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Abstract
Crystal plasticity simulation is a widely used technique for studying the deformation processing of polycrystalline materials.
However, inclusion of crystal plasticity simulation into design paradigms such as integrated computational materials
engineering (ICME) is hindered by the computational cost of large-scale simulations. In this work, we present a machine
learning (ML) framework using the material information platform, Open Citrination, to develop and calibrate a reduced
order crystal plasticity model for face-centered cubic (FCC) polycrystalline materials, which can be both rapidly exercised
and easily inverted. The reduced order model takes crystallographic texture, constitutive model parameters, and loading
condition as inputs and returns the stress-strain curve and final texture. The model can also be inverted and take a stress-
strain curve, loading condition, and final texture as inputs and return the initial texture and constitutive model parameters as
outputs. Principal component analysis (PCA) is used to develop an efficient description of the crystallographic texture. A
viscoplastic self-consistent (VPSC) crystal plasticity solver is used to create the training data by modeling the stress-strain
behavior and evolution of texture during deformation processing.

Keywords Reduced order model · Microstructure quantification · Machine learning · Crystal plasticity ·
Dimensionality reduction · Parameter optimization

Introduction

In recent decades, the development of computationally aided
design methodologies has revolutionized the way products
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are manufactured, from first prototype to final processing,
assembly, and testing. The next frontier is the extension
of computational design to include material structure,
properties, and processing as critical design variables,
which can be optimized to deliver superior material and
component-scale performance, rather than constraints on
the design process. This is the fundamental goal of
Integrated Computational Materials Engineering (ICME)
[1]. Leveraging the exponential advances in physics-
based materials simulation tools, ICME is predicated on
replacing expensive, repeated experimentation and testing
with optimization through simulation. While offering
unprecedented fidelity and predictive power, spatially and
temporally resolved material simulation tools can be too
computationally expensive or require too much calibration
data to be effectively used within the ICME framework
[2, 3]. In order to properly utilize these models in design,
we must address the problem of developing reduced
order models which replicate the fundamental physical
behavior of the material system but, which can be rapidly
exercised and easily inverted for integration within an
optimization framework. Further, given that the statistical
confidence in the final design (previously obtained through
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repeated material and component-scale testing) must now be
obtained through simulation, it is critical that the developed
reduced order models are integrated with formal uncertainty
quantification as part of the validation process [4].

In this work, a reduced order framework for crystal
plasticity, developed through machine learning (ML), is pre-
sented. Crystal plasticity was chosen as an initial case study
as it is a relatively mature and widely utilized simulation
area [5–7]. Also, crystal plasticity simulations are often
computationally expensive and underdetermined with
respect to the parameters, as the single crystal constitutive
theory requires more model parameters that there are exper-
imental observations for calibration [8–10]. Even relatively
simple theories require a large amount of parameters to
capture the non-linearity in the stress-strain response, par-
ticularly with respect to strain rate, temperature, multiple
slip and twinning modes, and strain path effects [8]. Thus,
demonstration of the ML framework to identify correla-
tions between model parameters during the training of the
reduced order model and then correctly predict constitutive
theory model parameters from limited input data serves as a
good test of the robustness of the proposed framework.

Traditionally, the calibration of crystal plasticity mod-
els was performed by manually adjusting model parame-
ters to best match the available experimentally measured
stress-strain and crystallographic texture data. This can be
a time-consuming process, with large amounts of human
intervention due to the large parameter space. This process
needs to be repeated anytime the single crystal mechanical
properties are changed [6, 8]. The need for expensive man-
ual calibration renders exploration across many materials
and processing paths difficult if not intractable. Therefore,
it is important to have an automated process to rapidly
estimate model parameters at the preliminary stages based
on limited stress-strain response and texture data. Previous
attempts at the automated optimization of fitting parameters
have not been entirely successful due to strongly non-linear
and potentially non-unique relationships between the model
parameters and the stress-strain response of the polycrys-
tal [11–13]. Another contributing factor is the degree of
sample-to-sample variability in both initial microstructure
and measured properties. Any automated approach to opti-
mization of model parameters must be robust to uncertainty
in the single crystal properties due to noise or variance in:
(i) the initial texture and microstructure of the sample, (ii)
measurement noise due to variability in the mechanical test,
and (iii) limitations of the constitutive theory (e.g., missing
physics or model assumptions).

The development of reduced order models has the poten-
tial for wide application beyond the design process. One of
the tenets of the Materials Genome Initiative (MGI) is the
development of an infrastructure to accelerate the develop-
ment of new materials [14]. The construction of large-scale

materials structure-processing-properties databases is a crit-
ical aspect of this MGI infrastructure [15]. Significant
progress towards population of these databases can poten-
tially be made from the automated mining of legacy material
data from the existing materials science and engineering
literature literature in the form of manuscript, text, tables,
graphics, and figures [6–8, 14]. However, it is also under-
stood that significant gaps will be left in the databases as
legacy sources may not have collected or reported complete
microstructure data. For example, initial or final texture data
is frequently missing from reports on mechanical testing,
due to the historic difficulty of texture measurement before
the advent of commercial electron back-scatter diffraction
(EBSD) systems. Fully calibrated reduced order models,
such as the one presented here, can be invaluable tools
to fill these missing gaps. To illustrate this idea, a proof-
of-concept example is demonstrated where the initial state
of the microstructure (texture) is predicted from the final
observed structure in this work.

