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Abstract
Recent progress in the development of integrated computational materials engineering (ICME) models offers new capabilities to
deal with the challenge of designing multi-component alloys. In this study, a new type of computational method for efficient
design of sintered stainless steel alloys, optimized for manufacturability (sintering) as well for performance, is presented.
Development of the design method follows the materials systems approach that integrates processing, structure, and property
relations during metal injection molding (MIM). It includes a multi-objective genetic algorithm (GA) to optimize alloy compo-
sition with the aim of improving the sintering as well as performance-related properties. To achieve this, the GA is coupled with
computational thermodynamics and predictive analytical models. Thermodynamic simulations, based on the calculation of phase
diagram CALPHAD method, are used to establish constraints through phase stability at equilibrium and calculate the diffusivity
that determines the sintering behavior of the alloy. In addition, an advanced predictive model is used to determine solution
strengthening. To demonstrate the capability of our method, a design exercise for austenitic stainless steel is presented. New
alloys which are optimized for improved sinterability, yield strength, corrosion resistance, and cost are compared to 316L, a
commercially available austenitic steel that is widely produced by MIM.

Keywords Integrated computational materials engineering (ICME) . Alloy design . Stainless steel . Metal injection molding .

Sintering . Powder metallurgy

Introduction

The current design of alloys typically occurs through an evo-
lutionary-like, random walk process, requiring many thou-
sands of experiments to develop empirical correlations, which
often have poor predictive capability for performance-related
properties. Furthermore, design optimizations based on such
correlations usually do not offer the necessary flexibility to
incorporate multiple and sometimes competing objectives.
The challenge becomes explosively large during the design
of multi-component alloys coupled with materials processing
parameters. For these reasons, traditional alloy design usually
results in long development timelines, sometimes over de-
cades, at excessive cost. It is therefore desirable to develop
an efficient framework for the design of alloys that can handle

multiple and possibly conflicting objectives and/or
constraints.

In an age of increasing cost of experiments and decreas-
ing cost of computation, a design approach making the max-
imum use of science-based mechanistic models and a small
number of experiments significantly reduces the time and
cost of alloy development [1]. Computational methods are
particularly useful in the design of multi-component alloys,
like stainless steels, which can contain more than eight
alloying elements. Furthermore, computational designs
can also allow the development of complex algorithms in
a way not only to optimize the powder mix for performance-
related properties but also to enhance manufacturability and
consider other attributes such as cost.

Computational design of alloys involves algorithms and
tools that have the potential to scan vast compositional space
to determine the right combination of composition and pro-
cess parameters. The ideal approach is through the develop-
ment of physics-based models that deal with hierarchical
structural problems. Hierarchal models representing the corre-
sponding problems at different time and length scales then
need to be integrated with each other to predict properties of
the product [2]. Furthermore, these models need to be coupled
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with search algorithms to explore the possible compositional
space. However, these kinds of models are often very complex
requiring not only huge and efficient computational infrastruc-
ture but also comprehensive databases and well-developed
and systematically integrated algorithms that can run simulta-
neously at different time and length scales.

There are two approaches to simplifying computational
design of alloys without the need for developing multi-scale
or hierarchical models. The first involves integration of phase-
based models and data mining using, for example, artificial
neural network (ANN) or Gaussian processes, coupled with
search algorithms. Multi-objective design of metallic alloys
using computational thermodynamics-driven genetic algo-
rithm (GA) and evaluation of material behaviors using
Gaussian process are studied extensively by Tancret et al.
[3–5], Jha et al. [6], Mahfouf et al. [7], and Manou et al. [8].
Manou et al. were able to demonstrate a computational design
approach using a multi-criteria, multi-objective genetic algo-
rithm coupled with ThermoCalc (TC), a computational ther-
modynamics and material database software, and Gaussian
method [8]. An essential part of this study was the control of
the precipitation of the γ′ strengthening phase and the resultant
high-temperature properties. However, artificially trained
models often work well within the range of data they are
trained in but their predictive capability drops quickly outside
the data domain. This limits the usefulness of artificially
trained models to explore unoccupied compositional space
during the development of multi-component alloys.

The second approach is through the integration of phase-
based models with physics-based mechanical property
models. In this regard, Li et al. reported a computational
design methodology for high work-to-necking Ni-ternary
alloys by integrating the simulation of γ′ precipitation using
ThermoCalc with mechanical property models coupled to a
genetic algorithm [9]. The reliability of this approach will
depend on the predictive capability of the property models
used in the computational design framework. Advanced
mechanical property models that can offer the necessary
flexibility during the development of integrated computa-
tional design methods for alloys are being developed, such
as that by Walbruhl et al. [10] to predict solid solution
strengthening in multi-component alloys. This approach fa-
cilitates the development of advanced physics-based me-
chanical property models that can be coupled to phase-
based models to develop simplified methodologies for the
computational design of alloys.

