothing 
(� = � ∗ ∕� = 0) . The reduced variation in the AWMV 
signal is evident. The solutions resulting from the full 
temporal model (� = � ∗) of Fig. 6b are more amenable 
to analysis.

In Fig. 6b, the stress signal provides indication of yield 
at ∼8 s, followed by work hardening during continued 
cross-head displacement to ∼42 s, then stress relaxation 
under fixed cross-head displacement. For all reflections, 
there are numerous transients in the measured �AWMV 
over the course of yield and work hardening. Recent 
work by [28] draws an association between azimuthal 
spread of diffraction spots and (Taylor) work hardening 
in a commercial purity Ti (similar to that used in the pre-
sent work). �AWMV provides a similar, but more global, 
measure. Clearly, there is a trend of increasing �AWMV 
developed during the work hardening prior to stress relax-
ation. These authors also noted the presence of (lattice) 
strain softening in some grains. The negative transients 
in �AWMV for the {021} and {112} reflections support 
the notion of work softening through decrease of lattice 
misorientation—assuming the connection between azi-
muthal spread of peaks and work hardening taken in [28].

An average lattice strain associated with each reflection 
was computed based on radial displacement of the associ-
ated Debye–Scherrer ring (Fig. 6c). It should be noted that 
the diffraction vector is tilted from the loading direction 
by ∼ 15◦ . Also, this lattice strain is taken relative to that 
developed during the initial preloading of the sample. Still, 
this lattice strain computed on the basis of radial shift pro-
vides indication of the degree of tensile loading. Turning 
to the plot of �AWMV vs. lattice strain, Fig. 6d, the strain 
initially increases with little development of �AWMV ; the 
deformation is dominantly elastic. This is followed by a 
rapid evolution of �AWMV during tensile deformation. 
Stress relaxation is associated with the decrease in lattice 
strain during relatively quiescent �AWMV as relaxation 
proceeds.

To draw a connection between the evolution of �AWMV 
and slip modes in Ti, a finite element simulation was carried 
out to predict resolved shear stress as described in Appendix 

Table 3   Resolved shear stress from finite element simulation

Reflection Basal Prism TTW​ # grains

{004} 0.22 ± 0.02 0.05 ± 0.01 0.50 ± 0.01 15
{021} 0.27 ± 0.15 0.40 ± 0.05 0.03 ± 0.04 135
{112} 0.40 ± 0.07 0.35 ± 0.07 0.11 ± 0.09 163
{020} 0.18 ± 0.06 0.44 ± 0.03 0.0 ± 0.0 40



579Integrating Materials and Manufacturing Innovation (2022) 11:568–586	

1 3

C. This resolved shear stress was computed for grains that 
would satisfy the diffraction condition for measurement with 
the MMPAD and is given in Table 3. Several observations 
can be made on the basis of the predicted resolved shear 
stress.

–	 The elasto-plastic transition is sharpest and occurs 
at the smallest lattice strain for the {020} reflection 
(Fig. 6d). Grains associated with this {020} reflection 
are well oriented for prism slip—the favored slip mode 
in this alloy.

–	 As stress relaxation develops, the magnitude of �AWMV 
follows the ordering of predicted resolved shear stress for 
basal slip, as given in Table 3.

–	 Results for the {112} reflection show the greatest 
�AWMV and lattice strain. This is consistent with 
increased evolution of geometric dislocation density with 
basal slip relative to prism slip [10]. Grains associated 

with this Debye–Scherrer ring are well oriented for basal 
slip, as compared to slip associated with other reflections.

As shown in Fig. 6d, upon yield and early in the rapid 
evolution of �AWMV , there are decreases in lattice strain 
for the {004} and {021} reflections. These decreases are 
accompanied by an inflection in the stress curve after 
yield. For all reflections, �AWMV is increasing rapidly 
through the duration of this initial ‘flattening’ of the stress 
curve. This suggests that softening indicated by lattice 
strain decrease is associated with something other than 
the development of lattice misorientation. A similar initial 
softening transient was observed by Pagan et al. [18] in 
Ti-7Al.

Robustness to ! Sweep Length

Our discussion of the results relies on the assumption that 
the measurements observed at this angular interval will be 