In this study, we apply Open Citrination, a materials
informatics platform [15], to establish a “fast-acting reduced
order crystal plasticity model” for polycrystalline materi-
als. A viscoplastic self-consistent (VPSC) crystal plasticity
formulation with Voce hardening is used as a case study
model. Rather than calibrating to isolated mechanical test
results either from the lab or literature, the training data
is generated by repeatedly exercising VPSC over a range
of initial textures and hardening parameters. The trained
reduced order model is demonstrated by predicting the
stress-strain response and final texture of a sample given the
initial texture, strain path, and hardening parameters. The
model is inverted to predict the initial texture and optimized
hardening parameters given the stress-strain curve and final
texture. This process is schematically shown in Fig. 1. The
proposed reduced order model can help to quickly pre-
dict the behaviors of products in manufacturing design,
while providing additional material information accord-
ing to limited experimental data. Additionally, in order
to quantify the high microstructural variance, the dimen-
sionality reduction technique, principal component analysis
(PCA), is applied to capture the characteristic microstruc-
tural information using a low-dimension description. The
correlation between microscale texture/deformation evolu-
tion, macroscale stress-strain behavior, and optimal crystal
plasticity model will be calibrated through Open Citrination
as a case study in this paper.

Methodology

The deformation response of a single-phase, face-centered
cubic (FCC) copper, with 12 independent slip systems of
type {111} < 110 >, is used as the initial case study. The
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Fig. 1 Schematic description of the proposed machine learning framework

well-known VPSC framework will be used as the target
crystal plasticity model for the machine learning reduced
order model [8]. Voce hardening is selected to simulate the
plastic hardening response during processing. Representa-
tive FCC textures, selected loading conditions, and strain
rates are considered as variables in the learning progress.
The Open Citrination platform is adopted to learn the com-
plex correlation between the microstructure features and
crystal plasticity in this study. Using the computational net-
work established in this study, the deformation behavior
and microstructure evolution of FCC copper under arbitrary
conditions can be quickly predicted. Additionally, the experi-
mental stress-strain data can also be fitted to identify opti-
mal constitutive model parameters. In order to better focus
the discussion on the details of the framework, our initial
case study does not extend to multiple materials or mul-
tiple deformation mechanisms. Future work will consider
more complicated material systems, such as body-centered
cubic (BCC) and hexagonal closest packed (HCP) alloys
with multiple non-degenerate slip and twinning modes with
strong temperature dependence and multi-phase materials.

Viscoplastic Self-Consistent Crystal Plasticity
Modeling

There are many well-known constitutive theories and
numerical approaches to model the deformation of crys-
talline materials at the polycrystalline level [5–7, 16–18].
For brevity, we will only discuss details relevant to this
study, readers who require a review of the field are referred

to the following references [6–10, 17, 19–22]. For this work,
we will use VPSC as the physics-based model that we wish
to replicate. In contrast to crystal plasticity finite elements
(CPFE) and the elasto-viscoplastic fast Fourier transform
approaches, which are full-field three dimensional spatially
resolved solvers, VPSC is a mean field or homogenized
model that does not consider the spatial arrangement of
grains but computes the effective mechanical response of
the polycrystal using the orientation, size, and shape of the
individual crystallites [8, 23–25].

Self-consistent models are commonly used to estimate
the homogenized response of heterogeneous systems [17].
VPSC is routinely used to model the mechanical response
of polycrystal aggregates during plastic deformation [8].
Within VPSC, the polycrystal is approximated as an ensemble
of weighted statistically representative (SR) grains each with
a specific crystallographic orientation. The individual SR
grains are modeled as Eshelby inclusions within a homoge-
neous effective medium [26, 27]. The properties of the effec-
tive medium are calculated as an average over the ensemble
of SR grains. As the response of the SR grains and the prop-
erties of the effective medium are mutually dependent, they
must be iteratively updated (starting with an initial estimate
of the effective properties) until convergence [6].

The constitutive model applied in this case study is selected
as the non-linear rate–dependent power law formulation which
relates the viscoplastic strain rate, ε̇p, to the stress σ as

ε̇r
p = Mr

ijkl : σ r
kl = γ0

∑

s

ms
ij

(
ms

kl : σ r
kl

τ s
0

)n

(1)
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where ε̇p and σ are represented as the average viscoplastic
strain rate and stress in each SR grain. Mr is the viscoplastic
compliance. τ s

0 is the critical resolved shear stress (CRSS)
for slip system s, and ms is the symmetric Schmid tensor
associated with the activated slip/twinning system, s, in
homogenized SR grain r . n = 20 is assigned in this case
study as a reasonable rate-sensitivity exponent constant.
The reference shear rate, γ0, served as a normalization
factor, and the viscoplastic strain rate, ε̇p, can be non-
linearly scaled by the magnitude of applied velocity
gradient or applied stress components during deforming.
Detailed explanation will be provided in “Parameterization
of Applied Deformation”.

