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Abstract Supply chain resilience (SCRes) as the supply

chain network’s (SCN) capacity is essential to recover from

disruptions. The economic, environmental, and geopolitical

regional characteristics of the Pacific region present many

challenges and opportunities for building supply chain

resilience. This study aims to measure the resilience of

supply chains (SCs) considering the characteristics of the

network under which they operate. In this study, we pro-

posed a new common set of weights (CSW) model in data

envelopment analysis to evaluate the resilience of SCNs.

Many external variables beyond decision-makers’ direct

control impact SC operations and their resilience. There-

fore, the proposed CSW model formulates the non-discre-

tionary and non-controllable inputs in measuring the

resilience of SCNs and provides a complete ranking with a

higher discrimination power. To improve SCRes, SC

managers are recommended to enhance the clustering

coefficient and node degree of their SCN by establishing

more connections with other SCNs in order to pinpoint the

essential capabilities that companies should prioritise in

order to develop a stronger and more adaptable SC in the

post-COVID-19 pandemic.
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Introduction

As the backbone of the global economy, contemporary SCs

encounter substantial risks and vulnerabilities due to the

instability of the operational environment and major dis-

ruptions that make it increasingly complicated to plan for

the future effectively (Juan et al., 2022a, 2022b; Klibi

et al., 2018). The COVID-19 pandemic fundamentally

changed the SC landscape, resulting in a ‘‘new normal’’ of

constant flux. This new state has been shaped by a series of

disruptions caused by this pandemic (Rahman et al., 2022).

Given the persistent nature of the challenges posed by this

state, it is critical to consider the application of dynamic

resilience measurement in the new phase of the SC during

the post-pandemic and companies should immunise their

SC by taking behavioural biases and social effects into

account and re-evaluating their contractual responsibilities

(Asian et al., 2020). Moreover, in the post-pandemic,

companies make every attempt to restore their profitability

(Wided, 2023). With its adaptability capacity, SCRes can

prove highly effective in dealing with ongoing challenges
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(Settembre-Blundo et al., 2021). By incorporating elements

of avoidance, absorption, and elasticity, a SC can be

designed to be dynamically resilient and better equipped to

cope with the new normal (Mithani, 2020). If the industry

and its SCs cannot adapt to new situations after disruption,

making strategic decisions to improve resiliency is neces-

sary to prevent resulting shortages (Singh et al.,

2021a, 2021b; Tucker et al., 2020). Hence, SCNs should be

sufficiently robust and resilient to ensure ongoing opera-

tions even in the event of disruptions. (Dixit et al., 2020b).

SCRes is described as ‘‘the adaptive capability of the SC

to prepare for unexpected events, respond to disruptions,

and recover from them by maintaining continuity of

operations at the desired level of connectedness and control

over structure and function’’ (Ponomarov & Holcomb,

2009, p. 131). Market volatility and supply interruptions

resulted in significant decrease in the short-term and long-

term revenues of many organisations with worldwide

supply networks (Asian & Nie, 2014; S. Singh et al.,

2021a, 2021b). A SC’s design and structure substantially

affect its resilience, which determines the impact of the

disruption (Ojha et al., 2018; Rezaei Somarin et al., 2018).

For example, the undesirable effects of disruptions on

SCNs with many locally located nodes are much higher

than those on networks with nodes that are scattered across

a larger distance. In addition, when a specific node

aggregates supplies and feeds the demand of several other

nodes, then any disruption of this central node makes the

whole SC defected and non-operational (Dixit et al.,

2020b). Longer and larger SCs with more tiers and depth

make the partnering companies more vulnerable to dis-

ruptions (Alfarsi et al., 2019; Paul et al., 2019).

Many historical disruptions have exposed SCs to risks.

For instance, when the Tohoku earthquake hit Japan in

2011, it not only disrupted the Japanese and Asian SCs but

also resulted in shortages in the SC of associated industries

in Europe (Scholten et al., 2014). So, SCRes is viewed as a

risk mitigation strategy in response to disruptions and to

deal with an unstable operational environment (Alfarsi

et al., 2019). SCNs become more resilient through proac-

tive strategies such as efficient collaborations among firms,

higher visibility, more flexibility (Chowdhury & Quaddus,

2016; Klibi et al., 2018), multiple sourcing to increase

redundancy and back-up suppliers, holding extra safety

stocks, and growing capacity of facilities (e.g. manufac-

turing, warehousing, logistics and transportation) (Klibi

et al., 2018; Salehi Sadghiani et al., 2015). However,

responsiveness and recovery are the reactive strategies to

improve the resiliency of the SCs (Kamalahmadi & Mellat-

Parast, 2015). After defining flexibility, visibility, and

resilience, it is important to understand their effects within

a SC (Dolgui & Ivanov, 2022; Singh et al., 2019a, 2019b).

