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Abstract
Metal additive manufacturing (AM) typically suffers from high degrees of variability in the properties/performance
of the fabricated parts, particularly due to the lack of understanding and control over the physical mechanisms that
govern microstructure formation during fabrication. This paper directly addresses an important problem in metal AM: the
determination of the thermal history of the deposited material. Any attempts to link process to microstructure in AM would
need to consider the thermal history of the material. In situ monitoring only provides partial information and simulations
may be necessary to have a comprehensive understanding of the thermo-physical conditions to which the deposited material
is subjected. We address this in the present work through linking thermal models to experiments via a computationally
efficient surrogate modeling approach based on multivariate Gaussian processes (MVGPs). The MVGPs are then used
to calibrate the free parameters of the multi-physics models against experiments, sidestepping the use of prohibitively
expensive Monte Carlo-based calibration. This framework thus makes it possible to efficiently evaluate the impact of
varying process parameter inputs on the characteristics of the melt pool during AM. We demonstrate the framework on the
calibration of a thermal model for laser powder bed fusion AM of Ti-6Al-4V against experiments carried out over a wide
window in the process parameter space. While this work deals with problems related to AM, its applicability is wider as the
proposed framework could potentially be used in many other ICME-based problems where it is essential to link expensive
computational materials science models to available experimental data.

Keywords Metal additive manufacturing · Powder bed fusion · Ti-6-Al-4V · Finite element thermal models ·
Uncertainty quantification

Introduction

Integrated computational materials engineering (ICME)
prescribes a framework for the acceleration in the devel-
opment and deployment of materials through the estab-
lishment and exploitation of process-structure-property-
performance (PSPP) relationships. PSPPs in turn can be
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established through linking materials models at multiple
length (and possibly time) scales. The goal in ICME is to
optimize the materials, manufacturing process, and compo-
nent designs prior to part fabrication [1]. Inherently, ICME
involves utilization of physics-based simulation models that
aid in understanding the behavior of complex systems.
These models use the system governing equations to com-
pute and predict specific quantities of interest (QoIs). As
a well-established fact, all of these simulation models are
imperfect and thus their predictions will differ from the
actual physical phenomena they are trying to describe.

The disagreement between the real-world and the
model outputs can be attributed to one or more of the
following factors: (1) incomplete understanding of the
physical system, (2) incomplete information about model
parameters, (3) incorrect values for the model inputs,
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(4) natural stochastic behavior of the system, and (5)
uncertainties associated with available numerical simulation
algorithms [1–5]. Hence, identification, characterization,
and quantification of the uncertainties associated with
these models become necessary in order to strengthen the
robustness of model predictions, which is in turn essential if
one is to use the models to guide the design/optimization of
the systems (in this case, materials).

As an independent field of study, uncertainty quantifica-
tion (UQ) seeks to address the challenges associated with
the (unknown) uncertainties in models used to describe the
behavior of complex systems. UQ is an established field
that has been successfully applied to many areas includ-
ing climate models [6], computational fluid dynamics [7],
forestry [8], nuclear engineering [9], and econometrics [10].
Although UQ is a key need for computational materi-
als models [11, 12], there is a literature gap in this area
[13]. Reference [3] presented a review of the few exist-
ing works on UQ of multi-scale simulation models. More
recently, reference [13] conducted UQ for a physics-based
precipitation model of nickel-titanium shape memory alloys
through combining experimental and computer simulation
data.

Additive manufacturing (AM) is an area that can
potentially benefit substantially from the ICME framework.
First, AM processes such as laser powder bed fusion
(L-PBF) are recognized for the high variability in the
performance, composition, and microstructure of parts [14].
This variability is due to our incomplete understanding
of the many complex and coupled phenomena that occur
as energy interacts with raw material to produce a
solid part [15]. Currently, many researchers work on
developing simulation models at different scales to help
understand different aspects of a specific AM process. For
example for the L-PBF process, different simulation models
exist that focus on different physical aspects, including
characteristics of the powder bed, evolution of the melt
pool, solidification process, and generation of residual
stresses. Inevitably, these models introduce various sources
of uncertainty [16]. Second, ICME provides the necessary
infrastructure to support and accelerate qualification and
certification [17], a key technological barrier of AM.
Recently, references [18, 19] discussed the opportunities
and challenges of how state-of-the-art UQ techniques
can be used for predicting materials properties in AM
processes.

The purpose of this work is to conduct formal UQ
for a computational materials model used to predict melt
pool characteristics in L-PBF metal AM processes. More
specifically, we perform statistical calibration of an FEM-
based thermal model via surrogate (or reduced order)
modeling and Bayesian inference. The statistical calibration

problem (also known as the inverse UQ problem) refers
to making inference on the posterior distributions of a set
of calibration parameters such that model predictions are
in agreement with experimental observations [20]. To the
best of the authors’ knowledge, the current work is the first
to conduct such rigorous calibration using a multivariate
Gaussian process (GP)-based surrogate model. While the
focus of the work is on specific physical phenomena
associated with L-PBF AM, the overall framework can
be readily adapted to address similar problems that
involve systematic calibration of complex multiple-output
computational materials models.

Prior to this work, UQ of ICME simulation models has
been classically conducted using Monte Carlo methods (see
[21–25]). However, for many computationally expensive
models, Monte Carlo methods are impractical, and some-
times even unfeasible, as they require sufficiently large
numbers of simulation runs in order to acquire the statis-
tics necessary to adequately characterize model uncertainty.
This is especially true in the specific case of computational
models for AM that tend to be computationally demanding,
which precludes the utilization of Monte Carlo methods. To
address this, we construct a surrogate model (also known
as an emulator or meta-model). This represents a statisti-
cal approximation that can be used in lieu of the original
computationally expensive simulation model without sac-
rificing too much accuracy. Although surrogate modeling
has been studied in prior works, one important distinguish-
ing feature of the surrogate model developed in the present
study is its ability of approximating simulation models that
have multiple outputs or QoIs. This is an important feature
since multi-output simulation models are quite common in
science and engineering applications [26, 27]. Conventional
UQ approaches for multi-output models typically ignore
correlations that might exist among model outputs, and thus
usually conduct independent UQ analysis for each output
independently. Clearly, this de-coupling overlooks inherent
coupling or interdependence that may exist among multiple
outputs of a single model.

The remainder of this paper is organized as follows:
“Proposed Framework” has two subsections: “Melt Pool
Modeling Through FEM Based Thermal Modeling” intro-
duces the FEM-based simulation model used in this work.
“Multivariate Statistical Calibration” describes the statisti-
cal framework used for building the surrogate and calibra-
tion models. “Results: Calibration of FEM Based Thermal
Model using Ti-6Al-4V Tracks” reports the results of imple-
menting the proposed calibration procedure for the melt
pool FEM-based simulation model using both simulations
and experimental characterization. “Conclusions and Future
Work Directions” concludes the paper with a summary of
findings and directions for future research.
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Proposed Framework

This section will start by presenting the physics-based FEM-
based thermal model, followed by the multivariate statistical
framework used to calibrate that model. Readers who are
not focused on understanding the details of mathematical
and statistical model developments can skip “Multivariate
Statistical Calibration” and proceed directly to the results
and discussion in “Results: Calibration of FEM Based
Thermal Model using Ti-6Al-4V Tracks”.

Melt Pool Modeling Through FEM-Based Thermal
Modeling

L-PBF processes offer attractive advantages and capabilities
over conventional manufacturing techniques. These include,
for example, higher geometric freedom, flexibility to
customize parts, and recently the potential capability of
tailoring the microstructures (and hence the properties)
of fabricated parts. However, they are in the meantime
very complex processes that involve several physical
mechanisms most of which are not yet fully understood.
Therefore, it is crucial to develop better understanding of
these mechanisms that drive the thermal history within the
part during fabrication. Ideally, in situ thermal monitoring
can be used to capture information about thermal histories
during fabrication. However, experimental measurement of
the thermal field in L-PBF is extremely difficult due to a
number of challenges such as very high thermal gradients
and cooling rates, micro-scale melt pool size, and emissivity
variations, among many other challenges. Consequently,
numerical methods are needed to complement experiments
in understanding the thermal history during the fabrication
of L-PBF parts.