The Voce hardening model is applied to evolve the
slip resistances for each slip system with accumulated
deformation [8]. Equation 2 describes the evolution of the
threshold stress, τ̂ s , that is produced by the accumulated
shear strain, � = ∑

s �γ s , in each respective grain of a
polycrystalline material, where γ s is the shear activity in a
grain. τ s

0 and τ s
0 +τ s

1 are the initial and the back-extrapolated
critical shear stress (CRSS) in slip system s, where θs

0 and
θs

1 are the initial and the asymptotic hardening rate. The
evolution of plastic hardening behavior for polycrystalline
aggregates can be defined using following equations.

τ̂ s = τ s
0 + (τ s
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As shown in Fig. 2, the standard hardening behavior
(defined as “Kosher” Voce hardening in the VPSC manual)
demonstrates where the corresponding flow stress increases
and hardening rate decreases with increasing strain, requires
the condition, θ0 ≥ θ1 ≥ 0 [8]. The limiting case of standard
is the right-perfectly-plastic hardening, which maintains the
relation, θ0 = θ1 = 0, where other non-standard situations
(defined as “Non-kosher” law in VPSC) are shown in Fig. 2.
As an initial case study, we randomly generated data grids
for hardening parameters according to the reasonable fitting
parameters from existing literature [7, 8].

The increment in threshold stress, �τs , is relative to
coupled dislocation interactions when other slip systems, s′
are activated in a same grain (Eqs. 3 and 4) as,

�τs = dτ̂ s

d�

∑

s′
hss′

�γ s′
(4)

The coupling coefficient or hardening matrix, hss′ , defines
the effect of slip on system s′ on the slip resistance for s. For

Fig. 2 Physical interpretation of Voce hardening parameters (Eq. 2)

this case study, we consider both self and latent hardening
and take the limiting case of hss′ = 1 ∀ (s, s′).

Parameterization of Applied Deformation

As the stress-strain response and texture evolution are
strong functions of the imposed boundary condition, the
complete range of physically meaningful effective velocity
gradient tensors for the polycrystal must be parameter-
ized for the machine learning schema described below (see
“Machine Learning Algorithm”).1 Table 1 shows four basic
loading conditions with a unit loading rate. Each condition
can be fully described in the deformation reference coordinate
frame by a nine-component velocity gradient tensor. How-
ever, the identical loading/deformation path imposed upon a
polycrystalline metal can be more compactly expressed in a
principal deformation coordinate frame [28, 29]. Equation 5
details how the loading matrix in reference frame (LR) is
transformed to the one in principal frame (LP ) through
multiplication of a stretching tensor, fP→R (Table 2).

LP = f T
P→R ∗ LR ∗ fP→R (5)

In the principal frame, the necessary parameters used to
describe a loading condition are reduced from an arbitrary
nine-component matrix to a three-component diagonal
matrix containing a reference strain rate, ε̇∗

0 (Eq. 6). Varying

1For convenience, this work restricts the space of boundary conditions
to imposed deformation rate. The extension to stress control and mixed
loading paths would require an additional parameterization of the
boundary condition space.
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Table 1 Loading condition in the reference frame (LR)

Compression/tension Shear Rolling

⎡

⎢⎣
±0.5 0 0

0 ±0.5 0

0 0 ∓1

⎤

⎥⎦

⎡

⎢⎣
0 0 1

0 0 0

1 0 0

⎤

⎥⎦

⎡

⎢⎣
1 0 0

0 0 0

0 0 −1

⎤

⎥⎦

the effective applied deformation rate can be achieved
through multiplication with a reference strain rate, ε̇∗

0 , as

LR =
⎡

⎣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤

⎦ ⇐⇒ LP

=
⎡

⎣
cos(β∗ − π

3 ) 0 0
0 cos(β∗ + π

3 ) 0
0 0 −cos(β∗)

⎤

⎦ ε̇∗
0 (6)

The above parameterization reduces the dimension of
the description of any applied deformation/loading paths
with effective deformation rates into five parameters,
where β1, β2, β3, and β∗ define the transformation
stretching tensor between the reference and the principal
frame. As an example, Table 2 displays the values of
parameterized loading parameters in the principal frame for
four corresponding conditions corresponding to Table 1.

Reduced Order Representation of Crystallographic
Texture

For this work, crystallographic texture, described by an
orientation distribution function (ODF), is assumed to be the
controlling microstructure feature for mechanical response.
The body of literature on crystal plasticity simulation
largely shows that effective stress-stain curves can be well-
captured by crystallographic texture while the specific grain
structure/geometry affects the stress localization and other
fluctuations of the mechanical fields [6–8, 30–32]. In order
to properly calibrate the desired reduced order crystal
plasticity model via machine learning, the range of possible
ODFs must be sampled. This poses a difficulty as the space

Table 2 Loading parameters in the principal frame (LP )

Loading in principal frame (LP ) Compression/tension Shear Rolling

LP (β1, β2, β3) (0, 0, 0) ( 3π
2 , π

4 , π
2 ) (0, 0, 0)

fP→L(β∗, ε̇∗
0) (0, ±1) ( π

6 , −2√
3
) ( π

6 , 2√
3
)

Transformation matrix (fP→R)⎡

⎢⎣
cosβ1cosβ3 − sinβ1sinβ3cosβ2 sinβ1cosβ3 + cosβ1sinβ3cosβ1 sinβ3sinβ2

−cosβ1sinβ3 − sinβ3cosβ3cosβ2 −sinβ1sinβ3 + cosβ1cosβ3cosβ2 cosβ3sinβ2

sinβ1sinβ2 −cosβ1sinβ2 cosβ2

⎤

⎥⎦

of possible crystallographic textures is vast. For example,
discretizing the orientation space for cubic materials into
5◦ bins produces 15,552 ODF components, each of which
can be varied individually. Fortunately, these components
do not evolve independently during deformation and a
more efficient sampling scheme based on experimentally
observed texture components can be identified.