Here, a computational framework for the design of multi-
component alloys is developed by integrating (1) computa-
tional thermodynamics to establish microstructural constraints
and determine a kinetic parameter affecting the processing of
alloys for powder metallurgy (PM) and (2) predictive models
to evaluate performance properties as well as cost. These tools
are coupled to a multi-objective genetic algorithm to search

and optimize the sintering behavior and performance-related
properties. For the purpose of demonstration, the design of an
austenitic stainless steel alloy produced by PM through metal
injection molding (MIM) is considered. This system is chosen
because it is commercially important and can also be modeled
with a reduced set of critical parameters. In addition, MIM has
the further advantage of being a growing industry sector that
uses a limited number of conventional wrought stainless steel
alloys. During the design, candidate austenitic stainless steel
alloys are optimized to maximize the sintering behavior (im-
proved densification), yield strength, and pitting corrosion
resistance while minimizing the cost. The design method in-
volves a search algorithm based on a GA, coupled to the
capabilities of TC for calculating phase equilibria and evalu-
ating the effective self-diffusivities of alloys. In addition, pre-
dictive models for determining the change in solution harden-
ing, pitting corrosion resistance, and cost are also considered.
The sintering behavior as well as change in yield strength from
the resulting optimal alloys are compared with 316L, a com-
monly used austenitic stainless steel, which is also fabricated
by MIM. The design methodology is implemented using
Matlab™ coupled with TC through the TC-Matlab interface.

Material Systems for Stainless Steel Produced
by MIM

The present study follows the material systems approach sug-
gested by Olsen [1] to integrate processing, structure, and
property (PSP) relations for the design of an austenitic stain-
less steel produced by theMIM process. The material property
objectives include yield strength, toughness, corrosion resis-
tance, and cost. The set of property objectives are thus used as
a foundation to build a first order representation of a full ma-
terial system chart for MIM, see Fig. 1. This type of chart
helps to explicitly represent the microstructural subsystems
controlling the properties of interest and the substages of pro-
cessing governing the evolution of each subsystem. In addi-
tion, the material system chart can be used to prioritize the
PSP links and develop an inductive goal to achieve the nec-
essary properties.

In this study, a design exercise is performed for an austenitic
stainless steel alloy of minimal cost with improved yield
strength and pitting corrosion resistance. The target microstruc-
ture is austenite with a fine grain size and minimal porosity
(higher density). These structural requirements are primarily
controlled through the design of the base powder mix (compo-
sition and particle size) and the sintering processes. This is
apparent by the large number of lines linking those two pro-
cesses (base powder preparation and sintering) to the structural
goals as shown in Fig. 1. In addition, the design of the base
powder composition can also affect the sintering behavior of
the powder compact (green body of the alloy), through the
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vertical flowchart showing the evolution of process steps. Thus,
the base powder preparation is the critical processing step in the
design of alloy with the necessary properties.

To enable an efficient search algorithm, the following as-
sumptions and requirements are made:

1. The powder compact is assumed to constitute a uniform
dispersion of mono-sized particles. This is typical for a
MIM feedstock and avoids the need to account for factors
related with a powder having different particle sizes and
shapes.

2. The composition should result in a single-phase austenitic
structure at the sintering temperature. This removes the
need to account for multi-phase structures and is typical
of many conventional stainless steels.

3. Densification during solid-state sintering of a powder
compact with a uniform dispersion of mono-sized parti-
cles is mainly controlled by the self-diffusivity of the base
material. Thus, the composition is selected with the aim of
maximizing the effective self-diffusivity of the base ma-
terial at the sintering temperature.

4. The yield strength of the alloy with a single-phase micro-
structure having uniform grain size is controlled by the
intrinsic strength and solid solution hardening only.
Therefore, the composition is optimized to increase the
solid solution strengthening of the final matrix.

5. To improve the pitting corrosion resistance of the alloy,
the composition is also optimized to increase the equiva-
lent chromium content (as defined in “Corrosion
Resistance and Cost”).

6. Finally, the composition is selected to minimize the cost
per kilogram of the alloy.

Note that a higher effective self-diffusivity at a given tem-
perature improves the sinterability of the powder compact by
increasing the densification rate. An alloying element which
increases the effective self-diffusivity of the powder compact
might decrease the solid solution strengthening of the matrix
and vice versa. However, improving the sinterability of the
powder compact will also improve the yield strength through
increasing the final density of the matrix. In addition, a pow-
der compact that can densify faster will also have less grain
growth during sintering.

Thus, based on the requirements drawn from the material
system chart, a flexible model can be developed for designing
a base powder composition that is capable of achieving the
desired microstructure under the prescribed processing
conditions.

Computational Methods

The design methodology involves single-criterion, multi-var-
iable, andmulti-objective optimization of the composition of a
stainless steel alloy. It consists of an evolutionary (genetic)
algorithm, which generates and evaluates candidate alloys
based on feedback from (1) computational thermodynamics
for microstructural stability and the effective self-diffusivity at
the sintering temperature and (2) predictive analytical models

Fig. 1 Material system chart for
an austenitic stainless steel alloy
manufactured by MIM
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for the change in solid solution strengthening, pitting corro-
sion resistance and cost.