Formally, we define the melt pool as the region in the
laser powder interface at which metal powder particles fuse
to form a pool of molten metal that eventually solidifies after
the laser beam moves to another location. In this paper, we
developed a three-dimensional FEM-based thermal model
implemented in COMSOL Multiphysics software to study
melt pool characteristics, including geometry and thermal
profiles, during the fabrication of single tracks printed in a
thin layer of powder on top of a solid substrate. The powder
layer was assumed as a 30-μm continuum medium over
a 1-mm-thick substrate. Ti-6Al-4V alloy was selected as
the material for both the powder layer and the substrate.
To ensure accurate analysis, second-order quadrilateral
Lagrange elements with the size of 30 μm were used for
the laser powder interaction zone, while coarser tetrahedral
elements were employed for the rest of the simulation
domain. Note that, since second-order elements with node
points at the mid points of the sides as well as in the
element center were used in the laser powder interaction

zone, the accuracy of the solution is higher compared to
a first-order element with the same size, which is mostly
used in the literature for similar models. In addition, the
results of the mesh convergence study indicated that further
reduction in the fine element size extremely increases the
computation cost, although it has a negligible influence on
the melt pool size. Single track simulations were run for a
3-mm-long track. Figure 1 shows a sample output of the
model with melt pool temperature profiles. It is worth noting
that to reduce the computation cost, a relatively smaller
simulation domain is used compared to the real experiments.
A small domain might potentially cause the final solution
to be adversely affected by the boundary condition ambient
temperature. To account for this, trial simulations varying
the domain size were conducted to show negligible effect
on the melt pool size. Table 1 shows the results of varying
the domain size which changes the melt pool dimensions by
less than 1 μm.

An appreciable number of FEM-based thermal models
have been developed to predict the thermal history and melt
pool geometry during L-PBF. In these works, the effects
of process parameters (e.g., laser power, scanning velocity,
hatch spacing), material properties, and powder properties

a

b

Fig. 1 Sample outputs of the melt pool model for Ti-6Al-4V powder
on a Ti-6Al-4V substrate, showing the a domain mesh and b
temperature profiles in three dimensions



Integr Mater Manuf Innov (2018) 7:116–135 119

Table 1 Effect of simulation domain size on the melt pool dimensions

Domain size (mm) Melt pool size (μm)

(Length-width-height) (Length-width-height)

Small (3.5×0.5×0.23) 150-144-52

Medium (5.5×1.25×1.03) 151-144-52

Large (7.5×2.25×2.03) 151-144-52

(e.g., particle size distribution, layer thickness) have been
investigated. For these melt pool models, an appropriate
powder bed model should be employed. Modeling of the
powder bed has been done in two different ways: powder
scale (refer to [28–35]) and continuum scale (refer to [36–
43]). Although the first approach enables simulating the
size variations and the local changes in the melt pool such
as incomplete melting or formation of pores [28, 29], it is
computationally expensive such that it is almost impossible
to use it for full-part simulation. The latter approach, on the
other hand, has been widely employed due to its relatively
low computational cost and ease of implementation. While
some studies have taken fluid dynamics effects in the
melt pool into account (e.g., Marangoni convection in [33,
44, 45]), a significant number of works in the literature
have neglected those effects to simplify the model (see
for example [38–40, 43]). The change in volume during
melting of the powder [42, 46, 47] and layer built-up were
modeled in some studies [37, 41, 48, 49]. We refer the
interested readers to review papers on numerical modeling
and simulation of AM for more information [50–52].

The model used in this work accounts for several
heat transfer mechanisms that take place during metal
L-PBF. In particular, conduction, convection, radiation,
phase transitions (namely, solid-to-liquid and liquid-to-gas
transitions), latent heat of melting/evaporation, temperature
dependent material properties, and the effective thermo-
physical properties for the powder layer were considered.
The heat conduction equation is given by the following:

ρ(T )Cp(T )
∂T

∂t
+ ∇(−k(T )∇T ) = Q, (1)

where ρ(T ) is the density, Cp(T ) is the specific heat
capacity, k(T ) is the thermal conductivity, T is the
temperature, t is the time, and Q is the volumetric heat
flux. The variation in the material properties during phase
change is described based on apparent heat capacity method
in which the latent heat is accounted for as an extra term in
the heat capacity description:

ρ(T ) =
M∑

i=1

φiρi(T ) (2)

k(T ) =
M∑

i=1

φiki(T ) (3)

Cp(T ) = 1

ρ

M∑

i=1

φiρi(T )Cp,i(T )

+
M−1∑

j=1

Lj→j+1
dαm,j→j+1

dT
(4)

αm,j→j+1 = 1

2

φj+1ρj+1(T ) − φjρj (T )

φj+1ρj+1(T ) + φjρj (T )
, (5)

where ki(T ), ρi(T ), Cp,i(T ), and φi denote the thermal
conductivity, density, specific heat capacity, and volume
fraction of phase i, respectively. During phase change, the
value of φi smoothly varies from 1 to 0. In this model, solid
(i = 1), liquid (i = 2), and vapor (i = 3) phases are
considered; hence, M is set to 3. Lj→j+1 represents the
latent heat and αm,j→j+1 describes the mass fraction of the
phase.

The effective density (ρeff) and the effective thermal
conductivity (keff) of the powder are defined as follows [53]:

ρeff(T ) = ρsolid(T )(1 − ∅(T )) (6)

keff(T ) = ksolid(T )(1 − ∅(T ))n, (7)

where ρsolid and ksolid are the density and the thermal
conductivity of the bulk solid. The decrease in the porosity
of the powder during melting is described by ∅(T ), where
∅(T ) = 0 implies full melting. n is the empirical parameter
and set to 4 according to [53].

Temperature-dependent material properties of Ti6Al4V
as reported in [54] are used for the bulk solid phase.
Equations 6 and 7 are used to calculate the effective density
and thermal conductivity of the powder, while the specific
heat capacity of the powder was assumed to be the same as
bulk solid as suggested in the majority of previous works in
the literature (see [41–43, 53, 55–59]). The density and heat
capacity of the liquid were extrapolated according to [59].
Note that for simplification and to reduce the computational
time, the model only accounts for conduction mode melting
and neglects fluid dynamics effects in the melt pool.
However, to account for the effect of Marangoni convection
on the melt pool size and geometry, the thermal conductivity
of liquid was increased according to [41, 56, 59]. This was
achieved by multiplying the thermal conductivity of the bulk
solid phase at the melting temperature (29 W/mk) by a
constant multiplier, denoted by θ3 in “Results: Calibration
of FEM Based Thermal Model using Ti-6Al-4V Tracks”.

The laser beam was defined as a two-dimensional
Gaussian distributed moving heat source. The initial
temperature of the build was set to the ambient temperature
(298 K). Natural convection and radiation were applied as
boundary conditions on the powder surface:

qconvection = h(Tamb − T ) (8)

qradiation = εσB(T 4
amb − T 4), (9)
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where h is the coefficient of the convective heat transfer
which was set to 14 W/m2K, Tamb is the ambient
temperature (298 K), T is the current temperature, ε is the
emissivity coefficient (0.7 according to [57]), and σB| is
the Stefan–Boltzmann constant, respectively. To account for
evaporation, a heat flux on the powder surface, as described
in Eq. 10 was applied as a boundary condition:

Qsink = −mv × Lv, (10)

where mv| and Lv stand for the mass of vapor and the
latent heat of evaporation, respectively. The mass of vapor
is calculated based on the volume fraction of vapor phase
(φ3). A symmetry boundary condition was applied along the
scanning path to reduce the computational cost. All other
boundaries were maintained at the ambient temperature.
Finally, it is worth mentioning that keyhole effect is not
observed in the experimental settings employed in this
study (see “Experimental Measurements”). Hence, it is not
accounted for in the model. More details regarding the
physical description of the model can be found in [58].

Since the thermal model takes different physical mecha-
nisms into account, there are multiple materials parameters
that influence the model results, and thus, the predic-
tive capabilities of the model. After preliminary simulation
experiments, the following parameters were identified as
most significant on variability in model outputs: (1) laser
absorptivity, (2) powder bed porosity, and (3) thermal con-
ductivity of the liquid. It is known that the laser absorptivity
is a function of temperature and has different values for
powder, solid, and liquid materials. There are several factors
(e.g., beam intensity, wavelength, temperature, oxidation,
powder size, and distribution) affecting the absorptivity of
the material. Therefore, it is difficult to experimentally mea-
sure it. Note that while low values of absorptivity result
in insufficient energy input and incomplete melting of the
powder particles, very high values lead to overheating of the
particles, hence over estimation of the melt pool size.