Previous work from Raabe and Roters demonstrated
that the representation of an arbitrary texture by the
weighted mixture of standard texture components was
an effective method to capture the effective mechanical
response and texture evolution of polycrystals within
a crystal plasticity framework [19, 30]. In this study,
we follow a similar approach and consider the most
important texture components observed to be produced
by deformation processing in FCC metals. These include
(i) the uniform or random ODF, which has identical
values for all orientations, (ii) important unimodal texture
components that contain a strong concentration around
a preferred orientation including the cube, goss, brass,
copper, S1, S2, S3, and Taylor textures often detected in
FCC material, and (iii) fiber ODFs which represent all
orientations formed by a rotation between two specific
orientations including the α, β, and τ fiber textures [31,
33–35]. These texture components are defined explicitly
in Table 3 and their positions in the Bunge-Euler space
are shown in Fig. 3. The figure also highlights the
relationship between the unimodal texture components and
the fiber textures in cubic crystal structures. Numerical
representation of the orientation distribution functions is
accomplished via a Fourier series representation utilizing
Bunge’s generalized spherical harmonics as a basis set [36].
This choice was simply one of the authors’ preference, as
other representations such as direct binning in either the
Euler angle or Rodrigues space would also work equally
well. The free MATLAB toolbox MTEX is used in this
study to carry out all ODF calculations and visualizations in
this work [33–35].

The texture components described above form a conve-
nient framework for describing the space of ODFs that need
to be considered to adequately train a reduced order model
via machine learning. However, each ODF is still expressed
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Table 3 Standard FCC texture components: Miller indices and Euler
angles

Texture name Miller indices Bunge-Euler angle

Cube {1 0 0}〈0 0 1〉 (0 0 0)

Goss {1 1 0}〈0 0 1〉 (0 45 0)

brass {1 1 0}〈1 1̄ 2〉 (35 45 0)

Copper {1 1 2}〈1 1 1〉 (90 35 45)

S1 {1 2 4}〈2 1 1̄〉 (59 29 63)

S2 {1 2 3}〈4 1 2̄〉 (47 37 63)

S3 {1 2 3}〈6 3 4̄〉 (59 37 63)

Taylor {4 4 11}〈11 11 8̄〉 (90 27 45)

α fiber extend from goss to brass

β fiber extend from copper to S3 to brass

τ fiber extend from goss to copper

Uniform identical orientation everywhere

as a Fourier series containing thousands of spherical har-
monic coefficients [36]. Therefore, individual ODFs still
need to be represented in a small number of parameters suit-
able for the training model. The naı̈ve approach would be
used to simply represent any ODF as a vector containing
the weights of each of the the texture components. However,
this imposes the limitation that the set of final deformation
textures and the set of input textures used for model cal-
ibration both span the same subspace of the ODF space.
As an alternate approach, we could also use the strategy
of microstructure-sensitive design (MSD) and consider the
set of all possible deformation textures given the set of ini-
tial texture components; however, this approach leads to a
large parameter set [37–46]. In order to retain flexibility and
reduce the number of parameters, we have adopted prin-
cipal component analysis (PCA) to identify an appropriate
low-dimensional representation. PCA is a dimensionality

reduction method that conducts orthogonal decomposition
on the high-dimensional raw data and maps to a new low-
dimensional orthogonal coordinate frame, i.e., the principal
components (PCs) represent as the new coordinate systems
[47–49].

PCA can be simply explained as projection of the high-
dimensional data onto a low-dimensional subspace, defined
by a basis set (the principal components), that captures
the critical features in the dataset. Each datapoint can be
written as a weighted linear combination of the principal
components. The new variables, interpreted through PCA,
are the weights of the principal components. The basis is
defined such that the first PC is the direction of highest
variability through the original dataset. Next PC is defined
by taking the direction of highest variability orthogonal
to the first, and so on. In this way, differences between
individual datapoints in the set can be represented by a
small number of principal components. Since PCA and
the generalized spherical harmonic representation are both
linear transformations of the orientation distribution data,
the final low-dimensional representation should be identical
for both the binned orientation data and the spherical
harmonic coefficients of the ODF. Therefore, in this case
study, the dimension of each material texture (originally
containing thousands of coefficients) is interpreted by PCA
since the first couple of PCs can effectively capture the main
characteristic of texture.

