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Abstract
Many thermodynamic calculations and engineering applications require the temperature-dependent heat capacity (Cp) of a
material to be known a priori. First-principle calculations of heat capacities can stand in place of experimental information,
but these calculations are costly and expensive. Here, we report on our creation of a high-throughput supervised machine
learning-based tool to predict temperature-dependent heat capacity. We demonstrate that material heat capacity can be
correlated to a number of elemental and atomic properties. The machine learning method predicts heat capacity for thousands
of compounds in seconds, suggesting facile implementation into integrated computational materials engineering (ICME)
processes. In this context, we consider its use to replace Neumann-Kopp predictions as a high-throughput screening tool to
help identify new materials as candidates for engineering processes. Also promising is the enhanced speed and performance
compared to cation/anion contribution methods at elevated temperatures as well as the ability to improve future predictions as
more data are made available. This machine learning method only requires formula inputs when calculating heat capacity and
can be completely automated. This is an improvement to common best-practice methods such as cation/anion contributions
or mixed-oxide approaches which are limited in application to specific materials and require case-by-case considerations.
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Introduction

The accurate and careful measurement of heat flow is the
basis of thermodynamics. In particular, calorimetry, the pro-
cess of measuring heat into and out of systems, has lead
to remarkable scientific progress. For example, the thermo-
dynamic concept of Gibbs free energy is expressed with
the thermodynamic equation G = H − T S, where H is
the enthalpy, T is the temperature, and S is the entropy
of the system. The absolute values of these state variables
are impossible to obtain for practical applications. Instead,
scientific and engineering fields obtain the critical thermo-
dynamic information by determining the relative change in
Gibbs energy. This is accomplished by measuring changes
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in entropy and enthalpy which are fundamentally tied to
heat transfer and heat capacity. Under most conditions, the
change in a system is expressed by the equation �G =
�H −T �S. Determining the heat capacity is critical to find
changes in entropy and enthalpy, as calorimetry is based

on the relationship �H =
∫ Tf

Ti

Cp(T )dT for the enthalpy

and �S =
∫ Tf

Ti

Cp(T )

T
dT for entropy, where Cp is the

temperature-dependent heat capacity at constant pressure.
For convenience, heat capacity values are typically fit by
constants: a, b, c, d, e to a power series such as Cp =
a +bT +cT −2 +dT −0.5 +eT 2 [20]. In addition to thermo-
dynamic uses, measuring heat flow into and out of a system
as a function of temperature is an attractive way to probe
phase transitions. First-order transitions are easily charac-
terized by latent heating. Higher-order phenomena can also
be monitored [14]; examples include the characterization of
glassy transition temperatures in polymers and applications
for determining magnetic and ferroelectric ordering.

In addition to studying fundamental science, knowing
the value of heat capacity as a function of temperature is
valuable from a design perspective. Considerations of heat
capacity as a physical property are especially useful when
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considering design parameters for thermal engineering
applications. The foundational importance of heat capac-
ity is further emphasized by the inclusion of heat capacity
tables in almost all introductory engineering textbooks.
Moreover, heat capacity also directly influences other prop-
erties such as thermal conductivity. Thermal conductivity
measurements are rare due to the difficulty associated with
measuring actual heat flux and properly handling loss from
phenomena such as radiation. Thermal conductivity (κ)
is instead calculated using thermal diffusivity (α), heat
capacity (Cp), and density (ρ) with the equation κ = αρCp.

Despite the utility of heat capacity for engineers and
scientists, careful measurements as a function of tempera-
ture are not published for all materials of interest. Even in
well established repositories of thermochemical data, such
as the NIST: JANAF tables, there are only several hundred
crystalline compounds reported. Considering the scope of
other crystal structure databases, such as the inorganic crys-
tal structures database (ICSD) hosting over 188,000 inor-
ganic entires, there is a lack of corresponding heat capacity
data. Heat capacity measurements require equipment and
resources that many labs do not have, which contributes to
this information imbalance. A common method for deter-
mining heat capacity is differential scanning calorimetry.
Proper use of this technique requires multiple runs (base-
line, standard, and sample) which can take hours or days.
The measurements are also sensitive to error from oxidation,
poor thermal contact, sintering, volatilization, and others
[7].