Moreover, to account for the effect of Marangoni
convection on the melt pool size and geometry, the
thermal conductivity of liquid was increased according
to [39, 59, 60]. However, there is no consensus in the
community on the level of this increase. Powder porosity
is used as an input to predict the effective thermo-physical
properties (thermal conductivity, density, heat capacity) of
the powder layer. Therefore, it has a significant influence
on the predicted thermal distribution. Considering the
aforementioned aspects, a need for the calibration of these
three parameters was realized.

It is worth pointing out the key simplifying assumptions
of the FEM thermal model used in this work. First, in
order to reduce the computation time, the fluid dynamic
phenomena occurring within the melt pool are neglected.
Second, the powder bed is assumed as a continuum layer

with effective thermo-physical properties. The porosity
of the powder bed will be later treated as a calibration
parameter in the remainder of the work. Finally, the volume
shrinkage resulting from melting of the powder is neglected.

Multivariate Statistical Calibration

After describing the melt pool FEM-based simulation model
in “Melt Pool Modeling Through FEM Based Thermal
Modeling”, we now describe the multivariate statistical
framework that will be employed to calibrate that model.
This approach is referred to as calibration of computer
models by [61]. We emphasize that although AM is our
focus application platform, the framework developed in this
section can be readily generalized to other problems.

Before we introduce the mathematical formulations, we
establish notation and some definitions. Since the word
model will be employed to refer to different types of mod-
els that constitute the building blocks of the framework,
we clearly define specific cases to avoid misinterpreta-
tion and ambiguity. We use computer model to denote a
computational model implemented via a computer code
that simulates and recreates any process (physical, social,
mathematical, etc.) by a set of calculations derived from
proper study of the process. One example of a computer
model is the thermal model explained in Section “Melt
Pool Modeling Through FEM-Based Thermal Modeling”.
The term statistical model will refer to the calibration method-
ology presented in this section, and is sub-divided into two
key components: the surrogate model and the calibration
model, which will be defined in the following paragraphs.

Previous approaches for the calibration of computer
models using rigorous statistics rely on Monte Carlo (MC)
methods. While MC methods are extremely valuable and
well studied, the fact that they necessitate generating suf-
ficiently large numbers of simulations (sometimes in the
order of 15,000–20,000 simulations) makes them impracti-
cal for calibrating computationally expensive models. One
possible approach to overcome this challenge is using a two-
stage approach based on surrogate modeling (also called
meta-modeling or emulation) and suggested in a series of
works [61–64]. The surrogate model is thus the compu-
tationally efficient statistical approximation of the original
computer model.

In the calibration problem, whether or not a surrogate
model is used, we distinguish between two different types
of inputs to the computer model [13]:

– Control inputs (denoted by x) are inputs to the computer
model that are directly set to known pre-determined
values by the user. Examples of control inputs in
some computer models include temperature, pressure,
or velocity.
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– Calibration parameters (denoted by θ ) are inputs or
parameters to the computer model that are unknown
with certainty, or not measurable, at the time of simu-
lation, but do influence the results of the computations.
Examples include material properties or unknown phys-
ical constants.

The goal of the calibration model is thus to estimate
the calibration parameters such that the computer model
simulations agree with experimental observations of the real
process being simulated [13]. Formally, the statistical model
follows the equation:

yE (x) = yS
(
x, θ	

) + δ (x) + ε (11)

where the experimental observation yE of the real process
run at some values of control inputs x is equal to
the summation of the response of the computer model
yS , a discrepancy (or inadequacy) function δ, and some
measurement error ε. The objective is to estimate the values
of the calibration parameters θ	. Definitions for each term
in Eq. 11 will be provided as we briefly describe the two
stages of the statistical model in the following subsections.
More details can be found in the Appendices. It is worth
mentioning that parameter calibration for our FETM model
is specific to the material system being processed using
AM. Hence, if a new material system is being considered,
the parameters must be re-calibrated which necessitates
generating a new set of experimental data.

Multivariate Surrogate Model

In this section, we build a multivariate surrogate model
that replaces the computer model yS (x, θ) in Eq. 11. For
detailed derivations, the interested reader is encouraged to
study the work by [65]. Note that we define the computer
model as a function yS = f (·) that takes as input the control
inputs x and the calibration parameters θ , and returns a q-
dimensional response vector yS ∈ R

q . The inputs x and
parameters θ lie in some multidimensional spaces X ⊆ R

p

and T ⊆ R
t , respectively. Thus, the computer model f is

essentially a mapping f : X × T �→ R
q . Although f is a

deterministic function (that is, if run multiple times at same
input values, it will return the same value for responses),
in order to approximate it with a surrogate model, we can
regard f as an stochastic process [65].

As mentioned in “Introduction”, we employ GP models
that are known for their attractive mathematical and
computational properties [66]. The GP model assumes that
given any finite collection of inputs x1, . . . , xn the model
outputs f (x1), . . . , f (xn) will follow a q-dimensional
Gaussian process. Hence, their joint probability distribution
becomes a matrix-variate normal distribution

f (x1) , . . . , f (xn) |� ∼ MVN n,q (m, C) (12)

with mean matrix m and cross-covariance matrix C, which
is fully defined by some set of hyperparameters �. The
multivariate q-dimensional GP is denoted as

f (·) | � ∼ GPq (m (·) , c (·, ·)�) (13)

where c (·, ·) is a positive definite correlation function
accounting for correlation in the input space with c (x, x) =
1, and � ∈ R

q,q
+ is a positive definite matrix accounting for

correlations between outputs.
The first step to build the GP surrogate model is to run the

computer model for several simulations in order to gather
a set of data that will be used to train the surrogate model.
We choose to employ the Latin hypercube sampling (LHS)
method given its ability to explore the input space uniformly
and homogeneously. The training data set consists of N
points and is denoted by

XS =
⎡

⎢⎣
(x, θ)1

...
(x, θ)N

⎤

⎥⎦∈ R
N,p+t and Y S =

⎡

⎢⎣
yS (x, θ)1

...
yS (x, θ)N

⎤

⎥⎦∈ R
N,q

where XS is an N×(p + t) input matrix and Y S is an N×q

output matrix.
Appendix A describes how to estimate the GP hyper-

parameters. Specifically, the procedure to find the poste-
rior distribution of the roughness parameters r through a
Bayesian approach is explained. After estimation of the
hyperparameters, we assess the performance of the GP sur-
rogate model through k-fold cross validation (CV). CV is
a common technique to evaluate the adequacy of predictive
models, including surrogate models, through computing a
metric that captures the deviation of the predictions obtained
using the predictive model (the surrogate model in our case)
and the true quantity being predicted (computer model pre-
dictions in our case). Put simply, our target is to ensure that
predictions obtained using the surrogate model are close to
those obtained using the original computer model. In a CV
procedure, we partition the training dataset

(
XS, Y S

)
into k

disjoint partitions. k − 1 of these partitions are used to train
the surrogate model, and then predictions are made on the
left-out partition using (21). These predictions are then com-
pared with the computer model predictions. This process is
iterated k times, such that at every iteration, a different par-
tition is left out, and after all k iterations all partitions have
been left out once and only once. Finally, the performance
metric is computed. Many metrics have been reported in
the literature on predictive modeling and machine learning.
We utilize the well-known mean absolute percentage error
(MAPE) defined as

MAPEj = 1

N

N∑

i=1

∣∣∣yS
i,j − ŷS

i,j

∣∣∣ ∀j ∈ {1, . . . , q} ,
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where yS
i,j is j -th element of the computer model output at

input (x, θ)i , and ŷS
i,j is the j -th element of the surrogate

model prediction evaluated at the same input (x, θ)i using
the estimated values for r .

If the CV results are unsatisfactory (high MAPE), more
data is required. Appendix B provides guidelines for an
efficient way of acquiring more training data using adaptive
sampling for the GP surrogate model.

Multivariate Calibration Model

Once the surrogate model has been adequately constructed,
it can now be used in lieu of the original computer model in
Eq. 11 to generate sufficiently large number of simulations
needed to conduct calibration of the parameters θ . Some of
the steps in developing the following calibration procedure
follow the work of [67].

We start by elucidating the two remaining terms of the
statistical model given in Eq. 11. The term δ (x) is a discrep-
ancy or model inadequacy function. This function accounts
for factors that result in deviation between the computer
model predictions and the real process being simulated,
including missing physics, simplifying assumptions, and
numerical errors. The term ε (x) models the measurement
error associated with experimental observations. Note that
both of these terms depend only on control inputs x, since
the calibration parameters are not changed or controlled in
experiments.

