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Abstract
We apply computer vision and machine learning methods to analyze two datasets of microstructural images. A transfer
learning pipeline utilizes the fully connected layer of a pre-trained convolutional neural network as the image representation.
An unsupervised learning method uses the image representations to discover visually distinct clusters of images within two
datasets. A minimally supervised clustering approach classifies micrographs into visually similar groups. This approach
successfully classifies images both in a dataset of surface defects in steel, where the image classes are visually distinct and
in a dataset of fracture surfaces that humans have difficulty classifying. We find that the unsupervised, transfer learning
method gives results comparable to fully supervised, custom-built approaches.
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Introduction

At its core, the primary initiative of materials science and
engineering is to investigate processing-structure-property
(PSP) linkages in materials [1]. Recent advances in applied
statistics (data mining) and the rapid development of
data science bring an opportunity to bridge these disciplines
with materials science, recently termed as materials data sci-
ence (MDS) [1, 2]. Current opportunities for MDS include
searching for novel and promising material composition,
processing conditions, properties, and performance metrics
[1]; but notably, microstructure is not readily amenable
to these types of analyses. The history of microstructure
science is dominated by qualitative and subjective observa-
tions. Microstructure science does include some quantitative
measures such as grain size, phase distributions, and shape
descriptions of primary and second phase particles [3]; how-
ever, these high-level measurements do not comprise a com-
plete microstructural description and are generally applied
on a case-by-case basis. Although these measurements
provide helpful insight to their niche applications, there is no
universal approach for capturing all of the information,
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both quantitative and qualitative, that is contained in a
microstructural image. MDS offers a new path to describe
microstructure image data objectively and comprehensively.

Recent advances in computer vision and machine
learning have shown promise in a breadth of applications
from panoramic photo stitching [4] to mass surveillance
[5]. Convolutional neural networks (CNNs) are especially
popular in the computer vision community with recent
successes in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC), which has been a benchmark
image dataset for computer vision applications since
2010 [6]. In 2012, CNNs became the new standard
in image classification with the development of GPU-
based AlexNet [7]. In 2014, VGG16 had a spectacular
performance in the competition, and is the inspiration of
this work [8]. Although the computer vision community
is currently celebrating the success of neural networks,
these architectures were hypothesized to be well-suited for
developing functional models in abstract domains such as
defect analysis as early as 1999 [9]. DeCost was among
the first to illustrate how computer vision can be used to
identify objective linkages between visual microstructure
and processing conditions [10]. This work expands on this
approach by demonstrating how the ImageNet pre-trained
VGG16 CNN can be used in an unsupervised learning mode
to generate image feature descriptors of microstructure
images on two distinct datasets, to qualitatively group
similar micrographs, and to perform a classification task.
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NEU Surface Defect Database

The proposed pipeline was first tested as a utility for quality
control and defect detection applications in steel production.
Song and Yan [11] collected and maintain a database
of surface defects observed on hot-rolled steel strip. The
database contains images of six common surface defects
(crazing, inclusions, patches, pitting, rolled-in scale, and

scratches). Each defect class contains 300 sample images
providing a total database collection of 1800 8-bit grayscale
images. The database’s purpose is to be a benchmark for
testing realtime surface defect detectors working in hot-
rolling manufacturing facilities. The originally published
work with the creation of this dataset used supervised
learning techniques and reported a detector with 97.89%
accuracy [11]. A small subset of the dataset is seen in Fig. 1.

Fig. 1 Six example images of all six surface defect classes in the NEU Surface Defect Database [11]
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In-718 Charpy Fracture Surface Dataset

The pipeline was also tested on a more visually challenging
dataset. The In-718 Charpy Fracture Surface dataset was
developed at the NextManufacturing Center for additive
manufacturing research at Carnegie Mellon University. In
the creation of this dataset, In-718 Charpy coupons were
additively manufactured using selective laser melting. Two
build geometries described in Fig. 2a were investigated
in the creation of this dataset. The printed coupons then
underwent a Charpy impact test and absorbed energies were
recorded. It was expected that horizontally and vertically
built samples would have different fracture energies, and
Fig. 2b confirms that intuition. The data used in our
analysis pipeline are SEM images of the fracture surfaces,
two examples of which are shown in Fig. 2c; these were
indistinguishable to the human eye in field testing among
materials science graduate students. Original MDS work
on this dataset applied hypercolumn methods described by
[10], but the result was also no better than random guessing
[12]. Thus, the challenge remained to identify a visual
signature in the fracture surface images that can relate to the
build geometries.