Similarly, the reconstruction of specific texture can also
be completed by picking the corresponding coordinate in PC
space [50, 51]. The accuracy and efficiency of the texture
reconstruction using PCA has been measured with the L2-
norm between the original ODF and the reconstructed one
that computed as a function of the number of principal
components. Figure 4 shows the PCA reduction based on
thousands of initial and final deformation textures, and

Fig. 3 Standard texture
component representation in
Bunge-Euler angle space
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Fig. 4 Accuracy of texture reconstruction using PCA

how the error reduces when using more PCs to reconstruct
textures. Both the MTEX synthesized texture and VPSC
simulated texture are reconstructed using the same PC basis.
The error between the actual and the reconstructed texture
converges to zero by picking enough PCs when adding both
the linear combinations of the texture components (from
Table 3) and deformation textures predicted by VPSC under
a range of imposed boundary conditions. Most textures
can be represented by using more than 30 PCs with
minimum error (Fig. 4). However, as the number of relevant
texture components is increased, the number of necessary

PCs required to accurately represent the raw data will
also increase. In that case, more advanced dimensionality
reduction techniques should be recommended, such as
kernel PCA, which provides more accuracy when raw data
structure is non-linear [52–56]

In order to simplify the machine learning framework, we
would like to use as efficient a representation as possible.
Figure 5 shows examples of the reconstruction of both
the synthesized and deformation texture using weighted
PCs. In Fig. 5b, the ideal simulated ODF (left) shows the
orientation distribution resulting from the shearing of an
initial cube texture. The main characteristics of the ODF
can be captured with acceptable accuracy by reducing the
number of PCs to 16. The number of principal components
considered is also motivated by the current limitations on
the number of degrees of freedom on the Open Citrination
platform. Therefore, for this work, we will consider 16 PCs
as representative inputs to the machine learning framework,
with the understanding that this may not be the optimal
choice, but rather a compromise between accuracy and
computational resources.

Machine Learning Algorithm

In the field of material science, ML is usually applied to
predict various functional properties/behaviors and calibrate
reduced order models from limited experimental data [57–
61]. Numeruous ML techniques have been applied across
the engineering fields (such as k-nearest neighbors (k-NN),

Fig. 5 Example of texture reconstruction using 16 PCs for a MTEX Synthesized unimodel cube texture b VPSC simulated cube under shearing.
The initial texture was subsequently deformed to a strain of ε∗

0 = 1 under shear loading
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decision trees (DT), random forest (RF), support vector
machine (SVC), artificial neural networks (ANN), Bayesian
networks, and deep learning) [62–64]. Additionally, many
convenient toolboxes are developed to analyze and model
data on commonly used Integrated Development Environ-
ments (IDEs), such as scikit-learn in python, statistics and
machine learning toolbox, and neural network toolbox in
MATLAB [62, 65, 66]. In this study, we use the Open Cit-
rination platform [15, 67, 68] to construct the ML-based
reduced order model for crystal plasticity. The default esti-
mator on Open Citrination is based on random forest [68],
which is an ensemble method wherein individual learners
are decision trees [69, 70]. More complete description of
the Citrination platform and the machine learning model on
random forest can be learned from the open-source Lolo
scala library [71]. Specific details related to the training of
our model such as the number of estimators, minimum sam-
ples per leaf, and maximum tree depth used for the reduced
order model in this paper are demonstrated on the Open
Citrination platform and shown in Appendix [72].

Calibration and Validation of Reduced Order
Model

The set of crystal plasticity model parameters and ini-
tial conditions (including imposed velocity gradient tensor,
material texture, and hardening parameters) were system-
atically varied in order to build a comprehensive training
dataset using VPSC. The details are described in Table 4.
Four typical loading conditions are included, pure shear,
rolling, uniaxial compression, and tension, while the load-
ing rate varies between 1 × 10−3s−1 and 1s−1. In order
to consider the natural randomness at the simulation vol-
ume element level, for each ODF, ten different VPSC input
grain files were created by discretely sampling 1000 grains.
Additionally, ten random combinations of τ s

1 , θs
0 , and θs

1
are picked from the predefined range of normalized Voce
hardening parameters for each simulation [8].

The simulation dataset from VPSC is randomly sepa-
rated into two groups, the training set and the validation
set. The training dataset is used to discover the correlation
between the input and output of the predefined configura-
tion, while the validation set is used to check the accuracy of

the corresponding mathematical relationship that was built
by the training set. In total, approximately two thousand
computational results (by picking different parameter sets in
Table 4) were used for training and calibration. The reduced
order model was trained using one thousand VPSC simu-
lation results out of the complete data set. The remainder
of the VPSC simulations was used as validation. Addi-
tional validation examples were also created by creating
“new” textures, that were not included in the calibration
data, as linear combinations of the standard texture compo-
nents. Results from these additional validation simulations
are described below.

Two configurations are defined in this case study as
“Property prediction” and “Model calibration” correspond-
ing to the invertible pathway shown in Fig. 6. Property
prediction is used as a reduced order simulation tool that
quickly generates the stress-strain curve and the processed
texture given any initial sample texture and condition. The
invertible configuration is used to quickly calibrate the opti-
mal hardening parameters given any strain-stain curve and
providing the initial state of a sample based on the EBSD of
the processed sample.

The prediction of each property is calculated through all
inputs; however, each property is predicted mainly through
several important features among the training dataset. Open
Citrination provides the important score of each feature
corresponding to the contribution to model performance
of each feature (see Appendix). As an example of model
calibration, Voce hardening parameters are mainly deter-
mined by features produced from stress-strain curves, while
the initial ODF is mainly determined by the input of final
ODFs. The accuracy and the uncertainty of the reduced
order model model are evaluated during training and val-
idation through different error metrics, such as root mean
squared error, and non-dimensional model error. Addi-
tionally, the standardized residual measures the difference
between ideal and predicted values on Open Citrination.