Similar to what was done with the surrogate model
in “Multivariate Surrogate Model”, we model δ (·) as a
multivariate q-dimensional GP,

δ (·) | rδ, σ δ ∼ GPq (0, cδ (·, ·)�δ) (14)

with mean function that is equal to 0 for all elements, and a
stationary squared exponential correlation function

cδ

(
xi , xj

) = exp
[
− (

xi − xj

)

Rδ

(
xi − xj

)]

where Rδ = diag (rδ) is a diagonal matrix of positive

roughness parameters with rδ =
[
r
(δ)
1 , . . . , r

(δ)
p

]
∈ R

p
+,

and the covariance matrix of the model outputs �δ =
diag (σ δ) is a diagonal matrix with positive variances σ δ =[
σ1, . . . , σq

] ∈ R
q
+.

The measurement error term ε (·) is also modeled as a
multivariate q-dimensional GP,

ε (·) | ψ ∼ GPq (0, cε (·, ·) �ε) (15)

with mean function equal to 0 for all elements, and
correlation function given by the Kronecker delta function

cε

(
xi , xj

) =
{

1 if xi = xj

0 if xi �= xj

and noise matrix �ε = diag (ψ) with positive noise
variances ψ = [

ψ1, . . . , ψq

] ∈ R
q
+.

In order to build the calibration model, we need another
data set which is constructed from experimental observa-
tions. The procedure to obtain the experimental data is
explained in “Experimental Measurements”. We denote this
data set as

XE =
⎡

⎢⎣
xE

1
...

xE
n

⎤

⎥⎦ ∈ R
n,p and YE =

⎡

⎢⎣
yE

(
xE

1

)

...
yE

(
xE

n

)

⎤

⎥⎦ ∈ R
n,q

where XE is an n × p controllable input matrix and yE (x)

is the result of the experiment observed at x; thus, YE is
a n × q matrix. It is worth to mention that the size n of
this dataset may be different from simulation dataset size
N, and that only control inputs x are used in the context of
physical experiments (as opposed to (x, θ) tuples for both
the computer and surrogate models).

Having the dataset
(
XE, YE

)
, we estimate the posterior

distributions for the calibration parameters and hyperparam-
eters. We conduct a Bayesian methodology to achieve this,
where the posterior distributions of the hyperparameters
�cal is given by

θ , rδ, σ δ, ψ | XE, YE, XS, Y S ∝
p

(
YE | �sim, XE, XS, Y S

)
π (θ , rδ, σ δ, ψ) .

The distributions are computed using the Metropolis Hastings
algorithm after adequate selection of the prior distributions
π (θ , rδ, σ δ, ψ). The formulations required for estimating
the hyperparameters �cal can be found in Appendix C.

After determining these posterior distributions, the last
remaining step is to construct a predictor that can be used
to compute model predictions at input settings that have
not been previously simulated or experimentally measured,
and we rely on the Kriging technique, also known as the
best linear unbiased estimator (BLUP) [68]. Details of the
Kriging technique are provided in Appendix D.

To assess the performance of the calibrated model, a cross
validation (CV) procedure similar to the one described for
the surrogate model in “Multivariate Surrogate Model” can
be used. The mean absolute percentage error (MAPE) can
be computed using Eqs. 27 and 28. The key difference is
the fact that in this case, simulations from the calibrated
surrogate model are compared with experimental measure-
ments, in contrast to comparing surrogate model predictions
with the computer model predictions.

Results: Calibration of FEM-Based Thermal
Model Using Ti-6Al-4V Tracks

The statistical calibration procedure is conducted on the
FEM-based thermal model described in Section “Melt
Pool Modeling Through FEM Based Thermal Modeling”.
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Following our definitions, the thermal model represents
the computer model, and the two terms will be used
interchangeably in the remainder of the text. This computer
model predicts the three-dimensional thermal profiles of
the moving melt pool during L-PBF AM. It is reported in
the literature that the melt pool temperature and geometry
(depth and width) are important factors influencing the
outcome of the L-PBF process [69]. The inputs and outputs
of the computer model are described as follows:

– Two control inputs

– x1: laser power (W)
– x2: laser scan speed (mm/s)
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Fig. 2 Histograms and kernel density estimates of the posterior
distributions for the roughness parameters r for the surrogate model
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Fig. 3 Results of a tenfold cross validation of the surrogate model for
a melt pool depth, b melt pool width, and c melt pool peak temperature

– Three calibration parameters

– θ1: powder bed porosity (%)
– θ2: laser absorptivity(%)
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Table 2 Mean absolute
predictive error (MAPE) of the
surrogate model for the three
outputs

Melt pool property Depth Width Peak temperature

Observed range in simulation 51.3 μm 147.8 μm 1284 K

Mean absolute predictive error (MAPE) 2.01 μm 8.05 μm 56.5 K

MAPE as % of the simulation range 4% 5% 4%

– θ3: coefficient of thermal conductivity for
liquid ( W

m·K )

– Three model outputs (or quantities of interest, QoIs)

– yS
1 , yE

1 : melt pool depth into the solid
substrate (μm)

– yS
2 , yE

2 : melt pool width (μm)
– yS

3 , yE
3 : melt pool peak temperature (◦C).

The chosen control inputs (laser power and speed) are
known to have the most significant effect on the melt
pool characteristics, and are commonly studied by AM
researchers (see for example [68]). In terms of the notation
defined in “Multivariate Statistical Calibration”, we have
the length of the control inputs vector p = 2, and lengths
of the calibration parameters vector and computer model
outputs vector t = q = 3. We test the performance
of the proposed multivariate calibration procedure through
studying the melt pool conditions while fabricating single
track of Ti-6Al-4V. We derive the posterior distributions of
the calibration parameters θ using a synthesis of computer
model simulations denoted by matrices XS and Y S , and
experimental observations denoted by matrices XE and YE .
We start by constructing a GP-based surrogate model using
a data set of computer model simulations (“Building the
Surrogate Model”). Next, we conduct manufacturing and
characterization experiments to collect the data required
for calibrating the model (“Experimental Measurements”).

Fig. 4 Representative SEM images used for measuring the melt pool
depth and width

Finally, we conduct model calibration and prediction (see
“Prediction Using the Calibrated Model”).

Building the Surrogate Model

Since L-PBF processes involve complicated physical
phenomena with different forms of heat and mass transfer
and material phase transitions, the run-times for computer
simulation models are typically long. This necessitates
the use of computationally efficient surrogate models,
both for the purpose of conducting calibration or for
process planning and optimization. In the present case,
the execution time for the FEM-based thermal model
developed was dependent on the model inputs (control
inputs and calibration parameters). From initial test
simulation runs, execution times ranged between 30 min
to 5 h. Hence, performing a traditional Markov chain
Monte Carlo (MCMC) with 50,000 iterations would take
approximately 800 weeks. Furthermore, MCMC sampling
strategies preclude the use of embarrassingly parallel modes
of execution to improve computational time. Instead, we
use the two-stage surrogate-modeling approach explained in
“Multivariate Surrogate Model” to address this challenge.

To build the surrogate model, a training data set from
the original FEM-based thermal model is first needed.
This data set consists of the two matrices XS and
Y S introduced earlier, representing simulation inputs and
outputs, respectively. We use the Latin hypercube sampling
(LHS) strategy to uniformly select design points from the
control input and calibration parameters space, X × T .

Fig. 5 The two-wavelength pyrometer used for temperature measure-
ment mounted inside the L-PBF machine



Integr Mater Manuf Innov (2018) 7:116–135 125

Fig. 6 Temperature map of a
sample melt pool captured using
the pyrometer

The lower and upper bounds for the control input space
X was chosen as Xmin = {30 W, 80 mm/s} and Xmax =
{500 W, 400 mm/s}. These bounds were determined based
on prior knowledge of the commercial metal L-PBF system
used in this study and machine specifications. The lower
and upper bounds for the calibration parameter space
were chosen as Tmin = {20%, 40%, 1} and Tmax =
{70%, 90%, 25}. These bounds were specified by the AM
researchers based on previous values reported in the
literature to construct an initial region within which the
true values of θ are believed to lie. A simulation data
set of size N = 130 was generated over the X × T
space. Hence, XS is an N × (p + t) matrix with 130
different and uniformly selected (x, θ) combinations, and
Y S is an N × q with elements representing outputs of
the thermal model for input XS . To accelerate the process,
simulations were conducted using the Texas A&M 843-
node high-performance computing cluster. Each simulation
was conducted on a single node with 20 cores. Multiple
nodes were used for cross validation purposes, “Multivariate
Surrogate Model”.