Analysis Pipeline

Image Processing

The NEU surface defect and In-718 fracture datasets
required slightly different image pre-processing before
following an otherwise identical processing pipeline. The
NEU dataset is almost perfect for direct implementation
with the VGG16 fully connected neural network because
it has high interclass diversity, low intraclass variance, and
hundreds of samples for each of the six classes. Each image
in the NEU dataset can easily be processed to VGG16 input
requirements by mapping the grayscale values to an RGB
color space and reshaping the image to 224 x 224 pixels
from 200 x 200 pixels. The In-718 dataset contains only six
fracture surface images of size 2048 x 1768 pixels. These
were each sliced into a grid about the center containing 56
patches of size 224 x 224. Although a full resolution patch
of this size may not be able to adequately capture the fine
information in the fracture surface, this was shown to work
and the success is credited to the design of the VGG16
CNN and the diversity of training data from the ImageNet
challenge [6]. Finally, adaptive histogram equalization with

Fig. 2 a Charpy impact testing
coupons were made using
powder bed additive
manufacturing techniques in
horizontal and vertical build
orientations. b Experimental
collaborators described the
differences in measured Charpy
impact energy as significant in
their domain. c Sample fracture
micrographs for (i) horizontal
and (ii) vertical build directions.
Note that fracture images (and
not impact energies) were the
only data used in this analysis
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Fig. 3 Scree plots for a NEU Surface Defect Database and b In-
718 dataset. The proportion of cumulative variance explained by PCA
approaches unity as the number of components reaches the maxi-
mum number of principal components, which is min(N,D), where
N, D are the number of samples and feature dimensions, respectively.

Performance metrics are shown for the full pipeline (fc1/PCA/t-
SNE/k-means) and simplified versions of the pipeline (fc1/PCA/k-
means and fc1/k-means); in both experiments, the full pipeline outper-
forms the simpler versions

scikit-image [13] is applied to normalize global image
intensity and contrast; classifying on dark/light would be a
failure.1

Feature Extraction

Image feature descriptors were generated with the VGG16
CNN, which has a modular structure with five blocks
each containing two or three convolution layers [8]. Each
convolution layer consists of a set of optimized weights
from training on the ImageNet database [6]. The pretrained
network enables users to access deep convolutional filters
that were trained to perform well on a large and diverse
dataset; this dataset contains over one million images that
have visual textures that cover many length scales. The
first convolution layer performs a kernel convolution on the
input image using the pre-trained weights for that layer. The
rectified linear unit (ReLU) of the convolution is taken and
the output serves as input for the next layer; this continues
for all subsequent layers. Max pooling is used to spatially
pool outputs of blocks of prior convolution layer blocks
to following blocks. This results in a multi-scale image
representation that can detect fine features in shallow layers
and coarse structure in deeper layers. VGG16 has a final
softmax layer which is used to perform a classification on
ImageNet images; however, the interest in this architecture
is only to extract the feature descriptors, so the softmax
layer is removed. Each image runs through VGG16 and
a feature descriptor of the image is computed from the
result of the series of convolution and spatial pooling layers.

1Selecting an appropriate pre-processing method can be critical in the
performance of certain models as discussed by Pal & Sudeep [14].

Ultimately, this computes a 4096-dimension vector, termed
a fully connected layer, where each component describes
a multi-scale low-level response from the image. VGG16
produces two fully connected layers (fc1 and fc2); we
find significantly better classification performance using
fc1 as our image representation. We note that this analysis
pipeline is similar to DeCost’s analysis of ultra high carbon
steel micrographs [15]; contrary to DeCost’s work, this
work is unsupervised, does not employ VLAD encoding,
and attempts to do find distinguishing image features that
humans cannot identify.

