Skip to main content
Log in

A Bayesian Approach to the Eagar–Tsai Model for Melt Pool Geometry Prediction with Implications in Additive Manufacturing of Metals

  • Technical Article
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

This paper focuses on improving the melt pool geometry predictions and quantifying uncertainties using an adapted version of the Eagar–Tsai (E–T) model that incorporates temperature-dependent properties of the material as well as powder conditions. Additionally, Bayesian inference is employed to predict distributions for the E–T model input parameters of laser absorptivity and powder bed porosity by incorporating experimental results into the analysis. Monte Carlo uncertainty propagation is then used with these parameter distributions to estimate the melt pool depth and associated uncertainty. Our results for the 316L stainless steel suggest that both the absorptivity and powder bed porosity are strongly influenced by the laser power. In contrast, the scanning speed has only a marginal effect on both the absorptivity and powder bed porosity. We constructed a printability map using the Bayesian E–T model based on power-dependent input parameter values to demonstrate the merit of the approach. The Bayesian approach improved the accuracy in predicting the keyhole regions in the laser power-scan speed parameter space for the 316L stainless steel. Although applied to a specific adaptation of the E–T model, the method put forth can be extended to quantify uncertainties in other numerical models as well as in the estimation of unknown parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bertoli US, Wolfer AJ, Matthews MJ, Delplanque JPR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331. https://doi.org/10.1016/j.matdes.2016.10.037

    Article  CAS  Google Scholar 

  2. Kamath C (2016) Data mining and statistical inference in selective laser melting. Int J Adv Manuf Technol 86:1659. https://doi.org/10.1007/s00170-015-8289-2

    Article  Google Scholar 

  3. Bassoli E, Sola A, Celesti M, Calcagnile S, Cavallini C (2018) Development of laser-based powder bed fusion process parameters and scanning strategy for new metal alloy grades: a holistic method formulation. Materials 11:2356. https://doi.org/10.3390/ma11122356

    Article  Google Scholar 

  4. Tan JH, Wong WLE, Dalgarno KW (2017) An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Addit Manuf 18:228. https://doi.org/10.1016/j.addma.2017.10.011

    Article  Google Scholar 

  5. Oliveira J, LaLonde A, Ma J (2020) Processing parameters in laser powder bed fusion metal additive manufacturing. Mater Des 193:108762. https://doi.org/10.1016/j.matdes.2020.108762

    Article  CAS  Google Scholar 

  6. Cunningham R, Zhao C, Parab N, Kantzos C, Pauza J, Fezzaa K, Sun T, Rollett AD (2019) Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science 363(6429):849. https://doi.org/10.1126/science.aav4687

    Article  CAS  Google Scholar 

  7. Tan W, Shin YC (2014) Analysis of multi-phase interaction and its effects on keyhole dynamics with a multi-physics numerical model. J Phys D Appl Phys 47:345501. https://doi.org/10.1088/0022-3727/47/34/345501

    Article  CAS  Google Scholar 

  8. Johnson L, Mahmoudi M, Zhang B, Seede R, Huang X, Maier JT, Maier HJ, Karaman I, Elwany A, Arróyave R (2019) Assessing printability maps in additive manufacturing of metal alloys. Acta Materialia 176:199. https://doi.org/10.1016/j.actamat.2019.07.005

    Article  CAS  Google Scholar 

  9. Rosenthal D (1946) The theory of moving sources of heat and its application to metal treatments. Trans Am Soc Mech Eng 68(8):849

    Google Scholar 

  10. Eagar TW, Tsai NS (1983) Temperature fields produced by traveling distributed heat sources. Weld Res Suppl 62:346–355

    Google Scholar 

  11. Carter MJ, El-Desouky A, Andre MA, Bardet P, LeBlanc S (2019) Pulsed laser melting of bismuth telluride thermoelectric materials. J Manuf Process 43:35. https://doi.org/10.1016/j.jmapro.2019.04.021

    Article  Google Scholar 

  12. Mondal S, Gwynn D, Ray A, Basak A (2020) Investigation of melt pool geometry control in additive manufacturing using hybrid modeling. Metals 10(5):683. https://doi.org/10.3390/met10050683

    Article  Google Scholar 

  13. Kim CS (1975) Thermophysical properties of stainless steels. Technical report, Argonne National Lab., IL (USA)

  14. Trapp J, Rubenchik AM, Guss G, Matthews MJ (2017) In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today 9:341. https://doi.org/10.1016/j.apmt.2017.08.006

    Article  Google Scholar 

  15. Boley CD, Mitchell SC, Rubenchik AM, Wu SSQ (2016) Metal powder absorptivity: modeling and experiment. Appl Opt 55(23):6496. https://doi.org/10.1364/AO.55.006496

    Article  CAS  Google Scholar 

  16. Watson TW, Robinson HE (1963) Thermal conductivity of a sample of type 316L stainless steel. Technical Report 7818, NBS Heat Transfer Section, National Bureau of Standards, U. S. Dept. of Commerce, Washington, D. C. https://doi.org/10.6028/NBS.RPT.7818

  17. Saxena S, Chen S (1975) Thermal conductivity of nitrogen in the temperature range 350-2500 K. Mol Phys 29(5):1507. https://doi.org/10.1080/00268977500101321

    Article  CAS  Google Scholar 

  18. Pal R (2008) On the Lewis–Nielsen model for thermal/electrical conductivity of composites. Compos Part A Appl Sci Manuf 39(5):718. https://doi.org/10.1016/j.compositesa.2008.02.008