To overcome the challenges associated with measuring
heat capacity, some researchers have turned to calculating
heat capacity for compounds along side their measurements
[17]. A common approach for predicting heat capacity
uses Neumann-Kopp (N-K) estimations based on summing
the heat capacity of the constituent elements. While this
approach works surprisingly well at room temperature, it
does poorly at high temperatures. Therefore, in an attempt to
extend the utility of the Neumann-Kopp technique, Leitner
et al. [9] used the concept of working with mixed-oxide
constituents rather than individual elements. This method
works better than the standard Neumann-Kopp approach
at elevated temperatures; however, it relies on a case-by-
case usage as there is no guarantee that such oxides and
their thermodynamic data exist. Another approach uses
contributions from cation and anion groups [10] to calculate
heat capacity—referred to as cation/anion contribution
(CAC). Implementing calculations using the CAC method
is both easier and faster than the mixed-oxide method as
they use identifiable cation/anion pairs and a temperature
dependent power series. Finally, a more modern approach
to predicting heat capacity relies on the computational
determination of phonon frequencies [11] or other methods
based around density functional theory (DFT). The modern

approach of simulation is limited in its use due to the speed
of first-principle calculations.

In this work, we address a new approach for determining
heat capacity based in the emerging field of materials
informatics. This technique leverages machine learning
(ML) algorithms and big data approaches to make
statistically validated predictions without using physics-
based calculations. For this work, we show that a model
can be built by training with publicly available data in
the NIST: JANAF tables. The results of this model allow
us to compare the performance of machine learning to
the performance of Neumann-Kopp calculations and group
contribution methods such as CAC. In this context, we
discuss the potential value of using this approach instead of,
or in concert with, the traditional experimental approaches.

Methods

The machine learning method is fundamentally different
from a first-principles approach. The models needed for
machine learning prediction of heat capacity are built
around statistical predictions rather than physics-based
calculations.

Data Acquisition and Curating

Optimal performance requires high-quality data. To accu-
rately predict heat capacity from chemical composition,
temperature-dependent thermochemical information was
gathered from the NIST: JANAF tables. The JANAF tables
contain the chemical formula, phase, and thermochemical
properties including: heat capacity, entropy, enthalpy, heats
of formations, and equilibrium constants (all referenced at a
standard state pressure of 0.1MPa). Data was collected from
the tables and sorted according to phase using in house code.
All entries that included a crystal phase were extracted.
Duplicate information was then discarded leaving infor-
mation for crystal compounds and liquid compounds. The
data was then sorted into solid and liquid entries–discarding
the liquid phase and solid phases beyond the Curie point.
The heat capacity and temperature were then isolated by
removing extra thermochemical data such as enthalpy. This
resulted in a dataset containing formula, temperature, and
heat capacity information. A total of 263 formulae with dis-
crete temperatures ranging from 298.15 to 3900 K were
included in the training set totaling 3986 entries. Table 1
shows the format of the training data. Different allotropes
were not explicitly considered. Instead the first entry to
appear on the list of chemical formulae provided by NIST
was selected.

Elemental heat capacity data are also an important input
for Neumann-Kopp predictions. The THERMART: FREED
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Table 1 Example of data format used in training set

Formula Temperature (K) Heat Capacity (J/mole K)

Al 250 12.997

... ... ...

Al 900 32.308

Al 933.45 32.959

Al2O3 200 51.12

... ... ...

Al2O3 900 122.662

database [20] provided such data in the form of heat
capacity constants a, b, c, d, and e—used in the power
series: Cp(T ) = a + bT + cT −2 + dT −0.5 + eT 2. These
calculated values compared well against JANAF values for
elemental inputs.