Recall from Eq. 20 that the conditional posterior distri-
bution of f (·) given the simulation training data (XS, Y S)

and roughness parameters r is a q-variate T process.
The Bayesian approach was then used to estimate the
roughness parameters. To ensure their positivity, log-logistic

prior distributions for the elements of r with both scale and
shape parameters equal to 1 were used (see Eq. 24). Next,
using the single-component Metropolis-Hastings algorithm,
the posterior distributions of r were generated after 50,000
iterations with 25% burn-in period and thinning every fifth
sample. Figure 2 shows the histograms and kernel density
estimates of the posterior distributions for the roughness
parameters.We observe that the posteriors are informative,
i.e., unimodal and suggesting specific values for the rough-
ness parameters. The modes of these distributions were
used as the estimates for these roughness parameters r . At
this stage, the surrogate model is built and ready to use,
since essentially when the roughness parameters have been
estimated, the output of the computer model at any given
combination of (x, θ) can be estimated using Eq. 21. A con-
fidence interval for this estimate can also be determined
using Eq. 22. The surrogate model allows for significant
savings in computational time, since the predictions can be
made instantaneously using the GP after the hyperparame-
ters have been estimated. On the other hand, the simulation
model prediction runs would take 1–4 h depending on the
process parameter inputs.

It is necessary to validate and assess the performance
of the surrogate model once the hyperparameters �sim are
estimated. A tenfold cross validation was performed for the
surrogate model and the results are displayed in Fig. 3a, b, c,
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corresponding to the three model outputs: melt pool depth,
width, and peak temperature, respectively. In the plots,
the horizontal axes represent the outputs of the computer
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Fig. 7 Histograms and kernel density estimates of the posterior
distributions for calibration parameters a θ1: laser absorptivity, b θ2:
powder bed porosity, and c θ3: thermal conductivity of the liquid

simulation model, while the vertical axes show the predicted
outputs using the surrogate model with the bars representing
confidence intervals for these predictions. In other words,
the red line represents the ideal case with surrogate model
predictions E[f (x)|XS, Y S, θ ] being in full agreement with
computer model simulations yS(x, θ).

It can be visually seen that the predictive performance
of the surrogate model is satisfactory. For a quantitative
assessment, the computed MAPE values for the three
outputs are reported in Table 2, also indicating satisfactory
performance. Note that since the predictive accuracy,
represented by MAPE, was deemed acceptable, there was
no need for further sampling using the adaptive sampling
technique described in “Multivariate Surrogate Model”.

Experimental Measurements

As mentioned in “Multivariate Statistical Calibration”,
experimental data is needed to calibrate the computer
model. LHS design was also used to uniformly explore
the control input space X . A total of n = 24 different
configurations of x were determined, which constitute XE .
Next, the fabrication and characterization were conducted
to obtain the corresponding outputs YE .

Melt Pool Depth andWidth

Single tracks of length 20 mm were fabricated on a 30-
μm powder bed using a ProX 100 DMP commercial
L-PBF system by 3D Systems. The system is equipped
with a Gaussian profile fiber laser beam with wavelength
λ = 1070 nm and beam spot size of approximately
70-μm diameter. Argon was used as inert protective
atmosphere during fabrication. The raw Ti-6Al-4V powder
was produced by LPW Technology. Single tracks were
built on a Ti-6Al-4V substrate, which was subsequently
cut with a Buehler precision saw and mounted for cross-
sectional analysis. Metallographic grinding was performed
with silicon carbide papers (320 to 600 grit size) followed
by manual polishing with 1-μm diamond suspension and
final precision polishing with colloidal silica suspension.
To make melt pool boundary lines more visible, chemical
etching was performed using a 3:1 volume mixture of
HCl and HNO3 solution. Melt pool depth and width
were measured using optical microscopy (Nikon Optiphot
- POL) and verified with scanning electron microscopy
(FEG-SEM/FIB TESCAN LYRA3). Representative SEM
images that were used for measuring the melt pool depth and
width are shown in Fig. 4. We visually ascertain from the
figure that both higher laser powers and lower scan speed
increase the melt pool size; however, the impact of laser
speed on the melt pool dimensions is higher, primarily due
to the low maximum power on the system (50 W).
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Table 3 Posterior distribution
parameters for the calibration
parameters

Parameter Posterior mean Posterior mode Posterior std. dev.

Powder porosity, θ1 0.423 0.400 0.112

Laser absorptivity, θ2 0.782 0.782 0.066

Coefficient of thermal conductivity for liquid, θ3 6.727 6.709 0.922

Melt Pool Peak Temperature

The L-PBF system was custom integrated with a thermal
imaging sensor to conduct in situ monitoring of melt
pool temperature during fabrication. The sensor is a two-
wavelength imaging pyrometer (ThermaVIZ® by Stratonics
Inc.) that consists of two high-resolution CMOS imaging
detectors. Both detectors have a field of view (FOV) with
1300 × 1000 pixel resolution mapped to a 30 × 27 mm
area, which yields a resolution of 24 μm per pixel. Figure 5
shows the pyrometer integrated inside the ProX100 DMP
build chamber. Experimental calibration of the pyrometer
(which is to be distinguished from statistical calibration of
the model) was performed in situ after integration using a
tungsten filament (halogen tungsten lamp) for a range of
temperatures between 1500 and 2500 ◦C. By fabricating
the single tracks within the FOV of the pyrometer, thermal
images of the melt pools were taken at approximately
250 Hz. These images were used to compute the melt pool
peak temperature.

A sample melt pool temperature map taken from a
representative thermal image is shown Fig. 6 where X and
Y coordinates are pixels resolved by the pyrometer and the
color scale represents temperature. The temperature map
shows zero for temperature values below 1500 ◦C that fall
outside the calibration range of the pyrometer.

Prediction Using the CalibratedModel

With the surrogate model fully defined and the experimental
measurements conducted, we are now able to estimate
the calibration parameters θ , as well as the remaining
hyperparameters �cal required for the statistical model
(rδ, σ δ , and ψ , introduced in Eqs. 11, 14, and 15). As
instructed in “Multivariate Calibration Model”, we use the
Bayesian framework and Metropolis-Hastings MCMC to
estimate the set of hyperparameters �cal = {θ , rδ, σ δ, ψ}.
The following prior distributions are selected for the
hyperparameters:

θi ∼ uniform(αθ
i , βθ

i )

rδi
∼ log-logistic(α = 1, β = 1)

σi ∼ inverse-gamma(α = 2, β = 1)

ψi ∼ inverse-gamma(α = 2, β = 1)

Note that the priors for the calibration parameters θi

are all uniform and hence non-informative to avoid bias in

estimation, and since no information beyond the suggested
lower and upper bounds were available. Examples of
constructing informative prior distributions using additional
prior knowledge can be found in [70, 71]. The lower and
upper bounds for these prior distributions, (αθ

i , βθ
i ), were

set equal to the lower and upper bounds of the parameters
space Tmin = {20%, 40%, 1} and Tmax = {70%, 90%, 25}.
For the roughness parameters rδi

, log-logistic priors were
used as recommended by [65]. For the variance parameters
σi and ψi , inverse gamma priors are selected because
they represent conjugate priors for the multivariate normal
likelihood function in our model.

Similar to “Building the Surrogate Model”, single-
component Metropolis-Hastings procedure was used to
compute the posterior distributions for the hyperparameters.
Figure 7 shows the histograms and kernel density estimates
for these parameters after 100,000 MCMC iterations with
25% burn-in period and thinning every fifth sample. In the
plots, we observe unimodal and well-informative posteriors
for all of the calibration parameters with θ1 and θ3 showing
symmetric density functions and θ2 showing a density
function skewed to the right. Table 3 reports the posterior
mean, mode, and standard deviation for the posterior
distributions of the calibration parameters.

Porosity, θ1, is used to calculate the effective thermo-
physical properties of the powder bed (i.e., thermal conduc-
tivity and density). It was observed during simulations that
by changing the porosity from 0.3 to 0.5 the thermal con-
ductivity of the powder changes up to 2 W

m·K , which leads to
an insignificant change in the thermal history and only a few
microns change in the melt pool size. Thus, by considering
the variability in experimental measurements for melt pool
dimensions, this change becomes negligible, and the wide
nature of the posterior distribution for θ1 is physically con-
sistent. Furthermore, a posterior mean of 0.423 is reasonable
since it agrees with the reported range of porosity for similar
powder sizes and layer thicknesses (see [59, 72]).