Fig. 7   �AWMV computed from data integrated over 5◦ , 4◦ , 3◦ , and 2◦ for each of the four Debye–Scherrer rings. Comparing to the 5◦ case, 
reducing the � sweep maintains similar AWMV curves
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representative of measurements taken at the other angular 
intervals as well. In order to demonstrate that the same anal-
ysis could be done even with smaller intervals than �� = 5◦ , 
identical processing is done with MMPAD measurements 
over rotations of 4◦ , 3◦ , and 2◦ . Each of these windows in 
� is centered in � (at 14.6◦ ) on the detector. Figure 7 shows 
the �AWMV curves obtained can be used to draw the same 
conclusions as the original results of Fig. 6b. It remains true 
in all cases that the elasto-plastic transition is sharpest and 
occurs at the smallest lattice strain for the {020} reflection. 
The negative transients that can be observed in the AWMV 
curves of the {021} and {112} at �� = 5◦ can also be seen 
at each other �� . The observation that there is a trend of 
increasing �AWMV developed during the work hardening 
prior to stress relaxation also still holds for all cases. As our 
observations hold across these different � sweep sizes and 
the AWMV curves maintain a strong resemblance across � 

sweep lengths, we can conclude that the AWMV exhibits a 
fair degree of insensitivity to � sweep length. The similarity 
of the �AWMV curves across � sweep sizes can be seen in 
Fig. 8. While the curves do bear resemblance, once cause 
for the discrepancies present is the greater amount of signal 
observed as the � sweep is increased. A smaller � sweep 
means that more signal is likely to enter and exit the diffrac-
tion condition as the sample experiences bulk reorientation 
during loading.

Conclusion

Our approach for evaluating signal spread provides a highly 
general analysis tool that provides a meaningful feature 
regardless of the signal structure. Our global modeling suc-
ceeds in filtering out temporal variations while still picking 

Fig. 8   �AWMV computed from data integrated over 5◦ , 4◦ , 3◦ , and 2◦ for each of the four Debye–Scherrer rings. A high degree of similarity can 
be observed for all four rings as the � sweep is reduced
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up on local effects. In the context of HEXD, in situ experi-
mentation offers the ability to capture events occurring at 
small timescales and modeling full time series enables the 
detection of transients in the signal spread caused by hetero-
geneous crystal misorientation.

Simulations verified that treating temporal data globally 
improves spread recovery increasingly at lower SNRs. In 
particular, we demonstrated improved AWMV estimation 
for a linearly broadening signal and a signal experiencing 
an anomalous broadening event. More importantly, we made 
use of our model to study signal spread in real data.

From experimental HEXD data, we extracted signal 
spread to study the development of orientation heterogene-
ity and subsequently draw connections to the slip modes of 
our Ti sample. The behavior of the ΔAWMV showed align-
ment with the resolved shear stress predicted in a finite 
element simulation. Our findings corroborate the possibil-
ity of observing work softening in some grains as observed 
in [28]. By applying our method directly to these data 
without any kind of supervision, we were immediately 
able to draw meaningful insights that complement existing 
HEXD analysis methods. As our algorithm is completely 
agnostic to the nature of the data itself, it could easily be 
used to the same effect in other domains.

There are two general directions for future work. The 
first avenue pertains to the adaptability of the algorithm 
itself. Currently, our dictionary model is limited in that 
it may only contain Gaussian peak functions and those 
entries are fixed. A Gaussian peak is not the optimal 
choice in every circumstance. It is typical in the literature 
for a convolutional dictionary to be learned from exam-
ple data. In this problem, our fixed multi-width Gaussian 
dictionary could be replaced by a more general learned 
multi-scale dictionary. Doing so would remove the need 
to define a dictionary. The learned entries of the dictionary 
themselves also have the potential to provide additional 
insights. Dictionary entries could be allowed to take on 
asymmetric peak functions with more than one parameter. 
A parameterization representative of underlying physics 
could even be incorporated into entries. Beyond the dic-
tionary itself, the regularization parameters �(t) and � can 
also be learned. Many simulated examples could be gener-
ated to train a model that would learn to choose the opti-
mal parameters given an input signal. This would remove 
the need to estimate the SNR, conduct a grid search, and 
choose a parameter from the L-curve.

The second avenue for future work is to further 
explore applications and different experimental setups 
that can take advantage of this temporal modeling. Aug-
menting procedures for evaluation of lattice strain at the 
scale of individual grains  [25] with the characteriza-
tion advanced in the present work might reveal interest-
ing spatio-temporal correlations. A comparison of the 

temporal plasticity behavior observed as in this paper 
for multiple identical samples under identical loading 
might provide insight about the dynamics of the material 
undergoing plasticity. Such experiments will also benefit 
from the latest version of the MM-PAD with 10 KhZ 
frame rate described in a recent submission [8]. A higher 
frame rate will offer greater opportunity to observe 
quick sporadic events during plastic deformation using 
our approach and/or provide for more complete cover-
age of � and extension of the present analysis to the 
2-D setting of (�,�) space over time.. Fast detection in 
combination with our general processing technique gives 
the ability to find correlations in high-dimensional data. 
In the context of HEXD, it would be fruitful to verify 
the connection between the spreading of particular dif-
fraction spots in particular Debye–Scherrer rings to the 
activation of underlying slip systems as is done in [15]. 
A finite element and virtual diffractometer modeling 
simulation should be able to replicate the spreading of 
diffraction spots as captured by the AWMV; model vali-
dation would be facilitated through direct comparison of 
simulated and measured AWMV.