These three attributes enhance the chain’s resilience and

robustness (Mackay et al., 2020). Flexibility facilitates

swift adaptation to unexpected circumstances, while visi-

bility provides real-time insights into operations, enabling

better decision-making (Dubey et al., 2021). Resilience

embodies the ability of the SC to recover from disruptions

quickly, a trait bolstered by flexibility and visibility (Juan

et al., 2022a, 2022b).

Enhancing SCRes through over-increasing capacity and

boundless redundancy becomes a very expensive decision

(Sokolov et al., 2015). Therefore, measuring SCRes using

data analytics is crucial to analysing the efficacy of dif-

ferent strategies for improving resilience (Kaur & Singh,

2022; Klibi et al., 2018). Analysing the resilience of the

entire SCN enables practising SC managers to clearly

understand the weaknesses of the network and address

those shortcomings by implementing suitable strategies

and warning every firm in the network about the risks and

vulnerabilities that they encounter in their business envi-

ronment (Li & Zobel, 2020). The improved knowledge of

the business environment in which the firms function

enables them to devise more effective responses to dis-

ruptions through informed investment decisions (Juan

et al., 2022a, 2022b).

Along with the increase in the current global use of

natural gas, which composes 25% of the energy mix

(International Energy Agency, 2016), the intensity and

frequency of disruptive risks to the energy sector and

natural gas in particular are increasing (Ding et al., 2020)

which can be the result of natural disasters, economic risks,

geopolitical risks, maritime transportation risk and so on

(Geng et al., 2017). Studies on energy security most often

concentrate on the vulnerability of a nation to supply

shortages. To some extent, they have recommended solu-

tions to mitigate the impacts of disruptions and crises by

focusing on solutions to decrease the frequency and

intensity of disruptions (pre-disruption mitigation). How-

ever, they have not elaborated on the role of efficient use of

resources in lowering the vulnerability of SCs through

post-disruption resilience (Rose et al., 2018).

Thus, the efficiency of SCNs in terms of resilience and

capacity to recover after disruptions necessitates more

research. This study adopts data envelopment analysis

(DEA) to bridge this gap and examine the resiliency of

SCNs. DEA is a mathematical approach based on linear

programming that uses multiple inputs and outputs to

evaluate the efficiency of homogeneous decision-making

units (DMUs) (Kiani Mavi et al., 2021). DEA shines in its

versatility and adaptability. Unlike simulation and optimi-

sation models that require a predefined objective function

and assumptions about the distribution of data, DEA does

not demand such preconditions, granting it more flexibility.

It uses empirical data to construct a piecewise linear sur-

face to envelop the data points, creating an efficiency
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frontier to evaluate other units against (Jradi & Ruggiero,

2023). The ability of DEA to work with multiple inputs and

outputs simultaneously without any need to specify weights

in advance is its key advantage over most statistical

methods (Goker & Karsak, 2021). Therefore, DEA is

exceptionally well suited for assessing complex systems

like SCs where numerous elements interact and influence

one another.

Since the traditional models of DEA are flexible in

attributing weights to input and output variables to measure

efficiency (Jahanshahloo et al., 2011; Tavana et al., 2015),

they produce a different weighting scheme for each DMU

to maximise its efficiency score. This weighting

scheme results in several DMUs becoming efficient. The

common set of weights (CSW) analysis overcomes this

shortcoming by evaluating the efficiency of all DMUs

consistently (Kiani Mavi et al., 2019a, 2019b). This study

performs a common weights analysis using the ideal point

method. The advantage of the ideal point method is in

determining the amount of improvement for inefficient

DMUs (Kiani Mavi et al., 2019a, 2019b). This research

significantly contributes to advancing resilience strategies

in the Pacific region, particularly in the SCNs domain. The

proposed model contributes to the exploration of a strategic

approach towards resilience by analysing the distinct

obstacles and potential advantages of SCRes in the Pacific

region. The incorporation of non-discretionary and non-

controllable inputs within the CSW model demonstrates

the interplay between economic, social, environmental, and

political elements that influence resilience in the Pacific

region.