The posterior distribution of absorptivity (θ2) shows
a more informative posterior distribution with mean of
0.782. This value demonstrates reasonable agreement with
reported experimental results in the literature [73, 74].
However, considering the difficulties associated with exper-
imentally measuring absorptivity due to its dependence on
multiple parameters (i.e., wavelength, temperature, oxida-
tion, powder size, powder distribution, powder porosity),
these experimental results might involve high uncertainty.
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Fig. 8 Results of the sixfold cross validation for the predictions using
the calibrated model for a y1: melt pool depth, b y2: melt pool width,
and c y3: melt pool peak temperature

Therefore, we confidently agree that the estimated distri-
bution for absorptivity is consistent with the underlying
physical phenomena controlling the interactions between
the laser and the powder bed.

The narrow range of the posterior distribution of θ3

can be attributed to its significant effect on the thermal
profile and the melt pool size. A unit increase in the liquid
thermal conductivity coefficient might lead to a change on
the order of 100 K in the thermal history and in a change
between 5 and 10 μm in the melt pool size. Additionally,
if extremely high values are used for this parameter,
the applied energy would be rapidly transferred to the
surroundings and the energy input will reduce, thus the
melt pool peak temperature would decrease in an unrealistic
manner. Therefore, only a small region of this parameter
results in physically meaningful simulations, explaining the
narrow posterior distribution. Please note that the calibration
parameter θ3 refers to the coefficient used for estimating
the effective thermal conductivity of liquid. It is simply a
multiplier, which is multiplied by the thermal conductivity
of the bulk at the melting temperature (29 W/mk).

Next, we use the predictive distributions from Eq. 27
to assess the performance of the calibrated model via
a sixfold cross validation. Figure 8 displays the results
of the sixfold cross validation for each of the three
outputs yi . In the plots, the horizontal axes represent
experimental measurements, while the vertical axes are the
predicted outputs using the calibrated model with the bars
representing the confidence intervals for the predictions.
In other words, each point on the plots compares the
experiment yE(x, θ) versus the calibrated model prediction
E[yP (x)|XE, YE, XS, Y S, θ∗], and the red straight line is
a reference line representing ideal predictions.

Upon visual inspection, the plots qualitatively show
acceptable predictive performance for y1 (melt pool depth)
and y2 (melt pool width), but less accurate predictions for
y3 (peak temperature), particularly in the case with too
low and too high values of y3. Quantitatively, the error
metric MAPE for each output are reported in Table 4. We
notice that the MAPEs for melt pool depth and width, y1

and y2, are relatively low compared to the full range of
simulations: 5 and 3%, respectively. These results show
that the calibration model is effectively correcting the
simulation model output when we use the Kriging technique
in Eq. 27. However, the predictions for melt pool peak
temperature, y3, show a higher value of MAPE (12%
of the simulation range) compared to the predictions for
melt pool depth and width. We believe that this is not
likely to be due to the approximation provided in the
surrogate model, since cross validation showed that the
surrogate model gives reasonably accurate predictions. On
the other hand, this error is likely due to the inherent
high uncertainty associated with experimental temperature
measurements using contactless methods (pyrometry) [75].
The uncertainty in the temperature data can be measured
by computing its standard deviation. The average standard
deviation of the experimental measurements for y1, y2,
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Table 4 Mean absolute
predictive error (MAPE) of the
predictions using the calibrated
model

Melt pool property Depth Width Peak Temperature

Mean absolute predictive error (MAPE) 2.42 μm 4.93 μm 159.5 K

MAPE as % of the experimental range 5 3 12

and y3 are 3.03 μm, 8.14 μm, and 306.3 ◦C, respectively.
We notice low standard deviations for y1 and y2 (6%
of the simulation ranges), in contrast to a relatively high
standard deviation for y3 (24% of the simulation range).
This is the likely explanation for the high MAPE associated
with the predictions of y3 due to high measurement
noise, which signals the need for improving existing
measurement techniques or developing new sensors with
lower measurement noise.

To support our argument that uncertainty in experimental
temperature measurements explain the high reported value
of MAPE for y3, we re-implemented the multivariate
calibration procedure with only the melt pool depth and
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Fig. 9 Results of the sixfold cross validation for the predictions using
the calibrated model with only two outputs a y1, b y2

width (y1 and y2, respectively) as model outputs. In other
words, we excluded the melt pool temperature y3 as a
model output. Figure 9 shows the results of the sixfold
cross validation for this calibrated model. We observe
that that the cross validation plots show improvement in
predictive performance, indicated by more proximity of
the blue data points to the red line, narrower confidence
intervals, and lower MAPE error values of 2.42 and 4.96 μm
for y1 and y2, respectively. This both supports our claim
regarding measurement errors associated with temperature
measurements and demonstrates satisfactory performance
of the calibrated model.

Conclusions and FutureWork Directions

We developed an efficient procedure for conducting formal cal-
ibration (also known as inverse uncertainty quantification
(UQ) analysis) of computational materials models. In addi-
tion to providing one of the first efforts to systematically
perform UQ analysis for ICME models, we also present a
versatile multivariate statistical framework to perform such
analysis in the case of models with multiple quantities of
interest (QoIs), in contrast to many previous research efforts
that typically focus on a univariate scalar QoI. The pro-
posed framework involves a two-step procedure that starts
with constructing a computationally efficient multivariate
Gaussian process-based surrogate model that can be used
in lieu of the original expensive computational model. The
surrogate model can then be used to generate sufficiently
large numbers of simulations needed to conduct calibration
through a synthesis with experimental measurements.

We implemented the proposed multivariate statistical
framework to calibrate a finite element method (FEM)-
based thermal model for laser powder bed fusion metal
additive manufacturing (L-PBF AM). The model predicts
the thermal history and melt pool geometry during
fabrication, and can potentially become one of the core
elements of an ICME platform for the L-PBF process.
Our results indicate that the multivariate surrogate model
is capable of adequately approximating the original FEM-
based thermal model to a good degree of accuracy.
Furthermore, predictions made using the calibrated model
showed good agreement with experimental measurements
conducted in a case study on fabricating single tracks
of Ti-6Al-4V AM parts on a commercial L-PBF system
instrumented with in situ temperature monitoring capability.
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The current work represents a foundation for numerous
future investigations. First, coupling the calibrated melt
pool model with other physics-based models in a complete
multi-model ICME platform for laser-based AM would be
of great value. Second, calibration of ICME simulation
models with high-dimensional output (e.g., fully explicit
microstructure simulations) will be very useful but has not
been conducted yet. Third, more validation experiments with
other measurement instruments can be carried out to achieve
better accuracy for predicting melt pool temperature.
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Appendix A: Mathematical Details
of theMultivariate Surrogate Model

Considering the simple univariate case, a GP model is
a non-parametric statistical model in which a stochastic
process f (·) is assumed to have all of its finite-dimensional
distributions as multivariate normal [76]. Therefore, the
joint probability distribution of the outputs from the
stochastic process at any finite set of inputs {x1, . . . , xn}
(assuming f only takes x as inputs for now) is modeled as
an n-dimensional multivariate normal distribution

p (f (x1) , . . . , f (xn)|�) ∼ MVN n (m, C)

where the mean vector m is defined by a mean function
m (·), and covariance matrix C is defined by a covari-
ance function c (·, ·), with E [f (x)|�] = m (x) and
cov

[
f (xi ) , f

(
xj

)∣∣�
] = c

(
xi , xj

)
. The whole distribu-

tion is fully defined by some set of hyperparameters �.
Hence, we denote a univariate GP by

f (·) | � ∼ GP (m (·) , c (·, ·)) .

We now rewrite the multivariate GP as

f (·) | � ∼ GPq (m (·) , c (·, ·) �) (16)

and translate all these definitions into our original con-
text, yS = f (x, θ). We build a multivariate GP-based
on Eq. 16, with the i-th input tuple denoted as (x, θ)i =[
xi,1, . . . , xi,p, θi,1, . . . , θi,t

]
. Mean and correlation func-
tions are defined as follows:

m (x, θ) = B
h (x, θ) (17)

c
(
(x, θ)i , (x, θ)j

) = exp
[
−(

(x, θ)i −(x, θ)j
)


R
(
(x, θ)i −(x, θ)j

)]
(18)

where h : X × T → R
m is a function (defined

by the modeler) that maps the input space to m basis
functions, B = [

β1, . . . , βq

] ∈ R
m,q is a matrix

of regression coefficients, and R = diag (r) is a
diagonal matrix of positive roughness parameters with
r = [

r1, . . . , rp, rp+1, . . . , rp+t

] ∈ R
p+t
+ . The roughness

parameter vector r explains how rough (or smooth) the
function is, i.e., how quickly its values change across the
input domain.