Machine Learning: Feature Development and
Algorithm Choice

In order to properly do machine learning, we need features
which can be correlated to heat capacity. The chemical
formula can provide features if the properties of its ele-
mental and atomic constituents are considered. Employing
formula-based feature development provides a universally
applicable framework for heat capacity prediction that relies
solely on the chemical formula. Conversely, first-principle
calculations require structural information which in the sta-
tus quo is difficult to obtain and not inherent to the chemical
formula. A full list of elemental properties considered for
feature development can be found in the supplemental infor-
mation, Table S1. The formula, in conjunction with the
elemental properties, provides features such as composition
weighted average, stoichiometric sum, and variance. (See
Fig. 1). The combination and comparison of elemental prop-
erties account for some of the physics involved in chemical
bonding. Relations such as the differences in electronega-
tivity, the shapes of neighboring orbitals, and the allowed
valence states are just a number of the possible interactions
that our feature development attempts to capture.

The elemental properties used for this model were collected
from various online sources. The properties used represent
an assortment of calculated and measured values. For the
case of missing elemental properties—such as the nearest
neighbor bond distance of a gas—a NaN value was assigned
when attempting to create the feature. An example of
formula creation is shown in Table 2. To simplify the
machine learning process, we chose to replace NaN values
with the median value of the associated feature. This
treatment allows for a consistent feature set that can be
compared against multiple algorithm types. When using a

Fig. 1 Procedure for developing features using chemical formula

non-linear SVR kernel, features were scaled to have zero-
mean and unit variance. Resulting feature vectors were also
normalized.

Once the heat capacity data and features were assembled,
three different machine learning algorithms were employed.
The work in this paper quantifies the performance of
linear regressors (LR), support vector regressors (SVR),
and random forest regressors (RF) when predicting heat
capacity. All three algorithms were created using the
python 3 library, scikit-learn [15]. Five-fold cross-validation
was used to generate training and validation sets which
where used to quantify model performance. To ensure
model integrity, a group cross-validation was performed. In
other words, cross-validation splits were performed on the
formula group and not individual entries to ensure that no
formula in the training set would also be represented in the
validation set at a different temperature.

In addition to predictions, the random forest algorithm
also outputs feature importance, which is a metric indicating
how heavily the model relied on a given feature in
generating a prediction. A large number of the features
included in the training data are insignificant in determining
the heat capacity prediction. This was shown by training a
RF model with all 171 features and comparing the feature’s
importance score to the score of a feature with randomly
assigned integers ranging from −100 to 100. Features
scoring at or below a value of twice the random feature
score were dropped from the training set. This set of refined
features were used to generate three separate model types
listed in the supplemental information Tables S2 and S3: (i)
linear regression (ii) support vector regression (iii) random
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Table 2 Creating six new
features from Al2O3 Element Atomic radius (pm) Nearest neighbor distance (pm)

Aluminum 53 286

Oxygen 48 NaN

Feature

Weighted avg. 76 2(286) + 3(NaN) = NaN

Sum 3.88 NaN

Variance 0.1225 NaN

Nearest neighbor distance illustrates the output when a property is not shared among all elements

forest models. We should note that Neumann-Kopp is
inherently built into the feature vector as one of the features
is the summation of room temperature heat capacity. Also,
many of the remaining features are correlated to each other.
Feature correlation can introduce bias in the importance
rankings [1]; however, keeping them allows us to look
at the general impact of all formula-based features. The
correlation matrices for the significant features can be found
in the supplemental information, Figures S1 and S2. The top
five features for the room temperature model are shown in
Table 3.