Complexity theories, particularly complex adaptive

systems (CAS) and complexity thinking (CT), have assis-

ted supply chains practitioners to better analyse their

intricate dynamics (Rebs et al., 2019; Tsolakis et al., 2021;

Wieland et al., 2023; Wilden et al., 2022). Nilsson and

Gammelgaard (2012) provided a paradigmatic reflection on

these approaches, contrasting them with the traditional

systems approach which has long dominated SCM and

logistics research. They argue that current challenges of

organisational complexity in supply chain management,

such as those related to innovation, learning, and sense-

making, can be effectively investigated through the fun-

damental assumptions of CAS and CT which are centred

around adaptation, emergent behaviour, and nonlinear

interactions. This perspective is echoed by Elias et al.

(2021), who apply systems thinking to analyse sustainable

wood supply chains in Amazon, showcasing the applica-

bility of these approaches in diverse and complex contexts.

The inclusion of complexity approaches in the broader

discourse of SCM provides valuable alternative perspec-

tives that complement and enrich the understanding of the

supply chain dynamics. Acknowledging these theories not

only aligns with the current trajectory of the field but also

opens up avenues for future research to analyse the mul-

tifaceted nature of supply chains through various theoreti-

cal lenses (Naim et al., 2019; Waller et al., 2015).

This paper is structured as follows: Sect. ‘‘Literature

Review’’ reviews the literature on SCN resilience,

approaches to analyse it, and common weight analysis in

DEA. In Sect. ‘‘Proposed ideal Point Common Weights

Model with Non-discretionary and Non-controllable

Inputs’’, the developed common set of weights model is

presented. Sect. ‘‘Case Study: LPG Supply Chain’’ illus-

trates a case study in the LPG sector and discusses the

results. Finally, Sect. ‘‘Conclusion’’ provides the conclud-

ing remarks.

Literature Review

Supply Cain Resilience

Statistics show that over 75% of firms experience a type of

disruption yearly (Scholten et al., 2019). SC disruptions

impose risk to the SCs besides other negative impacts such

as reduced operational and financial performance (Lotfi &

Saghiri, 2018), a higher number of customer complaints,

and longer lead times (Al Naimi et al., 2021; Kinra et al.,

2019). As a result of the globalisation of business and the

industry’s adoption of new business practises, such as lean

manufacturing, rapid response programmes, and effective

customer service, the market has grown more volatile,

which has resulted in an increased need for SC adjustments

(Rao et al., 2013; Singh et al., 2019a, 2019b). In response

to disruptions, SC managers must decide on and implement

strategies through SCRes to speed up recovery from dis-

ruptions and to continue the normal operations of SCs (Al

Naimi et al., 2021; Ali et al., 2017). SCRes (SCRes) is the

capacity of an organisation to bounce back to its normal

conditions after disruptive events by minimising instabili-

ties (Bag et al., 2023). In addition to the capacity of the

system to predict the risk and minimising its disruptive

impacts (Day, 2014), resilient organisations not only

respond to a disruption in a better way but also try to take

advantage of disruptions to the benefit of the organisation

(Brandon-Jones et al., 2014). SCRes has the potential to

support various departments in aligning with market

expectations, thereby gaining a competitive edge. If there is

a change in the market, resilient aspects of a SC can

facilitate rapid growth. Additionally, these features can

assist businesses in improving their cash flow cycle and

reducing the expenses that are incurred (Modgil et al.,

2021). Anticipation (forward-thinking ideas and plans),

resistance (continued structural and functional factors), and

recovery and responsiveness are the three possible stages of
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SCRes which is rapid and efficient. SCRes, in its broadest

sense, refers to the methods used to mitigate interruptions

in the SC so that information, products, and money can

continue to move without disruption (Gu et al., 2021).

Resilience involves averting known risks and accom-

plishing the expected performance by meeting business

objectives (Aslam et al., 2020; Sawyerr & Harrison, 2020).

SCRes has two major pillars: (1) capacity to resist (resis-

tance capacity) which is the ability of an SC to prevent or

lessen the adverse effects of a disruption by avoiding it

completely or by reducing the time between disruption

occurrence and beginning the process of recovery; and (2)

capacity to recover (recovery capacity) which is the ability

of an SC to restore the functionality after a disruption

happened (Melnyk et al., 2014). The ability of a firm to

manage and restructure its resources (Ambulkar et al.,

2015) and to enhance the cooperation and coordination

among SC actors by immediate information sharing and

long-term planning (Chandra & Grabis, 2009) help in

boosting SCRes. On the other hand, innovation helps firms

and their SCs become more resilient facing disruptions

(Sabahi & Parast, 2019). Besides, the severity of the effects

of a disruption in a SC is heavily influenced by the design

of the network. Thus, it has been acknowledged that SCN

structural factors significantly influence resilience (Dixit

et al., 2020a; Ivanov & Ivanov, 2018).