Computational Thermodynamics

Thermodynamic computations in the proposed design meth-
odology are carried out using TC, a commercial software sys-
tem based on the CALPHAD method [11]. In addition, deter-
mination of the effective kinetic/transport parameters for can-
didate alloys is also performed using the property diagram
module of TC. For these purposes, the thermodynamic data-
base for iron alloys, TCFE9, is coupled with the mobility
database, MOBFE4, and results are accessed through Matlab
using the TC-Matlab interface.

The phase fraction of candidate alloy systems at the re-
quired sintering temperature is calculated by TC based on
minimization of the Gibbs free energy. This is used to select
alloy candidates that satisfy the necessary criterion, as de-
scribed in “Criterion for High-Temperature Microstructural
Stability.” In addition, calculation of the effective diffusion
coefficient for candidate alloys helps to select those alloys
according to their fitness to a defined objective function in
the optimization.

Criterion for High-Temperature Microstructural Stability

As discussed in “Introduction” and “Material Systems for
Stainless Steel Produced by MIM,” the alloy is required to
be a fully austenitic stainless steel. Thus, the high-
temperature austenite stability of the candidate alloys is de-
fined as a criteria or constraint in the design methodology. By
using TC, the phase fractions of candidate alloys at high tem-
perature can be calculated. This is achieved by single point
equilibrium calculation for a given candidate alloy with
known compositions of alloying elements, temperature, and
pressure. Phase fractions of the given alloy can then be ex-
tracted from TC using the TC-Matlab interface. Those candi-
dates with stable austenitic dispersions at high temperature are
selected.

Computational Modeling of Effective Self-diffusivity

In this study, the green body is assumed to be made from
spherical powders with uniform size and uniform spatial dis-
tribution. This results in sintering with uniform shrinkage
without distortion, as well as a uniform distribution of pores
and pore shapes. The grain size will be dependent on the initial
particle size, the sintering time, and temperature and will be
independent of alloy composition. It is therefore assumed that
densification in the green body, with uniformly distributed
powder particles, occurs mainly through lattice or self-
diffusion of the base element. The higher the self-diffusivity,
the greater the shrinkage rate at a given temperature. Thus, it is

necessary to determine the effective self-diffusivity of the base
element (Fe) in the stainless steel alloy.

The property diagram module of TC, together with the
mobility database for iron, can be used to calculate the effec-
tive tracer-diffusivity, Dt, for a candidate alloy. This can be
achieved by single point equilibrium calculation at a
predefined temperature and pressure for a known composition
of the solutes. The effective tracer diffusion coefficient of iron
can then be extracted with the help of the TC-Matlab interface.
The tracer diffusion coefficient is close to but not identical to
the self-diffusion coefficient. However, the self-diffusion co-
efficient, Ds, is often related to the tracer diffusion coefficient
by the following [12]:

Ds ¼ Dt= fc ð1Þ
where fc is a correlation factor varying between 0.6 and 1.0
depending on the crystal structure and the diffusion mecha-
nism. For diffusion dominated by the vacancy mechanism in a
face centered cubic lattice, fc = 0.78 [12]. Measurement of the
tracer diffusion coefficient may sometimes be affected by
grain boundary diffusion. Linnenbom et al. discussed the ef-
fect of grain boundary diffusion on the measurement of tracer
diffusion coefficient in stainless steel alloys below a certain
temperature [13]. For this study, estimation of the effective
self-diffusivity using the tracer diffusion databases would thus
be useful to account for grain boundary diffusion, if any, in the
powder compact of the alloys in this study.

Predictive Models

This section presents details of the predictive models used to
estimate the change in solid solution strengthening, pitting
corrosion resistance, and cost for the given alloy composition
during the computational design.

Change in Solid Solution Strength

For the alloy system in this study, work hardening can be
ignored because the goal is only on yield strength. There will
be no precipitation hardening in a single-phase fully austenitic
material. The change in strength due to composition will
therefore be dependent on solid solution strengthening and
the sintered density only.

Solid solution strengthening occurs due to the interaction
of stress fields between solute atoms and moving dislocations
[14, 15]. The change in strength due to solid solution harden-
ing in multi-component alloys depends on the solute content
and misfit parameter that arises due to the change in size and
rigidity. Analytical models for solid solution strengthening
with few variations are reviewed by Weseman et al. [16].
However, the experimental determination of misfit parame-
ters, especially for multi-component alloys with interstitial
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solutes, is not always straight forward. With the aim of pro-
viding a practical formalism for integrated computational ma-
terial engineering (ICME) in modeling solid solution strength-
ening, Walbruhl et al. suggested a generalized model for
multi-component alloys based on an expansion similar to the
Gibbs energy in thermodynamics using the compound energy
formalism (CEF) [10]. Strengthening due to solid solution,
σsss, at an isothermal temperature is given by the following:

σsss ¼ ∑
α
f α ∑

N
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where f represents the fraction of phase, α. The model con-
siders the effect of substitutional as well as interstitial elements
in strengthening or softening on the multi-component material
separately. The first summation in the bracket represents
strengthening due to addition of substitutional solutes, and it
is performed over N substitutional elements. Thus, Aα