Overall model performance was determined by averaging
performance metrics from each cross-validation set. Model
parameters were selected using a grid-search technique to
minimize the average of the root-mean-squared-errors in
the model—Figures S3 and S4 show optimal parameters
in the supplemental information. Root-mean-squared-error
(RMSE), average percent error, and r-squared (R2) values,
were used to compare machine learning performance to
the basic Neumann-Kopp model at room temperature, and
the aforementioned CAC method at elevated temperatures.
To quantify high temperature performance, we compared
metrics associated with predictions using CAC to those of
machine learning. We were able to calculate heat capacity
from the Cation/Anion group contributions with 161 of
the 263 total chemical formula. This was done over each
formula’s entire temperature range. Note, it is likely that
many of the chemical formula used in this work were
included in the original regression by Mostafa et al. [10]
when creating the CAC coefficients. Because of this, it

Table 3 Most important model features at 298 K, not including
Neumann-Kopp input

Feature Importance score

Sum: covalent radii 17.4%

Sum: group 12.0%

Sum: Period 10.7%

Sum: Atomic Radius 10.4%

Sum: Martynov-Batsanov (MB) electronegativity 7.9%

is probable that our reported metrics overestimate CAC
performance.

Results

Performance was determined for two different temperature
regimes: (i) room temperature only, and (ii) from room
temperature up to the maximum temperature for that
compound’s value in the training set. The linear regression,
support vector regression, and random forest machine
learning models all outperformed the Neumann-Kopp with
lower RMSE values, lower percent error, and higher
R2 values. A graphical representation of performance in
regime (i) is shown in Fig. 2, which contains data points
representing the predicted heat capacity value vs the actual
values for the basic Neumann-Kopp method and machine
learning predictions at 298.15 K. (The black 45◦ line
represents the ideal model performance.) For regime (i), the
best machine learning predictions perform better than the
traditional Neumann-Kopp prediction.

It is notable that one of the input features for the machine
learning model is the room temperature Neumann-Kopp
prediction. We removed this feature to test the importance
of Neumann-Kopp prediction as an input to the the machine
learning model. Table 4 shows the error associated with
the three ML predictions before and after the removal of
Neumann-Kopp as a feature, as well as the standalone
Neumann-Kopp predictions. Displayed values include the
95% confidence region wherein the true mean is expected to
lie (e.g., 14.7 ± (2 ∗ standarderror)). This was calculated
using the cross-validation metrics. Interestingly, the models
perform nearly as well without the Neumann-Kopp features,
by more heavily relying on the element-based features. For
clarity, all figures were generated using Neumann-Kopp as
a feature (Fig. 3).

At elevated temperatures (regime (ii)), Neumann-Kopp
predictions become less reliable. Issues with Neumann-
Kopp predictions beyond room temperature are primarily
due to changes in heat capacity associated with the fol-
lowing phenomena: Curie temperature, structure transitions,
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Fig. 2 Neumann-Kopp and
machine learning predictions vs
actual values at 298.15 K

Linear Regression
Ideal Performance
RMSE = 9.19±1.3
R2 = 0.95±0.02

Random Forest
Ideal Performance
RMSE = 10.32±3.6
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Support Vector Regression
Ideal Performance
RMSE = 10.71±1.7
R2 = 0.93±0.02

Neumann Kopp
Ideal Performance
RMSE = 11.17
R2 = 0.89

melting, sublimation, or reaching the Debye limit for indi-
vidual atoms. All of these phenomena drastically alter heat
capacity [8]. For example, consider aluminum metal that
melts at 933 K. The pure aluminum liquid has a constant heat
capacity above this temperature. However, the aluminum-
based compound, aluminum nitride, does not melt until
2473 K. Relying on the heat capacity of molten aluminum
via Neumann-Kopp for these elevated temperatures will
produce greater and greater errors with increased tempera-
ture.