Shashi et al. (2019) identified four principles of SCRes;

(1) SC engineering, (2) collaboration, (3) agility, and (4)

risk management culture, which SCs cannot become resi-

lient without them. Several factors enable building resi-

liency in the SCs. Along with non-industry-specific

enablers such as redundancy, flexibility, visibility, and

collaboration (Purvis et al., 2016; Scholten et al., 2019),

different enablers lead to higher resiliency in various

industries. To ensure resilience in oil and gas SCs, it is

important to adopt flexible contracting, diversify portfolios,

plan transportation, and maintain an additional safety stock

(Urciuoli et al., 2014). Conversely, automotive SCs should

focus on multiple sourcing and establishing a flexible

supplier base with a high level of visibility (Azevedo et al.,

2013). Holding fewer inventories, utilising information

technology, and multiple sourcing are building resiliency in

electronic SCs (Sodhi & Lee, 2007).

Redundancy is the deliberate and judicious use of extra

capacity and inventory that could be called upon to address

a disaster, such as demand spikes or supply disruptions.

Redundancy is an efficient method for fostering resilience

and accelerating recovery from disturbances (Parast &

Shekarian, 2018). Implementing three different types of

redundancy methods (keeping extra inventory, identifying

backup suppliers, and establishing a group of protected

suppliers) may enhance a company’s performance in a

volatile and complicated business environment that

necessitates reducing the consequences of SC interruption

(Shekarian & Mellat Parast, 2021). Maintaining stock

levels, engaging in negotiations with alternative suppliers,

and investing in supplier security represent the most pop-

ular redundancy strategies (Kamalahmadi et al., 2022;

Knemeyer et al., 2009). SC flexibility is the capability of an

SC to modify its operations, resources, design, and insti-

tutional arrangements within a predetermined scope in

response to fluctuations in production quantity and product

variability (Novais et al., 2019). To remain competitive in

today’s market, many businesses realise that SC flexibility

is a key factor that needs decisive management action

(Shekarian & Mellat Parast, 2021). Flexibility indicates a

company’s ability to adjust its supply chain design in

response to long-term or systemic changes in the supply

chain and industry trends (Engelhardt-Nowitzki, 2012).

This metric demonstrates a company’s responsiveness to

changes in the market, demand, supply, and technology

(Gupta et al., 2019; Siagian et al., 2021). For example,

emergency replenishment strategy as a strategic flexibil-

ity guarantees that companies and governments have con-

tingency plans in place to prevent SC disruptions and

unanticipated occurrences that might impair the availability

of essential resources (Rezaei Somarin et al., 2018).

Supply chain visibility is characterised by the degree to

which participants in the supply chain have access to

timely and accurate information that they consider crucial

or valuable for their operations (Barratt & Barratt, 2011;

Somapa et al., 2018). To be more particular, it relates to the

visibility of information about demand and inventory

throughout the SC as a whole (Silva et al., 2017). Improved

visibility into customer requirements and inventory levels

enhances demand forecasting, expedites the process of

adjusting production plans to meet changing demand,

improves the delivery process, and decreases the quantity

of stock on hand at all SC tiers (Juan et al., 2022a, 2022b;

Småros et al., 2003). Collaboration entails numerous

enterprises or independent business organisations cooper-

ating in a partnership with the objective of sharing

enhanced results and advantages (Soosay & Hyland, 2015).

To accomplish these performance enhancements, the cor-

porate entities must create an adequate degree of trust,

communicate vital information, make shared decisions,

and, if required, integrate SC activities (Min et al., 2005).

Collaboration in the SC is typically characterised as two or

more firms collaborating in order to generate a competitive

advantage and better profits than can be gained by oper-

ating independently (Sudusinghe & Seuring, 2021). Col-

laboration may also be described as a connection between

autonomous businesses marked by transparency and trust

in which risks, benefits, and expenses are shared (Duong &

Chong, 2020).
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Businesses need to perform SCRes evaluations to

improve their awareness of the risks inherent in their SCs

and assess their capacity for bouncing back from disasters

and their strategies for mitigating those risks (Soni et al.,

2014). Risks of SCN design are generally categorised into

two groups: (1) operational risks which arise because of

lack of knowledge about variables such as demand, pro-

cessing duration, and operation costs and (2) disruption

risks which are the result of natural disasters such as

earthquake, and man-made crises such as war and failure of

the machinery (Arabsheybani & Khasmeh, 2021). Opera-

tional risks are potential disruptions to the normal opera-

tions of SC, including alterations to lead-time and demand.

Disruption risks, though less frequent, can have a greater

impact, e.g. natural disasters (El Baz & Ruel, 2021).