MiMk
de-

fines the strengthening parameter when a substitutional ele-
ment, Mk, is added to Mi. The second summation represents
contributions to strengthening due to addition of interstitial
solutes, and hence, it is performed over n interstitial elements.
Similarly, Aα

MiI j
is a parameter defining strengthening when an

interstitial, I j, is added to substitutional element, Mi. The co-
efficients, q and r, are often chosen to be 2/3 as per the sug-
gestion from Labusch et al. [15]. The concentration factors for
each element are also defined as follows:

c
0
i ¼

ci

∑N
k ck

and c″j ¼
c j

∑N
k ck

g ð3Þ

where i and j denote the substitutional and interstitial ele-
ments, respectively. g is a constant that accounts for difference
in interstitial sites depending on the crystal structure and takes
a value of 1 for a fcc crystal structure.

Corrosion Resistance and Cost

The pitting corrosion resistance in a multi-component alloy is
mainly dependent on the equivalent chromium composition.
This is often represented by a factor called Pitting Resistance
Equivalent, PRE, see Eq. (4), which represents the capacity of
an alloy to resist pitting [17, 18].

PRE ¼ %Crþ 3%Moþ 16%N ð4Þ

A higher potential for corrosion is needed to initiate
pitting in alloys with large PRE values than for alloys with
lower values.

With regard to affordability of the alloy, the first crite-
rion is the cost of the constituent elements. Processing cost
is independent of the composition and hence can be ig-
nored for comparison between different alloys processed

by the same route. Thus, the cost is estimated using the
price of the constituent metals per unit kilogram at the
London Metal Exchange [19]. The relative cost of the alloy
is calculated by considering the weight fraction of each
metal element in the alloy.

Multi-variable Multi-objective Optimization Using GA

Genetic algorithms (GAs) are powerful tools to scan the
enormous space of possible candidate alloys in order to
optimize multi-variable, multi-objective problems with a
predefined criterion/constraint. Inspired by the evolution-
ary selection process, following the survival of the fittest, a
GA reproduces individuals so they evolve towards a de-
fined objective solution. One of the advantages of GAs is
that they work with populations instead of single solutions
avoiding local solutions and arrive at global optima. In
addition, the optimal result is not dependent on or deter-
mined by the initial solution. The evolution of individuals
is controlled by probabilistic operators known as crossover
and mutation rather than using predefined deterministic
functions. GAs work effectively with binary representation
of solution candidates consisting of strings of zeros and
ones, often called chromosomes, requiring encoding/
decoding procedures. Another important feature that
makes GAs important for scanning compositional space
in the design of alloys is that they make it easy to work
with multi-objective optimizations through an objective
function, which helps to prioritize or rank solutions rela-
tive to each other.

In this study, the so-called non-dominated sorting genet-
ic algorithm (NSGA-II) [20] is adopted to carry out the
multi-objective optimization task. Non-dominated sorting
means that when two feasible individuals are compared,
the Pareto-optimal one is selected. Thus, the NSGA-II pro-
vides a set of non-dominated optimal solutions. Note that,
while working with a multi-objective optimization prob-
lem, it is often difficult to achieve all the aspirations with
a single best solution; rather, a set of mutually non-
dominant solutions represents optimality. This is known
as a Pareto set. If any member of the Pareto set is better
than the other in terms of one objective, it will be inferior
in terms of another objective [21].

Four objectives are considered: maximizing the effective
self-diffusivity, maximizing solid solution strengthening,
maximizing pitting corrosion resistance, and minimizing cost
per kilogram. The optimization algorithm is implemented
using Matlab™ with a flowchart shown in Fig. 2a.
Individual alloy candidates are considered as chromosomes
having genes representing the percentage by weight of each
element in the alloy, see Fig. 2b. A set of these individuals
with different elemental compositions (genes) is called a pop-
ulation (pop). The population undergoes reproduction
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enabling the individual candidates to evolve, through varying
the values of the genes, according to their fitness to the objec-
tive function.

The NSGA-II employed in this study involves the follow-
ing steps, see Fig. 2a:

1. An initial set of Np individuals (population) consisting of
the weight percentage of s substitutional and i interstitial
elements are generated randomly within a predefined
range (bound) for each element.

2. The phase fractions are calculated using ThermoCalc
for each of the individual candidates at the sintering
temperature. From the entire population,Mp candidates
(Mp < Np) with fully austenitic phase are selected. If
the number of austenitic candidates, Mp, is less than
25, the algorithm will generate a new set of individuals
once again so that there are enough individuals for

reproduction. This step tests the individual candidates
for the criterion discussed in “Criterion for High-
Temperature Microstructural Stability.”

3. For each of the Mp candidates, the effective self-
diffusion coefficient (Ds), change in strength due to
solid solution hardening (Δσsss), pitting resistance
equivalent (PRE), and cost of the alloy are calculated
using ThermoCalc and the predictive models discussed
in “Computational Modeling of Effective Self-diffu-
sivity” and “Predictive Models,” respectively.