Machine learning predictions in this work also lose
accuracy when predicting over a large temperature range
(regime (ii)); however, the error associated with machine
learning is lower than CAC as seen in Fig. 4, and
Table 5. The mixed-oxide contributions approach was also
employed. However, after hours of work, we only identified
11 oxides which were composed of oxide constituents from
the NIST JANAF tables. Clearly, comparing predictions for
11 compounds against 263 isn’t valid so for the mixed oxide
approach the error metrics are not included in the figures

Table 4 Performance at
298.15K Performance metrics LR SVR RF N-K

RMSE 9.19 ± 1.3 10.71 ± 1.7 10.32 ± 3.6 11.17

Percent error 8.92 ± 1.2 9.68 ± 0.9 7.96 ± 1.0 13.69

R2 0.95 ± 0.02 0.93 ± 0.02 0.94 ± 0.03 0.89

Performance metrics w/o N-K feature

RMSE 9.34 ± 1.3 10.53 ± 1.9 10.63 ± 3.6 11.17

Percent error 9.02 ± 1.3 9.77 ± 0.9 8.21 ± 1.0 13.69

R2 0.95 ± 0.02 0.94 ± 0.02 0.94 ± 0.03 0.89
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Fig. 3 Residual values (actual - predicted) of machine learning and
Neumann-Kopp predictions at 298.15 K

or tables. The mixed-oxide approach of 11 compounds
across 19 separate temperatures generated 194 unique heat
capacity entires. Using these, we calculated an average
RMSE of 10.4, average percent error of 5.70%, and an R2

of 0.88. Table 6 shows the number of formulae considered
with each method. For simplicity, the residual plot when
including elevated temperatures is in the supplemental
information, Figure S5.

Discussion

Machine learning, in itself, requires no knowledge of
the underlying physical principles when predicting heat
capacity. The process of converting the element-derived
features into a prediction are handled by the algorithm using
purely statistical methods. In the case of heat capacity, the
origin and mechanism has been well known for many years.
We expect the most important features to align with the
physical mechanisms of heat capacity. In fact, the three most
important features when predicting heat capacity at elevated
temperatures, not including Neumann-Kopp calculations,
are:

1. Sum: valence-shell s electrons
2. Sum: Unfilled f valence electrons
3. Sum: Outer shell electrons

These features are all properties typically associated with
the bonding of the molecule. The traditional understanding
of heat capacity, which utilizes the vibrational frequencies in
the solid, relates well to this observation since bond strength
and type will influence vibrational frequencies. Thus,
the observed features reinforce the currently understood
physical mechanism of heat capacity.

At room temperature, machine learning performs on par
with Neumann-Kopp and has comparable performance to
the CAC method up to 1000 K, as seen in Fig. 5. Beyond
1000, CAC error begins to rise due to the limitations with
using a power series. All models have similar temperature
behavior, with random forest exhibiting the lowest error.
(A comparison of support vector regression and linear
regression to CAC error with respect to temperature can
be seen in Figures S6 and S7 in the supplementary
information.) The Neumann-Kopp method of predicting
heat capacity has traditionally been abandoned at elevated
temperature values, forcing some to rely on the cumbersome
Cation/Anion contribution method, or DFT calculations.
These processes are time intensive, and in some instances,
oxide and Cation/Anion values themselves are not well-
known. The results in this work suggest that machine
learning predictions can not only replace Neumann-
Kopp calculations as a high-throughput method at room
temperature, but can also be used at elevated temperatures
with acceptable prediction accuracy. Machine learning
offers a percent error at 7.96% for room temperature and
7.27% at elevated temperatures. These surpass Neumann-
Kopp calculations of 13.69% and CAC errors of 17.30%.