To quickly recover from disruptions, firms must forecast

and be prepared to meet unforeseeable demand to achieve

competitive advantages (Ali et al., 2021). Integrating the

whole supply network and increasing transparency and

visibility among SC actors can help mitigate or eliminate

such risks, bolstering SCRes (Namdar et al., 2018). Fur-

thermore, to survive post-COVID-19, resilient SCNs must

transform by integrating SCRes with SC viability measures

(Sarkar et al., 2022; Zaoui et al., 2023). in the post-

COVID-19 age, businesses throughout the globe confront

several significant obstacles to social sustainability

impeding the accomplishment of sustainable development

objectives (Dwivedi et al., 2021; Sarker et al., 2021).

Measuring SCRes

The proactive development of a strategy for future major

disruptions relies heavily on the accurate measurement of

SCRes (Moosavi & Hosseini, 2021). Different method-

ologies have been employed to study the resilience of SCs.

Some scholars created conceptual frameworks to build

resilience in a variety of contexts, while others adopted

empirical approaches and case studies. Quantitative meth-

ods (mathematical modelling and statistical analysis) have

gained more interest from SC scholars (Gao et al., 2021;

Sharma et al., 2023). Here, we dive into quantitative

studies in SCRes and classify them into five major

categories.

Statistical Analysis of SCRes

This category includes studies that investigated the asso-

ciation between SCRes and other relevant variables using

statistical analyses. These studies have often considered

SCRes as the dependent variable which is influenced by

several independent variables. Aslam et al. (2020) defined

SC ambidexterity as the concurrent utilisation of SC

adaptability and SC alignment and studied the effects of

SC-ambidexterity on SCRes. Using structural equation

modelling (SEM), they uncovered that the agility of the SC

plays a decisive role in the positive relationship between

SC ambidexterity and SCRes. Conducting the partial least

squares structural equation modelling (PLS-SEM), Bag

et al. (2023) found that big data analytics tools can enhance

the resiliency of SCs. In another study, Balakrishnan and

Ramanathan (2021) performed structural equation mod-

elling to measure the impacts of digital SC technologies on

SC resilience. They realised that the use of digital tech-

nologies improves SC performance, either directly or

through SCRes. They also uncovered the stronger positive

impact of digital technology use on SC resilience and

performance after COVID-19 crises compared to before

that.

Optimisation for SCRes

The studies in this category have extended linear, mix-

integer and nonlinear programming models to optimise

SCRes to achieve different objectives, such as maximising

service level and minimising unfulfilled demand, during

and post-disruption (Paul & Chowdhury, 2020). In other

words, for most of the SCRes optimisation models, finan-

cial gain is the primary goal, such as minimising the total

cost or maximising overall profit. Second, the SC’s effi-

ciency or service loss owing to the disruption is quantified

by the vulnerability goal variables (—for example, inven-

tory capacity, lead time delay, stock out rate, replenish-

ment). Third, exposure and recovery are two sides of

SCRes in terms of recovery time and resource considera-

tion. In most cases, the primary goal of the optimisation

models is to accelerate the rate at which a disrupted

company’s production or supply capacity can be restored.

In light of this, some scholars see SCR’s main goal as

increasing the degree of recovery after a disruption or

decreasing the amount of time needed to go back to normal

(Hosseini et al., 2019).

Arabsheybani and Khasmeh (2021) proposed a robust

bi-objective multi-product optimisation model to evaluate

the resiliency of multi-period and multi-item SCN designs.

They used multi-criteria decision-making techniques to

obtain the weight of influencing variables. Dixit et al.

(2016) developed a multi-objective stochastic mixed-inte-

ger programming (MOS-MIP) model to minimise the

unfulfilled demand and the total transportation cost post-

disaster. Zahiri et al. (2017) developed a mixed integer

linear programming model with multiple objectives inte-

grating sustainability and resilience to design a pharma-

ceutical SCN under uncertainty. To handle the uncertainty

of the model, they proposed a novel fuzzy possibilistic-

stochastic programming approach. Alikhani et al. (2023)

developed a multi-method strategy, on the basis
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of resource dependence theory and two-stage stochastic

programming, for selecting the most appropriate resilience

strategies, taking into account their positive and negative

synergistic impacts under resource constraints. They pro-

posed an unique method for identifying the optimal com-

bination of potential techniques with regard to these

synergistic effects. Their results revealed the significance

of evaluating synergistic impacts amongst SCRes strategies

in the face of budgetary constraints.

Simulation of SCRes

Simulation techniques make it possible to experiment with

a real-world process when there is not sufficient data to

study it, the process/event is more complex and conven-

tional approaches cannot handle it, or the researcher wants

to discover answers to the ‘‘what-if’’ questions by flexibly

testing the isolated/simulated system at different scales.