4. Non-dominated sorting of the Mp candidate is then per-
formed using ranking and crowding distance [20].

5. Reproduction by crossover and mutation is then per-
formed on the set of individuals (population) obtained
from step 4 to produce offspring (children).

6. The microstructural stability of the offspring population is
tested. Those that are austenite at the sintering temperature

Fig. 2 a Flowchart of the genetic
algorithm. b Example of
Individual chromosome with four
genes representing four elements
in the alloy
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are combined with the parents and sorted according to
their ranking and crowding distance.

7. To diversify the pool of candidates after every iteration, a
new set of randomly generated individuals, about 5% of
the population after reproduction, are added. This en-
hances the search performance by diversifying the solu-
tion space and helps to avoid convergence to local optima.

8. The reproduction continues until the number of genera-
tions (Gen no) reaches a predefined limit (Lim).

Application of the Design Method

In this section, an example of the computational method pro-
posed in this study is presented. Design inputs are presented
first, including the composition and solid solution strengthen-
ing model parameters, followed by the results and discussion.

Compositional Bounds

The concentration range/bound of each element considered is
shown in Table 1, with the composition of austenitic alloy
316L shown for comparison. The concentration of interstitial
elements is fixed whereas the substitutional elements are
allowed to vary between the minimum (Min) and maximum
(Max) limit. Two cases were considered depending on the
presence of copper (Cu) and the interstitial concentration.
Here, the total composition of the alloying elements is kept
below 50%.

Model Parameters for Solid Solution Strengthening

The general model discussed in “Change in Solid Solution
Strength” is based on the explicit description of the

strengthening parameters for substitutional, Aα
MiMk

, as well as
interstitial, Aα

MiI j
, elements in the alloy system. This requires

the determination of the model parameters, including those for
interstitial elements.

Ohkubo et al. [22] and Kako et al. [23] reported a detailed
study on the effect of alloying elements on the strength of
austenitic stainless steels. They presented the change in
0.2% proof strength (PS), Δσ0:2, as a function of change in
concentration of nine alloying elements. Parameters for
modeling the solution strengthening were determined by
adapting and fitting the model in Eq. (2), to the change in
0.2% PS due to the variation in a given alloying element,
elem, as follows:

Δσelem
0:2 ¼ Δσelem

sss ð5Þ

Equation (5) indicates that the observed changes in yield
strength associated with changes in composition of a given
alloying element is due to solution hardening, assuming that
all alloys are sintered to the same density. For example, the
observed variation in 0.2% PS of the austenitic steel due to
change in composition of chromium,ΔcCr from the base com-
position, is related to the solution hardening model to deter-
mine the parameter, AFeCr, as follows:

ΔσΔCr
0:2 ¼ AFeCr c

0
FeΔc″Cr

� �q

c″Va ð6Þ

where c
0
Fe and c″Va are calculated using the base composition

of the austenitic steel. Unlike the classical models for solution
hardening, the model in Eq. (2) does not require explicit as-
sessment of misfit parameters. The model considered in this
study will help to convolute or bundle the effect of misfit as
well as other factors (e.g., possible change in average grain
size due to addition of an element) into a single parameter to
simplify the modeling of solution hardening.

All the parameters determined for the alloying elements
considered in this study are shown in Eq. (7). Note that the
combination of elements that have a secondary effect on
strengthening, for example, contributions from a combination
of nickel (Ni) and molybdenum (Mo), ANiMo, on the overall
strength of the austenitic alloy is negligible as the concentra-
tion of those elements is small. Thus, the strengthening pa-
rameters for these kinds of combinations are assumed to be
one. In other words, strengthening in the austenitic steel is
primarily determined by a combination of the solute with the
base element (Fe) and hence values in the first row of Eq. (7)
need to be determined accurately.

The strengthening parameters for elements like Ni, Mn,
and Cu are found to be less than zero, indicative of a softening
effect. This is also discussed in detail by Ohkubo et al. [22]
and Dulieu et al. [24] and explained by the change in stacking
fault energy. Further description and verification with regard

Table 1 Composition bound/range of alloying elements (wt%)

Element 316L Case A Case B

Min Max Min Max

Fe Bal Bal Bal Bal Bal

Cr 17 11 25 11 24

Ni 12 8 15 8 14

Mo 2.5 1 4 1 4

Mn 1 0 3 0 3

Cu – – – 0 3

C (fixed) 0.03 – 0.03 – 0.06

Si (fixed) 0.75 – 0.75 – 0.95

N (fixed) 0.10 – 0.10 – 0.12

P (fixed) 0.04 – 0.04 – 0.04

S (fixed) 0.03 – 0.03 – 0.03
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to the effect of Cr and Ni on the stacking fault energy and
hence strength of austenitic steels are also reported by Vitos

et al. [25] after performing detailed atomistic simulations with
the help of density functional theory.