Appendix A: ADMM Algorithm

The optimization problem resulting from the sparse diction-
ary model with total variation regularization on the UVDFs 
in time is

Following the ADMM formulation allows us to optimize the 
two non-differentiable l1-norm terms. The first step in refor-
mulating (16) is to introduce �1(ti), �2(ti) to split up objec-
tive terms and yield the following constrained optimization 
problem

where

(17)

�̂ = arg min
�≥0

T
∑

i=1

[

‖�(ti) − ��(ti)‖22
‖�(ti)‖22

+ �(ti)‖�(ti)‖1

]

+ �
T−1
∑

i=1
‖�(ti+1) − �(ti)‖1

arg min
�,�1≥0,�2

T�
i=1

�‖�(ti) − ��(ti)‖22
‖�(ti)‖22

+ �(ti)
�����1(ti)����1

�
+ �

T−1�
i=1

�����2(ti)����1

subject to
�1(ti) = �(ti)

�2(ti) = �(ti+1) − �(ti)

�1 =
[
�1(t1) �1(t2) … �1(tT )

]⊤

�2 =
[
�2(t1) �2(t2) … �2(tT )

]⊤
.
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The job of finding solutions that acknowledge the sparsity 
and temporal smoothness constraints is relegated to �1 
and �2 , respectively. These constraints are then passed on 
to � by forcing � to match �1 and �2—something easier 
to accomplish than optimize the original problem. The 
new constraints are incorporated into the objective via the 
method of Lagrange multipliers. Additionally augmented 
Lagrangian terms are added to the objective to increase 
robustness without altering the solution. These two changes 
lead to the following unconstrained optimization problem

The two new pairs of terms can be consolidated by 
scaling the dual variables �1(ti) = (1∕�1)�1(ti) and 
�2(ti) = (1∕�2)�2(ti) (as in Chapter 3.4 of [4]) to render a 
more convenient form. If we let �1(ti) =

[
�(ti) − �1(ti)

]
 and 

�2(ti) =
[
�(ti+1) − �(ti) − �2(ti)

]
 , then we can rewrite

and

and we are left with shorter expressions as the �1
2
||||�1(ti)||||22 

and �2
2
||||�2(ti)||||22 terms do not depend on �,�1,�2 . The 

scaled form of the objective function is

(�,�1,�2,�1,�2) =
T
∑

i=1

[

‖�(ti) − ��(ti)‖22
‖�(ti)‖22

+ �(ti)||||�1(ti)||||1

]

+ �
T−1
∑

i=1

|

|

|

|

�2(ti)||||1

+
T
∑

i=1
�1(ti)⊤

[

�(ti) − �1(ti)
]

+
T
∑

i=1

�1
2
|

|

|

|

�(ti) − �1(ti)||||
2
2

+
T−1
∑

i=1
�2(ti)⊤

[

�(ti+1) − �(ti) − �2(ti)
]

+
T−1
∑

i=1

�2
2
|

|

|

|

�(ti+1) − �(ti) − �2(ti)||||
2
2.

T∑
i=1

�1(ti)
⊤�1 +

𝜌1

2
||||�1(ti)||||22 =

T∑
i=1

𝜌1�1(ti)
⊤�1(ti) +

𝜌1

2
||||�1(ti)||||22

=

T∑
i=1

𝜌1

2
||||�1(ti) + �1(ti)

||||22 −
𝜌1

2
||||�1(ti)||||22

T−1∑
i=1

�2(ti)
⊤�2(ti) +

𝜌2

2
||||�2(ti)||||22 =

T−1∑
i=1

𝜌2�2(ti)
⊤�2(ti) +

𝜌1

2
||||�2(ti)||||22

=

T−1∑
i=1

𝜌2

2
||||�2(ti) + �2(ti)

||||22 −
𝜌2

2
||||�2(ti)||||22

The ADMM updates are then

where the value of � at iteration k is given by �k . The 
matrix � computes the difference between each subsequent 
UVDF to produce a vector with the ith element defined as 
[��]i = �(ti+1) − �(ti) The algorithm alternates between 
updating � , updating �1,�2 , and updating �1,�2 . The 
scaled dual variables �1,�2 keep a running sum of the 
residuals. The scaled dual-variable updates are gradient 
steps (weighted by �1, �2 in the unscaled form) where the 
gradients follow from the dual form of the optimization.

The � update of (17) is a large least squares problem

that we solve via the conjugate gradient method of 
Algorithm 1.