Dimensionality Reduction

4096 feature descriptors become computationally inefficient
to produce visualizations for this analysis. Because of this,
we first apply a linear dimensionality reductionmethod, prin-
cipal component analysis (PCA) [16, 17]. PCA is one of
the most popular and oldest multivariate statistic techniques
[16], and it finds significant use here. The general idea of
PCA is to reduce the feature descriptors that exist in R

n to
R

k where k < n while retaining the maximum variance in
the data. In the scope of this work, the feature descriptors
from VGG16 are reduced from a 4096-dimensional space
to a k-dimensional space, keeping k as small as possible
for computational efficiency while capturing as much vari-
ance in the data as possible for model performance.. The
PCA captured variances and the corresponding clasifica-
tion accuracies are shown in Fig. 3a, b for the NEU surface
defect database and the In-718 dataset respectively. A rule-
of-thumb in computer vision applications is to select k=50
dimensions. For both of our datasets, this retains ∼60% of
the total variance and yields classification accuracy well
within the upper plateau. While larger k values can increase
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the retained variance, computational costs increase, and
classification accuracy does not significantly improve.

t-distributed Stochastic Neighbor Embedding

t-distributed Stochastic Neighbor Embedding is a state-of-
the-art dimensionality reduction technique used in high-
dimensionality data explorations [18]. t-SNE is highly
regarded because it retains both local and global data
structure by determining a probabilisitic conditional model
of all points within the data [10]. However, this construction
can become computationally expensive to calculate pairwise
distances in very high dimensional space; because of this, it
is best to perform this in a lower-dimension space obtained
from PCA [18]. For larger datasets where visualization is
the primary use for t-SNE, it is recommended to use the
Barnes-Hut implementation of t-SNE [19]. The original t-
SNE algorithm has a computational expense that scales with
O(N2), whereas Barnes-Hut t-SNE scales withO(N logN)

where N is the number of images [19]. Moreover, when
exploring a new dataset, it is recommended to start by
following [18] and use PCA for dimensionality reduction
to 50-D for image features of higher dimensionality, as
discussed above.

It is important to note that t-SNE does not come without
its limitations. Notably, t-SNE projections have no sense
of inter-cluster distance. Although data are grouped by
similarity, clusters near other clusters are not inherently
more similar than clusters far apart from one another. Also,
t-SNE offers no method of reconstructing original data as
PCA does, and t-SNE must be reconstructed as new data
are collected. Finally, t-SNE is useful only for ex situ
characterization, although pretrained CNN features can be
used in an in situ characterization task.

There are some hyperparameters to adjust with t-SNE
such as perplexity, defined as 2H(X) where H(X) is the
Shannon Entropy [18], and can be thought of as a parameter
which tunes the sensitivity to local neighbors in the data
manifold. There are other t-SNE hyperparameters as well,
but they are beyond the focus of this work, and van der
Maaten and Hinton already cover this topic in great depth
[18].

The t-SNE plot in Fig. 4a shows clear clustering of
classes for the NEU database, with strong intra-cluster
localization and inter-cluster separation. This suggests that
the NEU database contains visually distinct features, which
is easily confirmed by human inspection. Interestingly,
the scratches split into two sub-clusters, which happen to
distinguish vertical from horizontal scratches.

When data are colored by their true labels, t-SNE plots
for the In-718 data show distinct intra-cluster localization,
but inter-cluster separation is minimal (Fig. 4b). However,
the unsupervised learning algorithm still separates horizon-
tal and vertical build directions by examining only surface
feature data from the fracture surfaces. This is rather sur-
prising, considering that the fracture surface images are not
distinguishable by human experts.