AFeCr AFeNi AFeMo AFeMn AFeCu

ACrNi ACrMo ACrMn ACrCu

ANiMo ANiMn ANiCu

AMoMn AMoCu

AMnCu

2
66664

3
77775 ¼

338:1 −330:5 317:2 −179:2 −277:4
107:3 1:0 1:0 1:0

1:0 1:0 1:0
1:0 1:0

1:0

2
66664

3
77775 ð7Þ

Among the interstitial elements listed in Table 1, carbon
(C), nitrogen (N), and silicon (Si) cause significant hardening
in austenitic alloys, although their concentration is very small
[22, 23]. Thus, the parameters defining strengthening when car-
bon, nitrogen, and silicon are added to the alloy system are deter-
mined to be AFeC ¼ 2340;AFeN ¼ 3250; and AFeSi ¼ 4100.
The strengthening parameters for the remaining interstitial
elements, i.e., phosphorous (P) and sulfur (S), have almost
no solution hardening effect as shown by Kako et al. [23]
and are assumed to be one.

Results and Discussion

Results from a design exercise using the proposed method
are presented in this section. The Pareto-frontier for the
first and second objectives, i.e., change in solid solution
strengthening and the effective self-diffusivity, is calculat-
ed. Improvements in sintering behavior and yield strength
for the resulting optimal solutions are also discussed, par-
ticularly in comparison to 316L grade austenitic stainless
steel.

Effect of Alloying Elements on the Effective
Self-diffusivity

The effective self-diffusivity of iron (Fe) in stainless
steel is affected by the composition of solute elements.
Figure 3 shows the variation in the effective self-
diffusivity of iron with the composition of the main
alloying elements in stainless steel, i.e., Cr, Ni, Mo,
Mn, and Cu at 1600 K, as calculated using the property
diagram module of TC. The effective self-diffusivity of
iron in the alloy is calculated by varying the percentage
by weight of one of the solutes between the minimum
and maximum value shown in Table 1, while keeping
the composition of the other elements constant (at their
mid value). An isothermal temperature of 1600 K is
chosen because it is the optimal sintering temperature
for austenitic stainless steels [26].

Within the respective composition bounds, chromium,
manganese, and copper are found to increase the effective
self-diffusivity of iron in stainless steel alloys, whereas the
addition of molybdenum has the opposite effect. Nickel is
observed to have a very small effect on the self-diffusivity of
iron within the compositional bound considered in this study.
The increase in diffusivity due to the addition of chromium in
stainless steel could be attributed to the slightly bigger size of
the chromium atom inducing mismatch strain in the face cen-
tered cubic lattice and hence reducing the activation energy for
the diffusion of iron atoms. On the other hand, manganese and
copper are known to increase the stacking fault energy of the
fcc lattice, which enhances the diffusion of vacancies in the
crystal structure [22].

Optimal Solutions

It was observed that improvement stagnates for all concentra-
tions of all alloying elements after 300 generations, as shown
in Fig. 4. Hence, a maximum of 300 generations was chosen
as the stopping criterion, which is equivalent to a computa-
tional time of a few days using personal computers.

Fig. 3 Effect of substitutional alloying elements on the effective self-
diffusivity of iron in stainless steel
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The population size was set to Np = 500. Genetic oper-
ations were performed using the encoded binary crossover
and a uniform mutation operator. When generating the off-
spring population, the probability for an individual to serve
as a parent, the crossover probability, was Pc = 0.7. The
probability for an individual to be mutated was set to
Pm = 0.12. The mutation operation selected new random
values for each gene; these values were uniformly drawn
between the genes respective lower and upper bounds.

Figure 5 shows the Pareto set, after the optimal solutions
are achieved, for the two compositional bounds discussed
in “Compositional Bounds.” Solutions in the Pareto set
(Pareto-frontier) are plotted considering the first and sec-
ond objectives in the optimization, i.e., change in solid
solution strengthening versus the effective self-diffusivity.
Note that each point in the Pareto set represents a unique
alloy with its own composition that is an optimal trade-off

to the four objective functions considered in the study. For
the sake of comparison, the standard 316L alloy is also
shown in the Fig. 5. This demonstrates that the composi-
tion of austenitic stainless steels can be altered to maximize
the effective self-diffusivity and/or the change in solid so-
lution hardening. Note that all the points in both Pareto-
frontiers shown in Fig. 5 are optimal in the sense that it is
possible to improve one objective only by making the other
worse. Thus, the choice of the “best” alloy from the Pareto
set depends on the users’ priority.

For example, the Pareto sets obtained using case B com-
positional bounds, see Table 1 and Fig. 5, are shown to
have higher self-diffusivity of iron as well as solution hard-
ening compared to case A. Generally, comparison of Pareto
optimal solutions in case A and B compositional bounds
show that by adding copper (Cu), it is possible to maximize
the effective self-diffusivity of iron and achieve better sin-
terability of the alloy. Furthermore, addition of a small
amount of carbon (C) and silicon (Si) is also found to push
the Pareto-frontier up resulting in higher solution harden-
ing. Note that the final yield strength of the alloy depends
not only on the solution hardening but also on the final
density after sintering. Comparison of the change in yield
strength after sintering for equal durations of the three op-
timal alloys from each of the two Pareto sets, shown in
Fig. 5 as A1/B1, A2/B2, and A3/B3, is discussed in
“Properties of Optimal Alloys.”