As we ask the models to predict heat capacity at
temperatures further and further above ambient room
temperature, we can see the onset of error in the
different approaches. The models developed clearly perform
as well as Neumann-Kopp at room temperature and
exhibit better accuracy with less effort compared to
cation/anion contribution methods at high temperatures,
but improvements can still be made. There are a number
of additional techniques that could further improve this
machine learning algorithm. Perhaps the most important
change is to expand the data in the training set. This
model is surprisingly accurate despite only being trained
off of 263 formula entries. Hundreds of additional entries
could be added if researchers consider thermochemical texts
such as Barin’s Thermochemical Data of Pure Substances
[2]. Beyond data, features can also be expanded to
improved performance. For example, new features could be
added using a systematic approach to obtain cation/anion
contribution and mixed-oxide calculations. The elemental
features could be refined beyond the simple approach used
in this work to capture more physical interactions.
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Fig. 4 Cation/anion contribution
and machine learning
predictions vs actual values.
Note consistent behavior in
cation/anion contribution
predictions resulting from broad
temperature ranges
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Cation/Anion Contribution
Ideal Performance
RMSE = 17.30
R2 = 0.86

Support Vector Regression
Ideal Performance
RMSE = 21.07±3.6
R2 = 0.89±0.03

Table 5 Performance when
including elevated temperatures Performance metrics LR SVR RF CAC

RMSE 19.22 ± 2.4 21.07 ± 3.6 15.15 ± 2.5 17.30

Percent error 11.38 ± 0.7 13.40 ± 2.6 7.27 ± 0.1 13.29

R2 0.91 ± 0.01 0.89 ± 0.03 0.95 ± 0.01 0.86

Performance metrics w/o N-K feature

RMSE 19.42 ± 2.5 21.07 ± 3.6 14.40 ± 2.6 17.30

Percent error 11.52 ± 0.6 13.40 ± 2.6 7.31 ± 1.0 13.29

R2 0.91 ± 0.01 0.89 ± 0.03 0.95 ± 0.02 0.86

Table 6 Number of valid
entires per method Method Number of valid formulae Cp data (all temperatures)

Machine learning 263 3986

Cation/anion contributions 161 2483

Mixed-oxide contributions 11 194
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Fig. 5 Comparison of
performance versus temperature.
Heat capacities were grouped in
100 degree increments and
performance scores were
averaged. 95% confidence
intervals are shown
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Conclusion

Heat capacity is a fundamental thermodynamic property
that is critical to many materials design processes. The
ability to predict—and therefore design—new materials
around heat capacity considerations has immense potential.
Traditional methods for predicting heat capacity, such
as DFT based calculations [6], Cation/anion contribution
methods, and Neumann-Kopp estimations, are limited either
by speed or accuracy.

The work presented here shows that machine learning
predictions can effectively be used to rapidly predict heat
capacity. In particular, the use of elemental information
as inputs to machine learning models allow for accurate,
fast, and broad predictive power. The models developed
in this work are capable of predicting heat capacity for
any inorganic formula with any temperature—in fractions
of a second—at or above the accuracies exhibited by the
Neumann-Kopp and Cation/Anion contribution methods.
This is particularly promising for use in high-throughput
material screening and could be valuable in influencing
engineering decisions.

Two high temperature approaches of particular interest
are the work of Leitner et al. [9] using mixed-oxide
combinations, and techniques used by Mostafa et al.
[10] which utilizes group contributions of Cation/Anion
pairs—the high temperature comparison in this work.
A comparison of the machine learning method to the
mixed-oxide approach could possibly be expanded with
considerable effort. Improvements to the machine learning
method, beyond the models in this work, are likely
to be found through improved feature development and
expanded training data. New relationships between current
elemental properties could be explored. Deployment of
advanced feature selection techniques should also be used.
These include cluster resolution feature selection and
multidimensional principle component analysis which have

already been shown to be effective in improving material
structure predictions [13].

The performance of the machine learning models in this
work provides further confirmation that machine learning
is playing a significant and growing role in predicting
materials properties and developing new materials [3–5,
12, 16, 18, 19]. In the context of the Materials Genome
Initiative which calls for greater collaboration between
computational and experimental material scientists, this
addition of artificial intelligence and machine learning
stands to bring a new dynamic to materials discovery.
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