Classification

This final step is optional but is useful for quantifying the
success of the analysis pipeline. All machine learning to this
point has either been based on transfer learning (VGG16)
or unsupervised learning (t-SNE). However, in this last step,
user input is introduced to identify the number of cluster
centers (e.g., 6 clusters for the NEU database and 2 clusters
for the In-718 dataset); k-means [20, 21] is then applied
to find the cluster centers and assign labels to the points

Fig. 4 t-SNE projection of
50-dimensional PCA encoding
to 2-dimensional visual
similarity map. Shown for a
NEU surface defect database,
which shows clustering with
strong intra-cluster localization
and inter-class separation, and b
In-718 fracture surface dataset,
which without coloring by true
label, there is no distinguishable
clustering apparent. The
abbreviations for the labels (top
to bottom) in a stand for:
rolled-in scale, patches, crazing,
pitted surfaces, inclusions, and
scratches as described in
“Introduction”
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Fig. 5 Classification
visualization for a NEU surface
defect database and b In-718
fracture surface dataset. Data
points are colored according to
their true labels. Each point is
classified using k-means in the
projected t-SNE space. Correctly
labeled points are shown as
circles. Incorrectly classified
points are shown as cross marks

in the projected t-SNE feature space. The k-means labels
are categorical, with arity (number of classes) equal to the
number of clusters set by the user. Meaning can be assigned
to the labels by examining a projection of the data with the
original input images at each point, which can be compared
to the true class labels to establish an accuracy metric.

The plots shown in Fig. 5 show 6- and 2-class classifica-
tion tasks for the NEU and In-718 datasets, respectively. The
points that represent the correctly and incorrectly labeled
points with circles and crosses, respectively. Note that the
only supervision in this pipeline is in defining the number of
classes that the k-means algorithm should attempt to label.

Results and Discussion

Classification Accuracy

The proposed pipeline has proven to be a highly functional
model for classification tasks in two distinct microstructural
image challenges; fc1/PCA/t-SNE/k-means is an unsuper-
vised learning (USL) method that represents images using
fc1, reduces dimensionality via PCA, groups images by
visual similarity with t-SNE, and finds image clusters using
k-means [8]. We also explore two simpler unsupervised
pipelines that employ the same image representation, but
use k-means to find image clusters either on the PCA
results (fc1/PCA/k-means) or on the fc1 image represen-
tation directly (fc1/k-means). As one might expect, all
models performs more strongly with the NEU database
since the images are more visually distinct than the fracture
surfaces in the In-718 dataset. The original classification
benchmark for the NEU database was set in the work by
Song et al. with the adjacent evaluation completed local

binary patterns (AECLBP) custom-built feature descrip-
tor; AECLBP was used as an input for a support vector
machine (SVM) and a nearest neighbor classifier (NNC)
with strong performances [11]. Additionally, Zhou, et al.
recently reported a supervised CNN-based approach on the
NEU database. Table 1 compares the accuracies of the pro-
posed models with accuracy scores from other groups on the
NEU database. These results demonstrate that an unsuper-
vised general transfer learning approach can achieve similar
classification accuracy to previous supervised and custom-
built methods [11, 22]. Furthermore, the full fc1/PCA/t-
SNE/k-means pipeline outperforms the simpler fc1-based
analyses.

The In-718 dataset is relatively new and unexplored. We
first attempted to classify the images in this dataset using
a machine learning algorithm learning on VLAD-encoded
hypercolumns [23]; however, the result was no better than
random guessing. In fact, our initial hypothesis was that it
might be impossible to discern useful detail from the images
due to the manifestation of entropy from the Charpy impact
test on the visual signatures of the fracture surfaces. This,

Table 1 Table of various classification performances

NEU accuracy (%) In-718 accuracy (%)

fc1/PCA/t-SNE/k-means 98.3 ± 1.2 88.4 ± 2.5

fc1/PCA/k-means 87.2 ± 4.0 75.6 ± 0.4

fc1/k-means 85.4 ± 7.8 75.6 ± 0.5

AECLBP-SVM [11] 98.9 ± 0.6 —

AECLBP-NNC [11] 97.8 ± 0.2 —

CNN [22] 99a —

a No error or standard deviation reported
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apparently, is not the case. But it does lead one to question
what the neural network sees that humans cannot, since
in field tests, human classification of the In-718 dataset
was around 50% (random guessing). As seen in Table 1,
though, the proposed model performs well beyond random
classification accuracy.