Properties of Optimal Alloys

Improvement in the sintering behavior of the optimal al-
loys is demonstrated by comparing their densification be-
havior with that of a commercially available austenitic
stainless steel (316L). For this purpose, a solution from
the Pareto set with the maximum effective self-diffusivity
is chosen. Solid-state sintering of a powder compact during
MIM is assumed to be governed by lattice diffusion that
can be modeled by considering the modified version of the
Nabarro-Herring creep equation [12]. Thus, the linear
shrinkage or strain rate, ε̇L, during sintering at isothermal
temperature, T, is given by the following:

ε˙ L ¼ ρ̇
3ρ

¼ 40

3

DsΩ

G2kT

� �
DF ð8Þ

where ρ represents the relative density and ρ̇ ¼ dρ=dt, Ds is
the lattice or self-diffusion coefficient,Ω is the atomic volume,
G is the particle size, k is the Boltzmann constant, and DF is
the driving stress for sintering. Since there is no external ap-
plication of load on the sample during sintering in the MIM
process, the driving force for sintering is the intrinsic sintering
stress, σs, and hence DF ¼ σs. The intrinsic sintering stress

Fig. 4 Composition of the substitutional alloying elements as a function
of number of generations (for case A compositional bound)

Fig. 5 Pareto frontier for change in solid solution strength versus
effective self-diffusivity for two cases of compositional ranges
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depends on the specific surface energy, γs, amount of poros-
ity, θ, and curvature of pores in the powder compact, and it can
be given by the following [27]:

σs ¼ 3

2

γs

G
1−θð Þ2 ð9Þ

By combining Eqs. (8) and (9), the linear shrinkage rate of
the powder compact is given by the following:

ε˙ L ¼ 20
DsΩγs

G3kT

� �
1−θð Þ2 ð10Þ

Considering conservation of mass, the volumetric
shrinkage/strain rate, ε̇v, of a powder compact during sintering
can also be expressed in terms of porosity, θ, where θ ¼ 1−ρ,
as follows [27]:

ε˙ v ¼ 3ε˙ L ¼ θ̇
1−θ

ð11Þ

Coarsening of particles during sintering is considered using
an inverse square-root function usually used for metallic pow-
ders involving a grain growth coefficient k’ and an initial
particle size, G0, as follows [28]:

G ¼ k
0
G0

1−ρð Þ1=2
ð12Þ

Jamaludin et al. [26] reported the optimal sintering condi-
tions for an austenitic stainless steel after performing optimi-
zations using the so-called design of experiment (DOE) meth-
od. They suggested an optimal sintering temperature close to
1600 K for 316L, with an initial particle size of 7 μm [26].
These conditions are thus used to compare densification be-
tween 316L and the optimal alloys obtained in this study.
Using the effective self-diffusion coefficients of the optimal
alloys obtained from the optimization procedure, densification
in the alloy’s powder compact is modeled using Eqs.
(10)–(12). Table 2 shows the parameters used during model-
ing the sintering behavior of 316L and the new optimal alloys
obtained using the two cases of compositions bounds
discussed in “Compositional bounds.”

Figure 6 shows a comparison of the relative density as a
function of sintering time between 316L and the two optimal
alloys obtained using the two compositional ranges (cases A
and B in Table 1). The dwell time for 316L (close to 250 min)
is found to be consistent with the optimal time reported by
Jamaludin et al. [26]. Comparison of dwell time between
316L and the optimal alloy for case A compositional bound
shows a modest improvement. However, the optimal alloy
from case B compositional bound is observed to have a 25%
reduction in the dwell time compared to 316L.

Variation of strength of metals with relative density is often
expressed with the help of an empirical exponent, b, to the
relative density [29]. If solution hardening is the only strength-
ening mechanism, the effective change in yield strength of a

metallic alloy, Δσalloy
y , after sintering can be given by the

following:

Δσalloy
y ¼ σsss⋅ρb ð13Þ

Combining Eqs. (10) and (11) and solving for the evolution
of relative density as a function time, t, during sintering gives
the following:

ρ ¼ ρ0exp 40
ΩDsσs

G2kT
t

� �
ð14Þ

where ρ0 is the initial relative density of the powder compact.
By combining Eqs. (13) and (14), the effective change in yield
strength of the alloy as a function of relative density is given
by the following:

Δσalloy
y ¼ σsss ρ0exp 40

ΩDsσs

G2kT
t

� �� �b
ð15Þ

Assuming a linear variation of strength with relative den-
sity, i.e., b = 1, the effective change in yield strength of the

Table 2 Parameters used in the sintering model

Sintering temperature, T (K) 1600

Initial particle size, Go (μm) 7.00

Initial porosity, θ0 (–) 0.20

Atomic volume, Ω (m3) 1.18 × 10−29

Specific surface energy, γs (J/m
2) 2.60

Boltzmann constant, k (J/K) 1.38 × 10−23

Grain growth coefficient, k′ (–) 0.50
Fig. 6 Comparison of the densification behavior of the optimal alloys
obtained from cases A and B with an existing austenitic stainless steel,
316L
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alloy powder compact with an initial relative density of, ρ0,
sintered at an isothermal temperature of, T, for a time, t, is
given by the following:

Δσalloy
y ¼ σsssρ0exp 40

ΩDsσs

G2kT
t

� �
ð16Þ

The change in yield strength of the optimal alloys after
sintering for 190 min can thus be calculated using Eq.
(16). Figure 7 summarizes the relationship between cost
per kilogram of the optimal alloys with enhancement of
pitting corrosion resistance (PRE) and yield strength. A
surface fitted to the 3D data points show that increasing
the yield strength can be achieved without a significant
cost increment whereas an increase in corrosion resistance
incurs additional cost.