Results and Discussion

Several examples are presented below to demonstrate the
accuracy of predictions from the reduced order model. All
of the results presented are from the validation dataset and

Table 4 VPSC model
parameters sampling for
calibration data

Parameters Number Boundary condition

Loading condition 4 Compression, tension, shear, rolling

Normalized Voce hardening parameters 10
τ s

1
τ s

0
∈ [0,1],

θs
0

τ s
0

∈ [0,5],
θs

1
τ s

0
∈ [0,2],

Initial texture 12 Cube, goss, brass, copper, S1, S2, S3,
Taylor, uniform, α fiber, β fiber, τ fiber

Loading rate 4 1, 0.1, 0.01, 0.001
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Fig. 6 Training configurations
of “Property prediction” and
“Model calibration”

were not used to calibrate the reduced order model. As men-
tioned in “Reduced Order Representation of Crystallographic
Texture”, both initial and final ODF are represented by
the first 16 PCs and the stress-strain behaviors are repre-
sented by ten selected points on stress-strain curves. This
effectively means that this limited set of 26 variables can
efficiently describe the critical microstructural features and
the effective mechanical behavior of a FCC sample.

Examples in Fig. 7 show the accuracy of the reduced-
order model prediction for the final texture and the stress-
strain behavior for a range of different initial textures and
loading conditions. The left ODF shown in Fig. 7a is an
example of input crystallographic texture ODF, τf iber ,
used to verify the accuracy of the reduced order model.
The middle pole figure shows the VPSC predicted texture
resulting from the τ -fiber ODF under a shear loading
condition, while the right one shows the predicted ODF
from the reduced order model. The intensity of both pole
figures are mostly captured when comparing the VPSC
simulated results and the reduced order prediction.

In Fig. 7b, the red solid line shows the plastic stress-
strain curve computed from VPSC for τ -fiber ODF under
shear loading while ten blue dots represent the reduced
order prediction of stress-strain behavior under the same
condition. Most of the predicted points are located very
close to the actual stress-strain curve for this case.
Figure 7c–f show another two examples of the predicted
ODF and plastic stress-strain curve for τ -fiber under
tension and uniform ODF under compression. Additionally,
Fig. 7g, h shows an example of the prediction of the final
texture and the stress-strain curve when input a mixed
FCC texture, 50% cube + 50% brass into the reduced
order model. These results indicate the calibrated machine
learning reduced order model can accurately capture the
evolution of crystallographic texture during deformation

processing, while the predicted stress-strain curve shows a
good correspondence with the VPSC simulation.

The overall expected level of error for the prediction of
the stress-strain curve from Open Citrination is quantified
in Fig. 8. Both the specific cases for “τ -fiber ODF under
shearing (Fig. 7b) ” and “uniform ODF under compression
(Fig. 7f)” are shown in Fig. 8. The box plot shows the
distribution of the percentage error among the training
dataset. The percentage error is defined as

σtrue−σpredicted

σtrue

and the average percentage error is limited in 2%. As a
good prediction example, “τ -fiber ODF under shearing”
has a prediction error within the first and the third quartile
(Q1 and Q3), while the percentage is less than 5%. While
the percentage error of the worse case (“uniform ODF
under compression”) locates around the extreme outlier.
Additionally, the standard deviation (SD) of the percentage
error of predictions are also shown as a function of the stain,
and the overall uncertainty increase along with the strain.

Similarly, the examples in Fig. 9 shows the accuracy
of the inverse case: model calibration for the initial
texture, and identification of the optimal Voce hardening
model parameters. In Fig. 9a, the ground truth initial
condition texture, Taylor ODF (middle), is compared with
the prediction from the inverse reduced order model.
The deformed texture provided as input the to inverse
reduced order model is shown on the left. The pole figures
demonstrate excellent agreement between the ground
truth initial texture and the inverse reduced order model
prediction, with both qualitative features and trends in
intensities being captured. We believe that the quantitative
differences are largely due to truncating the PCA expansion
to 16 components, and better agreement can be realized if a
more terms could have been used. However, for the future
application of identifying missing data in material database
the semi-quantitative predictions are likely sufficient.
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Fig. 7 Pole figure of the final texture generated by VPSC simulation
(left) and Open Citrination’s prediction (right) for the following: a τ -
fiber ODF under shearing; c τ -fiber ODF under tension; e uniform
ODF under compression; g 50% cube + 50% brass under shearing; The

Von-Mises stress-strain curve generated by VPSC simulation (solid
line) and Open Citrination’s prediction (scattering points) for: b τ -fiber
ODF under shearing; d τ -fiber ODF under tension; f uniform ODF
under compression; (h) 50% cube + 50% brass under shearing;



224 Integr Mater Manuf Innov (2018) 7:214–230

Fig. 8 Error assessment of stress-strain predictions using the reduced
order model (The overall percentage error for validation set and the
corresponding cases sourced from Fig. 7 are demonstrated). The red
line indicates the mean error level and the boxes contain the middle
50% (2nd and 3rd quartile). The error bars indicate 10% and 90% of
all samples. Individual extreme values are marked with +

Additional examples are also shown in Fig. 9c, e. Figure 9g
shows the inverse reduced order model can also be utilized
when the initial texture is not one of the standard ODF
components. In this case, the initial texture of 50% goss +
50% brass was subject to rolling.