The primary purpose of the fc1/PCA/t-SNE/k-means
pipeline was to simulate some kind of useful analysis
(e.g., unsupervised classification) that can be performed
using pretrained CNNs such as VGG16. Nevertheless, it is
worth discussing whether a simpler pipeline might suffice.
For example, PCA reduces the original feature space to
a lower dimensional space with a linear transformation
such that each output dimension is orthogonal (e.g., zero
correlation between dimensions). This can sometimes be
used to feed a clustering algorithm such as k-means directly,
as in Fig. 6(a)(i) and (b)(i). From Fig. 6 and Table 1, it
is clear that a pipeline that omits t-SNE grouping (i.e.,
fc1/PCA/k-means) can successfully cluster and classify the
NEU data set. (Note that although the clusters are not
unambiguously separated in the 2-D projection, they are
separated in the 50-D PCA space.) However, using t-SNE
on the PCA data provides clearly distinguishable clusters
in 2-D, particularly as the perplexity value increases, and
classification accuracy increases. The situation is similar
for the In-718 data set: PCA gives some clustering,
but high perplexity t-SNE does a better job. Hence, we
choose the full fc1/PCA/t-SNE/k-means pipeline to perform
classification. Moreover, Fig. 3a, b and Table 1 confirm
that the full pipeline outperforms simpler versions for both
datasets.

Confusion matrices are commonly used to identify how
well an algorithm is performing classification tasks because
they provide more insight to system performance than
a reported accuracy value. Figure 7 shows the true and
predicted labels of the data for each material system
explored. Large values associated with a misclassification
give a clue to how the system is failing, which is
useful for optimizing the system’s prediction capabilities.
For example, Fig. 7a indicates that although the overall
classification accuracy is quite high, the most prevalent
misclassification is designating pitted surfaces as crazing.
This is understandable, since both classes contain images
in which alternating vertical light and dark stripes are a
prominent visual feature.

A key limitation of this low-level feature descriptor
is its interpretability. Because of black-box nature of a
trained CNN, it is difficult to determine which image
features the computer uses to describe and classify an
image. There are numerous examples in which CNN-based
computer vision systems make classification decisions
based on information a human might not consider relevant
[24] or where the computer is fooled by extraneous data
[25]. Understanding how to interpret CNN models is an
ongoing challenge in the computer vision community [26–
28], but is perhaps especially important to the materials
science community. For example, although our method is
able to classify fracture surfaces in the In-718 dataset,
we do not know if the computer is sensing visual
features that are salient to the process (e.g., oriented
features that relate to build direction) or property (e.g.,
surface roughness that correlates with fracture energy) or

Fig. 6 (i) PCA and (ii–v) t-SNE
perplexity plots for a NEU
Surface Defect Database and b
In-718 dataset. Although PCA
can be directly used for cluster
analysis with all principal
components (only two shown
here), t-SNE with sufficient
perplexity has better
performance with k-means
clustering
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Fig. 7 Confusion matrices for a
NEU database and b In-718
dataset. The vertical axis
indicates the true class of an
image, and the horizontal axis
gives the predicted class. Perfect
classification would result in 1’s
along the diagonal

whether it is keying in on some other, physically irrelevant
feature (e.g., background noise characteristic of a particular
microscope session). The full utility of the MDS approach
to making PSP correlations will not be realized until we can
confirm that the computer is learning physically relevant
characteristics of the images.

Conclusion

Micrographs encode subtle clues about processing and
expected property behavior; the challenge is to find a robust
image representation that captures the visual content in
complex images. The key contributions of this work include:

• Developing a transfer learning pipeline that utilizes
the fully-connected layer of a pre-trained convolutional
neural network (the VGG16 CNN trained on the
ImageNet database) as the image representation.

• Applying unsupervised learning (t-distributed Stochas-
tic Neighbor Embedding) to discover visually distinct
clusters of images within two microstructural data sets.

• Classifying micrographs using minimally supervised
clustering approaches (k-means).

• Demonstrating that this approach successfully classifies
images both in a dataset with visually distinctive classes
(NEU surface defects) and in a dataset that humans have
difficulty classifying (In-718 Charpy fracture surfaces).

• Showing that the unsupervised, transfer learning
method gives results comparable to fully supervised,
custom built approaches on the NEU dataset.

• Python code for this analysis pipeline can be found at
arkitahara.github.io
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