The change in yield strength after sintering for 190min for
three representative optimal alloys from each of the Pareto
sets (A1/B1, A2/B2, and A3/B3) from Fig. 5 is shown in
Table 3. Comparison of the corresponding points from the
two cases shows that all alloys in the case B (B1, B2, B3)
show a larger change in yield strength than case A. The im-
provement in yield strength is achieved not only because of
higher solution hardening but also via improved densifica-
tion. With regard to corrosion resistance and cost, all three
solutions (fromeachof thePareto sets) are comparable to that
of 316L, see Table 3. Therefore, improved sinterability and a
larger change in yield strength can be achieved without sig-
nificantly higher cost.However, as shown inFig. 7, improve-
ments in corrosion resistance require additional cost. By
performing this kind of comparison between the different
Pareto optimal solutions, it is possible to make an informed
decision for an improved alloy.

During mass production of components from multi-
component alloys using MIM, optimizing the powder mix
for sinterability is important for shortening the sintering cycle
and hence reducing cost. In this respect, the present study
demonstrates possibilities for new austenitic stainless steel
alloys which have improved sinterability, yield strength, and
corrosion resistance. The computational design method pro-
posed in this study can be used for fast realization of the
properties of austenitic stainless steels produced by MIM.
The design methodology is flexible in that it can incorporate
additional properties such as toughness and ductility. The
methodology suggested in this study can also be extended
further by coupling additional submodels to calculate the ef-
fective diffusion coefficient to account for different particle
sizes or multi-phase alloys.

Conclusion

A new computational methodology for designing austenitic
stainless steel alloys with improved sintering behavior is devel-
oped. The design method follows the material systems ap-
proach that integrates processing, structure, and property
(PSP) relations during metal injection molding (MIM). The
material system chart for austenitic stainless steels shows that
preparation of the powder mix and sintering is the two critical
steps determining the structure and hence properties during
MIM. Therefore, the design methodology is developed to si-
multaneously optimize four independent objectives: sinterabil-
ity, yield strength, pitting corrosion resistance, and cost. Focus
is given to improved manufacturability during MIM, particu-
larly sinterability of the powder compact by maximizing the
effective self-diffusivity of the alloy at high temperature.

The computational methodology involves a multi-objective
optimization, using a genetic algorithm (GA) and integrating
computational thermodynamics- and physics-based predictive
models. Alloy candidates, with predefined compositional
bounds for each of the constituent elements, are generated ran-
domly using the capabilities of a GA. The equilibrium state of a
given alloy candidate at given sintering temperature is deter-
mined using computational thermodynamics to identify and

Fig. 7 Plot of cost of the alloy as a function of change in yield strength
and corrosion resistance (PRE)

Table 3 Comparison of three optimal alloys from two cases of
compositional bounds after sintering for 190 min

316L Pareto set: case A Pareto set: case B

A1 A2 A3 B1 B2 B3

ρ f (%) 95.76 97.55 96.63 96.13 98.96 97.82 96.44

Δσy (MPa) 66.58 60.60 73.85 85.81 63.94 88.73 96.20

PRE (–) 24.5 24.82 23.32 24.20 25.57 27.60 25.45

Cost (USD/kg) 2.51 2.53 2.24 2.18 2.07 2.30 2.02
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select those candidates with a fully austenitic composition.
Equilibrium state calculations are performed based on the
CALPHAD method using the ThermoCalc (TC) software. TC
is also coupled with a mobility database to determine the effec-
tive self-diffusivity of the candidate alloy, which determines the
sinterability (densification behavior of the powder compact) at
high temperature. The GA, based on non-dominated sorting of
solutions, is then used to improve the optimal alloy composition
based on feedback from the computational thermodynamics
and the predictive models.

The design methodology is shown to provide a non-
dominated set of optimal alloys (Pareto set). To demonstrate
the capability of the design approach, properties of the optimal
alloys for two cases of compositional bounds are compared to
a commercially available austenitic stainless steel, 316L. The
densification rate (measured in terms of dwell time) of the
optimal alloys can be reduced by 25% (64 min) compared to
316L. It is also shown that an increase in yield strength can be
achieved without a significant cost penalty whereas an in-
crease in corrosion resistance always incurs additional cost.
The methodology can be extended by coupling additional
submodels so that additional properties or microstructural
complexity can be incorporated in the design space.
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