The inverse reduced order model can also be utilized to
determine optimal Voce hardening parameters from limited
stress-strain data. Figure 9b, d, f, and h compares the ground
truth VPSC stress-strain curves resulting form the input
Voce parameters with stress-strain curves resulting from the
inverse reduced order model prediction of the hardening
parameters. Stress-strain curves are generated covering the
full confidence interval for the Voce parameters to better
visualize the expected accuracy resulting from using the
reduced order model for parameter estimation.

The accuracy of the validation set for Voce hardening
parameters are compared with the exact VPSC simulated
value in error bar plot in Fig. 10a. The asymptotic hardening
rate is perfectly predicted by the proposed tool. Most
of the back-extrapolated CRSS and the initial hardening
rates are predicted with some uncertainty. Figure 10b,
c shows the cumulative density function (CDF) and the
probability density function (PDF) curve of the validation
set of normalized hardening parameters from multiple
cases. Figure 10b shows the upper predicted boundary
(UPB) and the lower predicted boundary (LPB) of Open
Citrination’s predicted values that corresponded to the
positive and negative variance. Figure 10c shows the
probability distribution of the positive variance over the
entire training and validation set.

For practical applications, crystal plasticity calculations
are exercised to predict material response under different
conditions (typically either initial texture or strain path)
than the calibration data. In order to check whether the
uncertainty of the stress-strain behavior that was computed
using the estimated hardening parameters is allowable
and acceptable for this purpose, the optimal hardening
parameters were estimated and used to simulate the
stress-strain response under multiple loading conditions.
Figures 11 and 12 show the reproduced stress-strain curve
of selected texture under different loading conditions. In
Figs. 11 and 12, the blue dash line shows the stress-
strain data used to estimate the Voce parameters from the
inverse reduced order model. The calibrated Voce hardening
parameters are then used to predict the stress-strain response
under differing loading conditions for the same textures.
As can be seen in the figures, the reproduced stress-strain
curves are very close to the ground truth response (solid red
line).

The case studies above demonstrate that the Open
Citrination-trained model successfully captures the under-
lying physics represented in the VPSC model with Voce
hardening, and can be used as a surrogate model for the
more computationally expensive crystal plasticity simu-
lation. The model can also be inverted quickly to learn
material properties, in this case single crystal yield and hard-
ening parameters, from mechanical tests avoiding manual
fitting. This can effectively reduce the cost of large amounts
of computational and experimental results at the prelimi-
nary design stage with the adoption of the machine learning
model.

However, it should be noted that the uncertainty of the
calibrated parameters is neither uniform across the three
normalized hardening parameters nor constant for a given
parameter. As shown in Fig. 10, the calibrated values of the
initial hardening rate, θ0, and the asymptotic hardening rate,
θ1, have smaller variance than the back-extrapolated CRSS,
τ1. This is expected from the form of the Voce hardening
law, both θ0 and θ1 define slopes of the stress-strain curve
which describe the trend of the curve, which means that
training data points at multiple strain values contribute to
the these parameters. However, τ1 is the interception of
back-extrapolation asymptotic stress as very large strains
with the stress axis. This value is not independent of the
other parameters and that the calibrated uncertainty of τ1

will always greater than others. The uncertainty is also not
constant in that θ1 can be determined more accurately when
it is numerically small than when it is the parameter takes a
large. Or equivalently the hardening parameters can be more
accurately determined in systems that display a smaller
degree of work hardening.

The quality of the machine learning fit was also found
to be sensitive to how the input stress-strain curves were
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Fig. 9 Pole figure of the final texture generated by MTEX synthe-
sized (left) and Open Citrination’s calibration (right) for: a Taylor
texture; c Goss texture; e Cube texture; g 50% goss+ 50% brass
texture; The Von-Mises stress-strain curve generated by VPSC sim-
ulation using predefined Voce hardening parameters (solid red line)

and Open Citrination’s predicted curves using couple calibrated Voce
hardening parameters with variance (dotted lines) for: b Taylor texture
under compression; d Goss texture under rolling; f Cube texture under
tension; h 50% goss+ 50% brass texture under rolling
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Fig. 10 a The comparison between the ideal and predicted Voce hardening parameters; b Cumulative distribution function (CDF) of predicted
Voce hardening parameters using Open Citrination; c Probability distribution function (PDF) of predicted Voce hardening parameters using Open
Citrination

sampled. For initial calibration attempts, we used a uniform
(with respect to strain) sampling. However, this found to
provide poor fits for parameter sets corresponding to rapid

hardening or rapid saturation of stress with increasing strain,
i.e., cases where dσ

dε
was large. Instead, a non-uniform

sampling scheme was applied where a higher density of
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Fig. 11 Validation of optimal hardening parameters using goss texture
under different loading conditions

stress-strain values were taken early in the curve where
hardening rates were highest. This scheme is likely to fail
for the case of non-kosher Voce parameters (see Fig. 2)
as the effective stress-strain response would exhibit curves
or inflections in regions not heavily sampled. While a
seemingly trivial step in the process, the discretization of
the input data can have a large impact on the accuracy and
efficacy of the fit machine learning tool.

One potential limitation of this initial implementation is
that the texture predictions from the model are all taken
at large strains (ε = 1). As shown above, the calibrated
machine learning model does a good job of predicting the
final texture as a function of initial texture and strain path at
large strain, but as it currently stands, has not been calibrated
to predict the texture as a function of stress-strain curve for
a fixed strain path. Intermediate textures were not used in
the calibration process. However, this is a feature that would
be reasonably straightforward to add in the future.