    Article  CAS  Google Scholar 

  19. King WE, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA, Rubenchik AM (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2(4):041304. https://doi.org/10.1063/1.4937809

    Article  CAS  Google Scholar 

  20. Rubenchik A, Wu S, Mitchell S, Golosker I, LeBlanc M, Peterson N (2015) Direct measurements of temperature-dependent laser absorptivity of metal powders. Appl Opt 54(24):7230. https://doi.org/10.1364/AO.54.007230

    Article  CAS  Google Scholar 

  21. Zhu H, Fuh J, Lu L (2007) The influence of powder apparent density on the density in direct laser-sintered metallic parts. Int J Mach Tools Manuf 47(2):294. https://doi.org/10.1016/j.ijmachtools.2006.03.019

    Article  Google Scholar 

  22. Martin AA, Calta NP, Khairallah SA, Wang J, Depond PJ, Fong AY, Thampy V, Guss GM, Kiss AM, Stone KH, Tassone CJ, Nelson Weker J, Toney MF, van Buuren T, Matthews MJ (2019) Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nat Commun 10(1):1987

    Article  Google Scholar 

  23. Guo Q, Zhao C, Escano LI, Young Z, Xiong L, Fezzaa K, Everhart W, Brown B, Sun T, Chen L (2018) Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging. Acta Materialia 151:169. https://doi.org/10.1016/j.actamat.2018.03.036

    Article  CAS  Google Scholar 

  24. Nikam SH, Quinn J, McFadden S (2021) A simplified thermal approximation method to include the effects of Marangoni convection in the melt pools of processes that involve moving point heat sources. Numer Heat Transf Part A Appl 79(7):537

    Article  CAS  Google Scholar 

  25. Rammos P (2020) Numerical framework for selective laser melting processing of thermoelectric materials. Master’s thesis, George Washington University (2020)

  26. Bayes T (1763) LII. An essay towards solving a problem in the doctrine of chances. Philos Trans R Soc Lond 53:370. https://doi.org/10.1098/rstl.1763.0053

    Article  Google Scholar 

  27. Hamada MS, Higdon DM, Abes J, Hills C, Peters AM (2015) Illustrating how science can be incorporated into a nonlinear regression model. Quality Eng 27(4):416. https://doi.org/10.1080/08982112.2015.1023314

    Article  Google Scholar 

  28. Spiegelhalter D, Rice K (2009) Bayesian statistics. Scholarpedia 4(8):5230. https://doi.org/10.4249/scholarpedia.5230 (Revision 185711)

    Article  Google Scholar 

  29. Xue D, Balachandran PV, Yuan R, Hu T, Qian X, Dougherty ER, Lookman T (2016) Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning. Proc Natl Acad Sci 113(47):13301. https://doi.org/10.1073/pnas.1607412113

    Article  CAS  Google Scholar 

  30. Fancher CM, Han Z, Levin I, Page K, Reich BJ, Smith RC, Wilson AG, Jones JL (2016) Use of Bayesian inference in crystallographic structure refinement via full diffraction profile analysis. Sci Rep 6(1):31625. https://doi.org/10.1038/srep31625

    Article  CAS  Google Scholar 

  31. Kim H, Inoue J, Kasuya T, Okada M, Nagata K (2020) Bayesian inference of ferrite transformation kinetics from dilatometric measurement. Comput Mater Sci 184:109837. https://doi.org/10.1016/j.commatsci.2020.109837

    Article  CAS  Google Scholar 

  32. Hartig F, Minunno F, Paul S (2019) BayesianTools: general-purpose MCMC and SMC samplers and tools for Bayesian statistics. https://CRAN.R-project.org/package=BayesianTools. R package version 0.1.7

  33. Albert DR (2020) Monte Carlo uncertainty propagation with the NIST uncertainty machine. J Chem Educ 97(5):1491. https://doi.org/10.1021/acs.jchemed.0c00096

    Article  CAS  Google Scholar 

  34. Ning J, Sievers DE, Garmestani H, Liang SY (2019) Analytical modeling of in-process temperature in powder bed additive manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials 12(5):808. https://doi.org/10.3390/ma12050808

    Article  CAS  Google Scholar 

  35. Seede R, Shoukr D, Zhang B, Whitt A, Gibbons S, Flater P, Elwany A, Arróyave R, Karaman I (2020) An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties. Acta Materialia 186:199. https://doi.org/10.1016/j.actamat.2019.12.037

    Article  CAS  Google Scholar 

  36. Chen Y, Wang H, Wu Y, Wang H (2020) Predicting the printability in selective laser melting with a supervised machine learning method. Materials 13:5063. https://doi.org/10.3390/ma13225063

    Article  CAS  Google Scholar 

  37. Tenbrock C, Fischer FG, Wissenbach K, Schleifenbaum JH, Wagenblast P, Meiners W, Wagner J (2020) Influence of keyhole and conduction mode melting for top-hat shaped beam profiles in laser powder bed fusion. J Mater Process Technol 278:116514. https://doi.org/10.1016/j.jmatprotec.2019.116514

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Manufacturing Office Award Number DE-EE0009100. This report was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof. B.J.W and P.V.B thank Mr. Nicholas Wu for insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna V. Balachandran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whalen, B.J., Ma, J. & Balachandran, P.V. A Bayesian Approach to the Eagar–Tsai Model for Melt Pool Geometry Prediction with Implications in Additive Manufacturing of Metals. Integr Mater Manuf Innov 10, 597–609 (2021). https://doi.org/10.1007/s40192-021-00238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-021-00238-z

Keywords

Navigation