With the choices of linear regression mean function in
Eq. 17, stationary squared exponential correlation function
in Eq. 18, and separable covariance structure (with � ∈
R

q,q
+ accounting for correlations between outputs), the

model is fully defined by

�sim = {B, �, r} (19)

It can then be shown, as presented in [65], that
the conditional posterior distribution of f given r , after
integrating out B and �, is a multivariate q-dimensional T
process, such that the probability distribution it yields is a
matrix-variate T distribution:

f (·) | XS, Y S, r ∼ T Pq

(
m	 (·) , c	 (·, ·) �̂, N − m

)
(20)

with N −m degrees of freedom (denoted as dof henceforth),
and

m	 (x, θ) = B̂


h (x, θ)+

(
Y S −HB̂

)


A−1t (x, θ) (21)

c	
(
(x, θ)i , (x, θ)j

) = c
(
(x, θ)i , (x, θ)j

)−t
 (x, θ)i

A−1t (x, θ)j

+
[
h (x, θ)i −H
A−1t (x, θ)i

]


(
H
A−1H

)−1

×
[
h (x, θ)j −H
A−1t (x, θ)j

]
(22)

https://hprc.tamu.edu
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where

H
 = [
h (x, θ)1 , . . . , h (x, θ)N

] ∈ R
m,N

A = [
c
(
(x, θ)i , (x, θ)j

)]
i,j=1:N ∈ R

N,N
+

t
 (x, θ)i = [
c
(
(x, θ)i , (x, θ)1

)
, . . . ,

c
(
(x, θ)i , (x, θ)N

)] ∈ R
N

B̂ =
(
H
A−1H

)−1
H
A−1Y S

�̂ = (N − m)−1
(
Y S − HB̂

)

A−1

(
Y S − HB̂

)

To summarize, the T process defined in Eqs. 20–22
can be used as a fast surrogate model for the simulation
model. Its mean function m	 interpolates the training data(
XS, Y S

)
exactly and provides an approximation to f (·).

For the surrogate model to be only dependent on the data,
we need to integrate out the roughness parameters r . This
step is achieved through a Bayesian approach, for which
the posterior distribution of the roughness parameters (again
after proper integration of B and �, see [65]) is given by the
following:

π
(
r

∣∣∣XS,Y S
)

∝ π (r) |A|− q
2

∣∣∣H
A−1H

∣∣∣
− q

2
∣∣∣Y S


GY S
∣∣∣
− N−m

2
,

(23)

with

G = A−1 − A−1H
(
H
A−1H

)−1
H
A−1.

Subsequently, we set the prior distribution for r to follow a
joint log-logistic distribution as below:

π (r) =
p+t∏

i=1

(
1 + r2

i

)−1
. (24)

We estimate posterior distributions of these roughness
parameters using the Metropolis-Hastings algorithm and
select their mode as the values to be used in the surrogate
model defined in Eqs. 20, 21, and 22. Once the roughness
parameters r have been estimated, the surrogate model in
Eq. 20 is fully defined.

Appendix B: Guidelines for Adaptive
Sampling

If CV results are satisfactory (i.e., MAPE is low), then
we can move to the next step of the calibration procedure
in “Multivariate Calibration Model”. Otherwise, we seek
to improve the predictive power of the surrogate model.
More specifically, we run an additional number of computer
model simulations, such that we have a larger training data
set that results in a better surrogate model. We achieve
this through an adaptive sampling (AS) technique to select

new data points to sample based on present results. The
algorithm devised for this purpose is similar to a grid search,
where we subdivide each dimension from the (p + t)-
dimensional input spatial domain into grids (perhaps with
different number of divisions per dimension) yielding NAS

number of different data points within the grid,

Xgrid =

⎡

⎢⎢⎣

(x, θ)
grid
1

...

(x, θ)
grid
NAS

⎤

⎥⎥⎦ ∈ R
NAS,p+t

and calculate the predictive variance for each point based on
the probability distribution from Eq. 20:

AS =
⎡

⎣ 1

q

q∑

j=1

c	
(
(x, θ)

grid
i , (x, θ)

grid
i

)
�̂j,j

⎤

⎦

i=1:NAS

∈ R
NAS+

where �̂j,j is the j-th element in the diagonal of matrix �̂.
Elements of the vector AS represent the average

predictive variance among all outputs at a specific input
point. The vector is then sorted in descending order, and
the corresponding points for the first 20 elements (with
the largest average predictive variance) are selected to
be evaluated using the expensive computer model. The
underlying hypothesis is that adding these points that
showed high predictive variance to the training data set XS

will improve the predictive power of the surrogate model.
We denote the set with these new appended data points by
XAS.

In implementing the adaptive sampling procedure as
outlined above, we include two filters that ensure better
sampling of new points. The first filter flags points that
are very close to one other. This filter essentially avoids
sampling more than one point from within a small sub-set
of the input space, since this is not likely to provide more
information. The filter takes the first 20 elements of the
vector AS with largest predictive variance, and selects those
that are at least some distance threshold τAS apart from one
another. When a point is flagged and excluded, the next
point from vector AS becomes a candidate to be added to
XAS if it satisfies the filter criterion.

The second filter for the AS algorithm addresses the issue
of extrapolation. It is well known that GP predictive models
have less predictive power at regions outside the domain
of the training set XS . Hence, this filter excludes points
within vector AS that are located outside of that domain.
It is important to point out that if the initial selection of
design points in the data set XS uniformly covers the input
space (as is the case with Latin hypercube design), then this
second filter will not be employed too often.

The AS algorithm can be iteratively conducted until a
satisfactory value of the cross validation predictive error,
MAPE, set by the user is achieved.
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Appendix C: Estimation of the Calibration
Hyperparameters

The model introduced in Eq. 11 involves a summation of
three random processes defined in Eqs. 20, 14, and 15. Here,
we approximate the multivariate T process (the surrogate
model) with a Gaussian process, so that the summation
in the RHS of Eq. 11 becomes another Gaussian process
due to the property of addition of statistically independent
Gaussian random variables [77]. This approximation can
be justified using an analogous case in a univariate setting.
Figure 10 shows several univariate T distributions with
different dof, in addition to a standard normal distribution. It
can be seen that as the value of dof increases (values larger
than 10), the T distributions approximate perfectly to the
standard Normal distribution. Therefore, if a T distribution
is defined with dof equal to N − m with N > m for some
N ∈ N and m ∈ N, then a T distribution with relative large
N − m dof can be approximated with a normal distribution.
This is the case specially in our setting where the size
of the training dataset for surrogate model N is relative
larger than the dimension m from the mean function linear
regression.

With this approximation, the calibration model resulting
from Eq. 11 is a multivariate q-dimensional GP given by

yE (·) | �cal ∼ GPq

(
m	 (·, θ) , c	 (·, ·) �̂

+ cδ (·, ·)�δ + cε (·, ·)�ε

)
(25)

where �cal = {θ , rδ, σ δ, ψ} is the set of hyperparameters
that will be estimated (including the calibration parameters
θ ).

For implementation purposes, we rearrange the distribu-
tion resulting from Eq. 25, by stacking each vector yE

(
xE

i

)
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Fig. 10 Approximation of T distributions to a normal distribution

and forming a single column vector with length n · q,
resulting in the following distribution:

p
(
YE | �cal, X

E, XS, Y S
)

∼ MVN n·q
(
m	, �cal

)
(26)

with

YE =
[
YE

1,1, . . . , Y
E
1,q , . . . , YE

n,1, . . . , Y
E
n,q

]
 ∈ R
n·q

m	 =
[
m	

(
xE

1 , θ
)

, . . . , m	
(
xE

n , θ
)]
 ∈ R

n·q

�cal = Ccal
sur ⊗ �̂ + Ccal

δ ⊗ �δ + Ccal
ε ⊗ �ε ∈ R

n·q,n·q

Ccal
sur =

[
c	

((
xE

i , θ
)

,
(
xE

j , θ
))]

i,j=1:n ∈ R
n,n

Ccal
δ =

[
cδ

(
xE

i , xE
j

)]

i,j=1:n ∈ R
n,n

Ccal
ε =

[
cε

(
xE

i , xE
j

)]

i,j=1:n = In,n ∈ R
n,n

where ⊗ denotes the Kronecker matrix product employed to
calculate cross-covariance matrix �cal that accounts for the
spatial dependence between inputs and outputs altogether.