L(�,�1,�2,�1,�2) =

T�
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and we define soft-thresholding with non-negativity as

The resulting updates are

and when applied to a vector or matrix the operation is 
applied to each of its elements. These updates constitute the 
essential pieces of the ADMM algorithm. Additionally, there 
are two modifications that are made to this kind of ADMM 
algorithm. Firstly, �1, �2 need to be selected. They are initial-
ized to �1, �2 = 1 and then adaptively updated to ensure that 
the magnitude of the primal and dual objectives is relatively 
close. Secondly, relaxation over-relaxation to improve con-
vergence. These additions were found to be beneficial and 
further discussion can be found in Chapter 3.4 of [4]. The 
final ADMM algorithm is shown below.

S+
𝜌
(x) =

{
x − 𝜌 x > 𝜌

0 x ≤ 𝜌
.

�k+1
1

= S+
�1∕�1

(
�k+1 + �k

1

)

�k+1
2

= S�2∕�2

(
��k+1 + �k

2

)
.

The updates for �1,�2 are both optimizations containing 
an l1-norm term and l2-norm term that are simpler compared 
to the original optimization. Here we have terms of the form 
||� − �|2

2
 instead of ||�� − �||2

2
 . These follow the form for the 

definition of a proximal operator [20] and happen to have a 
known closed-form solution. Both updates

are the proximal operator for the l1-norm which has a closed-
form solution given by soft-thresholding. The update for �1 
additionally contains a non-negativity constraint; the result-
ing proximal operator in this case involves first soft thresh-
olding followed by setting any negative values to zero [4]. 
The soft-thresholding operator is defined as
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Fig. 9   Example L-curve plot used to select a regularization parameter 
that balances the trade-off between objective terms

Appendix B: Parameter Selection

The goal of the parameter selection process is to choose 
a value that balances objective terms. In our formula-
tion, a signal could be recovered well using exclusively 
the narrowest basis function, but that would be entirely 
uninformative. The sparsity term enforces a cost on each 
basis function so that the narrowest are the most costly. 
As such, the sparsity parameter � must be large enough to 
ensure that the largest basis functions possible are used, 
but not too large so as to sacrifice reconstruction fidelity 
in order to use larger basis functions. The optimal value 
for the sparsity parameter is determined by the noise level 
present in the data. An L-curve is constructed by grid 
search—solving the optimization problem over a number 
of parameters and plotting the objective terms against one 
another to produce a curve such as the one in Fig. 9. The 
plot will reveal a point at a kink in the curve that balances 
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the objective terms. If a clear kink is not present, a point 
closest to the origin with lower error is selected.

In order to choose the �(ti) parameters, a grid search 
is completed with � = 0 and an L-curve is obtained by 
plotting the reconstruction error term against the sparsity 
term. These T parameters are selected individually and 
then fixed to perform a grid search over the parameter � . 
Again, an L-curve is constructed by plotting the UVDF 
total variation against the sum of the other two terms and 
selecting a balanced point.

Appendix C: Estimation of Resolved Shear 
Stress

Estimates of the resolved shear stress for basal and pris-
matic slip modes based upon the crystallographic texture 
of the sample. The lattice orientation of grains in the 
unloaded sample was characterized using the technique 
of high-energy diffraction microscopy [22, 25]. This meas-
urement was conducted with the sample under a tensile 
pre-load, prior to carrying out the in situ characterization 
using the MMPAD detector.

Rotating the sample about the tensile axis, diffraction 
images of complete Debye–Scherrer rings were collected 
at 0.25◦ increments using a single GE amorphous silicon 
detector at APS 1-ID. The beam height was 0.4 mm, iden-
tical to that used in the in situ measurement. The HEXRD 
code [3] was used to identify (index) the crystallographic 
orientations of 876 distinct grains.

The FEniCS computing platform [1, 13] was used to 
carry out the simulation of linear elastic response. A mesh 
was generated using the Neper program [23] and the ori-
entations developed through indexing of diffraction data 
were assigned to individual grains. Single-crystal elastic 
constants were taken from [7]. The average stress tensor, 
�g , was computed for each grain as part of post-processing.

For each grain, �g was transformed to the local crystal 
frame and resolved shear stress computed for each of the 
basal and prismatic slip systems. The maximum values for 
basal and prismatic slip were identified and normalized by 
the stress magnitude, |||�g

||| , to indicate driving force(s) for slip 
for a grain. A subset of grains were singled out which would 
have diffraction spots at positions measurable by the 
MMPAD detector. This selection was not restricted to the 
limited range of ±2.5◦ sample rotation taken in the in situ 
measurement; taking advantage of the uniaxial character of 
the test, grains with similar (mis-)orientation between the 
diffraction vector and the applied stress were grouped for the 
four Debye–Scherrer rings present on the MMPAD. A simi-
lar procedure was followed for tensile twinning (TTW), 

considering the directional nature of this deformation model. 
Average values for the normalized resolved shear stresses 
are given in Table 3.
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