Fig. 12 Validation of optimal hardening parameters using cube texture
under different loading conditions

Furthermore, this work shows a good prediction of defor-
mation textures resulting from commonly used loading con-
ditions. However, in real-world applications, material may
be manufactured by complex loading path, such as bi-axial
loading, sequential combination of different paths, or even
superposition of strain paths. Analogously to the interim
texture predictions, the extension to a broader range of strain
paths should also be straightforward.

Overall, as an initial case study, this work only consid-
ered the deformation of FCC materials. FCC was chosen
for practical reasons, as the plastic response is easier to
predict as only one slip mode, containing 12 independent
and degenerate {111} < 110 > slip systems, needs to
be considered. The “texture-processing-properties” map for
materials with BCC is significantly more complex to mine
as multiple slip modes and up to 48 slip systems have a
opportunity to be activated depending on the deformation
path. For other non-cubic structures, such as HCP materials,
the deformation behavior is harder to capture because twin-
ning can be an important mechanism for accommodation of
plasticity. The inclusion of non-degenerate slip modes dras-
tically increases the number of parameters that need to be
estimated in order to predict the stress-strain response and
texture evolution. Also for simplicity, the limiting case of
uniform latent hardening was considered for the case stud-
ies presented above. With non-degenerate slip modes, the
form of the hardening matrix (see Eq. 4) also needs to be
learned in addition to the hardening parameters for each slip
mode. Deformation twinning also usually produces remark-
able effect on texture evolution due to grain reorientation.
Additionally, the hardening response will be affected since
twin lamellae are potent barriers to dislocation motion. This
will manifest as a strong degree of latent hardening asso-
ciated with twin systems. However, in order to become a
practical design tool, the framework presented here needs
to be extend to both BCC and HCP initially (followed by a
wider range of lower symmetry structures).

Conclusion and Future Work

This work demonstrates the feasibility and utility of using
a machine learning approach to develop reduced order or
fast-acting models to capture the behavior of more complex
“physics-based” materials simulations. These reduced order
models can then be used in ICME to efficiently explore
the relationship between processing, microstructure, and
property. The development of the proposed tool can effec-
tively reduce the time and cost of property and perfor-
mance prediction, and improve the quality of the real-
world manufacturing design. Specifically, in this case study,
instead of using a crystal plasticity solver to calculate the
evolved microstructure and the mechanical properties under
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different conditions, the proposed tool can predict the result
directly. Additionally, the existing material properties can
be supplemented without repeatable experiments or simu-
lations. According to the invertible linkage established in
this study, the proposed tool can computationally optimize
a processing route for a given starting material to meet a set
of designer specified criteria.

The initial case study stated in this paper shows that both
“Property prediction” and “Model calibration” pathways
can be established by training a comprehensive computa-
tional database of FCC copper on Open Citrination. This
will become a preliminary fast-acting tool that finds the
processing path to the desired structure and the macroscale
functional properties. The overreaching goal of this project
can be extended to the “data-driven material design” for
expected microstructures with desired crystal plasticity prop-
erties depending upon given element composition, crystal
structure, possible activated slip/twining systems, initial
texture, and processing techniques and conditions. In the
future, we can continue to expand our database by adding
experimental data and other textures in various crystal sys-
tems and consider other microstructural features as impor-
tant factors. Moreover, other conditions and model parame-
ters, such as arbitrary loading types, temperature, constitu-
tive sensitive rate, and different crystal plasticity laws can
be gradually added as variance in the existing database to
complement the current machine learning model.
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Appendix: Machine Learnign Details
and Hyperparameters

The proposed crystal plasticity reduced order model is
built on a random forest model that includes uncertainty
estimation. Random forests can be understand as featured
bagging of decision trees, where decision trees are basic
models that define a piece-wise function that analyzing the
input space recursively. Random forests have much better
ability than single decision trees when predicting data with
noise, and overcome the non-linearity by random draw,
and featured bagging of the complete training dataset. The
final decision/prediction of random forest is aggregated by
voting/averaging of each tree so that limiting the overfitting
on dataset without substantially increasing error due to the
variance and bias.

Table 5 Hyperparameter and important features for training session

Configuration Number of Minimum samples Maximum

estimators per leaf tree depth

Forward 189 1 30

Backward 210 1 30

Property Important features

Yield stress loading rate, loading condition, τ1

Hardening curve τ1, θ0, θ1, PCs of initial textures

Final texture loading condition, PCs of initial textures

Voce parameters Stress-strain discrete points, PCs of final textures

Initial texture PCs of final textures

Table 5 demonstrates the machine learning algorithm
and hyperparameters used for the machine learning training
session on Open Citrination, while the estimator is sourced
from the open-source machine learning Lolo scala library
[71]. The main important features used to train the model
are also shown in Table 5. The complete description of
the fraction for each important feature used to train the
model can be found on Open Citrination [72]. (Importance
scores of each feature sums to one and are determined by
a given feature’s contribution to the model’s performance.)
Moreover, the detailed model reports and summary of
the training session for this case study can be reached
at Dataviews 5506 (forward configuration) and 5507
(backward configuration) on Open Citrination.
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