Because of the dynamics in business environments with

many complex and sometimes unquantifiable relations,

evaluating SCRes becomes challenging (Priya Datta et al.,

2007). Wu et al. (2013) conducted an agent-based simu-

lation, examining the prevalence of stockouts among

retailers dealing with heterogeneous products. Utilising

downstream market share as a performance metric, they

reported that customer type, initial market share, and the

length of the stockout all contributed to the resiliency of

the retailers. Priya Datta et al. (2007) developed an agent-

based computational framework to enhance the operational

resilience of a multi-product, multi-country SC when

demand changes and manufacturing and distribution

capacity is constrained. Given the dynamic behaviour of

SCs, Spiegler et al. (2012) developed a system dynamics

model to characterize SCs. They introduced a new metric,

‘‘the Integral of the Time Absolute Error (ITAE)’’, to

evaluate the resiliency of SCs in terms of inventory levels

and delivery rates. They found that a robust SC that

maintains performance and functionality events in disrup-

tion might not necessarily be resilient. Azadeh et al. (2014)

performed a simulation to develop different scenarios and

different strategies to improve the resiliency of trans-

portation systems. They used DEA to choose the most

preferred scenario. Recently, Burgos and Ivanov (2021)

explored the implications of COVID-19 on the resilience of

food retail SCs. They established a discrete-event simula-

tion model to analyse the operations of SCs and corre-

sponding performance metrics. They indicated that demand

spikes and supplier closures had the most significant effect

on SC operations and performance, whereas transportation

disruptions had a relatively minor effect.

Graph/Network Theory for SCRes

Based on complex network theory, studies in this category

consider the SCN as a system consisting of several nodes

and paths and model it. Researchers who studied SCRes

using graph theory have often used simulation techniques

for their analysis. Tan et al. (2019) used graph theory to

propose a SCN conceptual model. Mapping the redundant

relations between plants and materials, they found that

increased structural redundancy of the SCN improves

SCRes. Viewing the SCN as a dynamic and complex

adaptive system (CAS) that is composed of several firms

and demand–supply relationships among them, (Hou et al.,

2018) characterised an SCN as a direct graph in which the

overall behaviour of the network follows the interactions of

firms’ micro-level behaviours. Conduction a multi-agent

simulation, they found that trust-based supplier selection is

highly robust against occasional and targeted disruptions.

Adopting complex network theory, Hearnshaw and Wilson

(2013) found that efficient SCs have a ‘‘scale-free’’ struc-

ture. They ascertained that aspects like a succinct charac-

teristic path length, a substantial clustering coefficient, and

a power-law connectivity distribution can significantly

enhance the resilience of the SC. Agarwal et al. (2022)

sought to establish a methodology for quantifying SCRes

as a value. Graph theoretic approach (GTA) is utilised to

assess a firm’s SCRes index, and their findings demon-

strated that the strategic level component of drivers con-

tributes more to SCRes.

Multi-criteria Analysis of SCRes

Studies that use multi-criteria decision-making (MCDM)

techniques rely on expert opinions to analyse the impacts,

relations, or weights of different variables associated with

SCRes. Kumar and Singh (2022) used the best–worst

method (BWM) to determine the weight of variables

influencing the resiliency of the SC in the agri-food sector.

They implemented quality function deployment (QFD) to

evaluate the strategies for enhancing SCRes. In the same

context, Shanker et al. (2022) used the grey decision-

making trial and evaluation laboratory (DEMATEL) and

analytic network process (ANP) methods to improve the

resiliency of perishable food SCs. Ekanayake et al. (2022)

identified critical SC vulnerabilities and used fuzzy syn-

thetic evaluation (FSE) to analyse them. They found that

industrial construction SCs in Hong Kong are very vul-

nerable to disruptions, and top management support is

needed to overcome those vulnerabilities. López and Ishi-

zaka (2019) used a hybrid fuzzy cognitive map (FCM) and

analytic hierarchy process (AHP) to forecast the ramifica-

tions of offshore outsourcing location decisions on SCRes.

They found that the right supplier can preserve the SCRes
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and improve it. Vergara et al. (2023) offered novel ideas

and techniques towards environmental protection and

social welfare; modifications have been made to fit SC to

the needs of contemporary manufacturing processes. Their

study aimed to provide a system for determining the per-

formance levels in sustainable SCRes that blends multi-

criteria analysis approaches with fuzzy logic. Workplace

culture and corporate social responsibility were shown to

have the largest impact on SC performance, confirming the

framework’s emphasis on social dimensions.