Appendix D: Details of KrigingMethod
for Prediction

Let Xpred denote a set of s control inputs x
pred
i , that have not

been previously simulated or experimentally measured

Xpred =

⎡

⎢⎢⎣

x
pred
1
...

x
pred
s

⎤

⎥⎥⎦ ∈ R
s,p

Then the predictive distribution of model outputs,

p
(
YE

pred

∣∣∣Xpred, XE, YE, XS, Y S, �cal, �sim

)
, is an s-

dimensional multivariate normal distribution with the
following parameters:

– Expected value is given by:

E

[
YE

pred

∣∣∣Xpred, XE, YE, XS, Y S, �cal, �sim

]

= m	
pred + �0�

−1
cal

(
YE − m	

)
(27)

where

m	
pred =

[
m	

(
x

pred
1 , θ

)
, . . . , m	

(
x

pred
s , θ

)]
 ∈ R
s·q

�0 = C
pred,cal
sur ⊗ �̂ + C

pred,cal
δ ⊗ �δ ∈ R

s·q,n·q

C
pred,cal
sur =

[
c	

((
x

pred
i , θ

)
,
(
xE

j , θ
))]

i=1:s,j=1:n ∈ R
s,n

C
pred,cal
δ =

[
cδ

(
x

pred
i , xE

j

)]

i=1:s,j=1:n ∈ R
s,n
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– Variance is given by

Var
[
YE

pred

∣∣∣Xpred, XE, YE, XS, Y S, �cal, �sim

]

= �pred − �0�
−1
cal �



0 , (28)

where

�pred = C
pred
sur ⊗ �̂+C

pred
δ ⊗ �δ+C

pred
ε ⊗ �ε ∈ R

s·q,s·q

C
pred
sur =

[
c	

((
x

pred
i , θ

)
,
(
x

pred
j , θ

))]

i,j=1:s ∈ R
s,s

C
pred
δ =

[
cδ

(
x

pred
i , x

pred
j

)]

i,j=1:s ∈ R
s,s

C
pred
ε =

[
cε

(
x

pred
i , x

pred
j

)]

i,j=1:s ∈ R
s,s
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56. Criales LE, Arısoy YM, Özel T (2015) A sensitivity analy-
sis study on the material properties and process parameters
for selective laser melting of Inconel 625. In: ASME 2015
International manufacturing science and engineering conference,
pages v001t02a062–v001t02a062. American society of mechani-
cal engineers

57. Yang J, Sun S, Brandt M, Yan W (2010) Experimental
investigation and 3D finite element prediction of the heat affected
zone during laser assisted machining of Ti6Al4V alloy. J Mater
Process Technol 210(15):2215–2222

58. Karayagiz K, Elwany A, Tapia G, Franco B, Johnson L, Ji
M, Karaman I, Arroyave R (2018) Numerical and experimental
analysis of heat distribution in the laser powder bed fusion of Ti-6
Al-4V. IISE Transactions, (just-accepted), 1–44

59. Bo C, Price S, Lydon J, Cooper K, Chou K (2014) On
process temperature in powder-bed electron beam additive
manufacturing: model development and validation. J Manuf Sci
Eng 136(6):061018

60. Vastola G, Zhang G, Pei QX, Zhang Y-W (2016) Modeling
the microstructure evolution during additive manufacturing of
Ti6Al4V: a comparison between electron beam melting and
selective laser melting. JOM 68(5):1370–1375

61. Kennedy MC, O’Hagan A (2001) Bayesian calibration of
computer models. Journal of the Royal Statistical Society. Series
B, Statistical Methodology, 425–464

62. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and
analysis of computer experiments. Statistical science, 409–423

63. Haylock RG, O’Hagan A (1996) On inference for outputs of
computationally expensive algorithms with uncertainty on the
inputs. Bayesian Stat 5:629–637

64. Oakley J, O’hagan A (2002) Bayesian inference for the
uncertainty distribution of computer model outputs. Biometrika
89(4):769–784

65. Conti S, O’Hagan A (2010) Bayesian emulation of complex
multi-output and dynamic computer models. J Stat Plan Inference
140(3):640–651

66. Rasmussen CE, Williams CKI (2006) Gaussian processes for
machine learning. The MIT Press, Cambridge

67. Bhat K, Haran M, output MG (2010) Computer model calibration
with multivariate spatial: a case study. Frontiers of Statistical
Decision Making and Bayesian Analysis, 168–184

68. Tapia G, Khairallah S, Matthews M, King WE, Elwany A
(2017) Gaussian process-based surrogate modeling framework
for process planning in laser powder-bed fusion additive
manufacturing of 316l stainless steel. The International Journal of
Advanced Manufacturing Technology, 1–13

69. Mani M, Feng S, Lane B, Donmez A, Moylan S, Fesperman
R (2015) Measurement science needs for real-time control
of additive manufacturing powder bed fusion processes. US
Department of Commerce, National Institute of Standards and
Technology

70. Boluki S, Esfahani MS, Qian X, Dougherty ER (2017a) Incor-
porating biological prior knowledge for Bayesian learning via



Integr Mater Manuf Innov (2018) 7:116–135 135

maximal knowledge-driven information priors. BMC Bioinforma
18(14):1–1. https://doi.org/10.1186/s12859-017-1893-4

71. Boluki S, Esfahani MS, Qian X, Dougherty ER (2017)
Constructing pathway-based priors within a Gaussian mix-
ture model for Bayesian regression and classification.
IEEE/ACM Trans Comput Biol Bioinformatics PP(99):1–1.
https://doi.org/10.1109/TCBB.2017.2778715

72. Romano J, Ladani L, Sadowski M (2016) Laser additive melting
and solidification of Inconel 718: finite element simulation and
experiment. JOM 68(3):967–977

73. Boley CD, Khairallah SA, Rubenchik AM (2015) Calculation of
laser absorption by metal powders in additive manufacturing. Appl
Opt 54(9):2477–2482

74. A Rubenchik SW, Mitchell S, Golosker I, LeBlanc M, Peterson
N (2015) Direct measurements of temperature-dependent laser
absorptivity of metal powders. Appl Opt 54(24):7230–7233

75. Grasso M, Colosimo BM (2017) Process defects and in situ
monitoring methods in metal powder bed fusion: a review.
Measure Sci Technol 28(4):044005

76. Gelfand AE, Diggle P, Guttorp P, Fuentes M (2010) Handbook of
spatial statistics. CRC Press, Boca Raton

77. Casella G, Berger RL (2002) Statistical inference volume, vol 2.
CA, Duxbury Pacific Grove

78. Mahmoudi M, Tapia G (2017) Multivariate statistical cal-
ibration of computer simulation models. https://github.com/
mahmoudi-tapia/MVcalibration

https://doi.org/10.1186/s12859-017-1893-4
https://doi.org/10.1109/TCBB.2017.2778715
https://github.com/mahmoudi-tapia/MVcalibration
https://github.com/mahmoudi-tapia/MVcalibration

	Multivariate Calibration and Experimental Validation of a 3D Finite Element Thermal Model for Laser Powder Bed Fusion Metal Additive Manufacturing
	Abstract
	Abstract
	Introduction
	Proposed Framework
	Melt Pool Modeling Through FEM-Based Thermal Modeling
	Multivariate Statistical Calibration
	Multivariate Surrogate Model
	Multivariate Calibration Model


	Results: Calibration of FEM-Based Thermal Model Using Ti-6Al-4V Tracks
	Building the Surrogate Model
	Experimental Measurements
	Melt Pool Depth and Width
	Melt Pool Peak Temperature

	Prediction Using the Calibrated Model

	Conclusions and Future Work Directions
	Acknowledgements
	Funding Information
	Supplementary Data
	Appendix  
	Appendix A: Mathematical Details of the Multivariate Surrogate Model
	Appendix B: Guidelines for Adaptive Sampling
	Appendix C: Estimation of the Calibration Hyperparameters
	Appendix D: Details of Kriging Method for Prediction
	References