Data Envelopment Analysis and SCRes

Implementing resilience strategies improves the ability of

SCs to respond to and recover from unforeseen events

effectively. SCRes effectively manages and adapts to

uncertainties and disruptions such as natural disasters, and

promptly restores regular operations (Karbassi Yazdi et al.,

2022).

Data envelopment analysis (DEA) is shown to be one of

the most popular mathematical approaches to measure the

relative efficiency of decision-making units (DMUs) that

produce multiple outputs using multiple inputs (Kazemi

et al., 2021). DEA has been widely used across different

industries, such as evaluating the efficiency of bank bran-

ches (Kazemi et al., 2021; Kiani Mavi et al., 2015), sus-

tainability and environmental assessment (Albertini et al.,

2021; Wu et al., 2021), energy (Bhunia et al., 2021; Mavi

& Mavi, 2019; G. Singh et al., 2021a, 2021b), agriculture

and food (Hesampour et al., 2022), healthcare (Gerami

et al., 2023), production and distribution planning (Nishi-

zaki et al., 2022), higher education (Tavares et al., 2021),

and eco-innovation analysis (Kiani Mavi & Kiani Mavi,

2021; Kiani Mavi & Standing, 2016, 2017) among many

other contexts. In the SC and logistics domain, scholars use

DEA for evaluating sustainability, eco-efficiency (Alvarez-

Rodriguez et al., 2020), supplier and third-party logistics

provider selection (Torres-Ruiz & Ravindran, 2019), per-

formance measurement (Wong et al., 2015), and SC risk

(Azadeh & Alem, 2010). However, through superb logis-

tics operations, firms with logistics innovation capacity

could be able to control SC risks (Wang et al., 2020).

The linkage between DEA and SCRes is comprehended

through performance evaluation and enhancement. Using

DEA to examine the relative efficiency of decision-making

units within a SC, specifically during unpredicted circum-

stances, provides crucial insight. This process underscores

inefficient DMUs and those units showing resilience,

which can guide strategic planning within the SC (Azadi

et al., 2022). By numerically representing the efficiency of

various DMUs within a SC (such as logistic hubs, manu-

facturing units, etc.), DEA equips the management team to

locate inefficiencies, identify potential enhancements, and

distribute resources to maximise total efficiency. This

process bolsters the SC’s resilience level, allowing it to

resist and rebound from adversities more effectively

(Kraude et al., 2022; Mohammadnazari et al., 2023). The

forecasting capability of DEA supports the development of

strategies to mitigate risks, enhancing the SC’s capacity to

adjust and bounce back from unforeseen incidents, e.g.

environmental calamities, a vendor closing shop, or drastic

demand variations, and in turn amplifying its resilience

(Heidari et al., 2017).

Measuring the sustainability and resilience of SCNs is

difficult for many decision-makers. The increasing com-

plexity of SCs has made them increasingly vulnerable to

disruptions in the business environment. SC resilience is

strategic planning over disruption periods to mitigate SC

vulnerabilities and speed recovery. Pourhejazy et al. (2017)

employed data envelopment analysis to assess the resi-

lience of SCNs. They used topological and operational

variables to evaluate the resiliency of liquefied petroleum

gas (LPG) companies. Kazemi Matin et al. (2022) devel-

oped a network DEA model to evaluate the sustainability

and resilience of blood SCNs. Given the presence of

undesirable factors, such as waste of donated blood, they

included undesirable outputs in their model. Yazdanparast

et al. (2018) used a hybrid approach consisting of

Z-number DEA and a neural network to evaluate the

resiliency of automotive SCs in terms of resilience

enablers.

The major shortcoming of traditional DEA models for

efficiency analysis is that they allow each DMU to freely

choose a weight for the input and output variables in order

to maximise its relative efficiency (Hatami-Marbini &

Saati, 2018). The common set of weight (CSW) models

have been developed to address this shortcoming by eval-

uating all DMUs using a consistent and identical weights

vector (Heidary Dahooie et al., 2021).

Scholars have adopted several approaches to develop a

CSW. Jahanshahloo et al. (2011) employed the Zionts–

Wallenius technique to generate a common set of weights

in which decision-makers’ preferences have been consid-

ered. The capacity of goal programming (GP) to min-

imising undesirable deviations from multiple objective

functions has made it a suitable technique for developing a

common set of weights in DEA (Gharakhani et al., 2018;

Makuei et al., 2008; Omrani et al., 2019). Adopting an

efficiency-fitting perspective, Wang et al. (2011) used

regression analysis to propose the common set of weights

model. Their target efficiencies were the conventional DEA

efficiencies that DMUs tried to achieve using common

weights. Chiang et al. (2011) used a separation vector to

transform the multiple objectives fractional linear pro-

gramming problem (MOFP) into a single objective linear

program in order to generate common weights. They
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implemented their proposed CSW for analysing Beijing

Olympic Games. Using mixed-integer linear programming

(MILP), Özsoy et al. (2021) proposed a CSW model to

identify the most efficient DMU. They performed a simu-

lation and showed that the proposed CSW’s discrimination

power is high enough to distinguish the most efficient

DMU. While many CSW models have been proposed for a

specific point in time, Kiani Mavi and Kiani Mavi (2019)

developed a CSW model for the Malmquist productivity

index (MPI) using the ideal point method to evaluate the

efficiency of DMUs over time. More recently, Wang et al.

(2021) suggested a common weight analysis using the

bargaining game theory. They proposed a secondary goal

to minimise the sum of differences between the self-

assessment efficiency and the peer-assessment efficiency of

each DMU. Abedian et al. (2023) introduced an integrated

decision-making system that utilised fuzzy set theory and

the DEA methodology for supplier selection. Their strategy

for selecting suppliers is based on generic, resilient, and

environmentally friendly criteria. In addition, fuzzy set

theory was used to assess and categorise the performance

of suppliers and to evaluate the weights of their criteria. In

addition, its proposed model can be built to accommodate

any number of suppliers and metrics.

Research Gap

The extant literature on SCRes has provided valuable

insights. However, a significant research gap exists in

effectively measuring and enhancing resilience in SCNs,

particularly in the Pacific region. It is imperative for

companies to have an optimal balance between operational

efficiency and organisational flexibility to hedge uncer-

tainty and mitigate disruptions arising from unpredictabil-

ity. From a methodological perspective, existing

approaches to assess the resilience of SCs frequently

exhibit limitations in their ability to consider non-discre-

tionary and non-controllable variables and their capacity to

offer a comprehensive ranking of SCNs based on the

metrics that define the notion of resilience. On the other

hand, the existing body of literature on SCRes in the

Pacific region is limited, particularly in strategies that

consider distinctive regional characteristics such as popu-

lation density and the geographical distances between

supply and demand nodes. There is an apparent necessity

for developing an evaluation framework that specifically

targets the deficiencies in assessing SCRes. This frame-

work provides valuable insights to SC managers in the

Pacific region.

Proposed Ideal Point Common Weights Model
with Non-discretionary and Non-controllable
Inputs

Charnes et al. (1978) crafted the CCR model to measure

the relative efficiency of similar DMUs. Under constant

returns to scale (CRS), the relative efficiency of DMUp is

obtained by Program (1).

ECCR
p ¼ Max

Xs

r¼1

uryrp

Subject to

Xs

r¼1

uryrj �
Xm

i¼1

vixij � 0; j ¼ 1; 2; . . .; n

Xm

i¼1

vixip ¼ 1

ur; vi � 0; r ¼ 1; 2; . . .; s; i ¼ 1; 2; . . .;m

ð1Þ

If E�
p ¼ 1, then DMUp is called efficient; otherwise,

when E�
p\1; it is referred to as an inefficient DMU.

In real-world settings, managers are not able to control

non-discretionary and non-controllable inputs that are

exogenously fixed (Lotfi et al., 2007). By extending the

CCR model, therefore, we propose Program (2) to evaluate

the efficiency of DMUs when they are operating with

discretionary (D), non-discretionary (ND), and non-con-

trollable (NC) inputs under CRS conditions. We distin-

guish between the non-controllable and non-discretionary

inputs, assuming that no slack is allowed for non-control-

lable inputs (Cooper et al., 2007).

ECCR
p ¼ Max

Xs

r¼1

uryrp �
Xl

k¼1

fkzkp �
Xb

c¼1

hcdcp

Subject to :

Xs

r¼1

uryrj �
Xl

k¼1

fkzkj �
Xb

c¼1

hcdcj

�
Xm

i¼1

vixij � 0; j ¼ 1; 2; . . .; n

Xm

i¼1

vixip ¼ 1

ur; vi � 0 i ¼ 1; . . .:;m; r ¼ 1; . . .:; s

fk [ 0 k ¼ 1; . . .; l

hc ! free c ¼ 1; . . .; b

ð2Þ

where xij; i ¼ 1; . . .;m are the discretionary inputs of

DMUj, zkj; k ¼ 1; . . .; l are the non-discretionary inputs of

DMUj, and dcj; c ¼ 1; . . .; b are the non-controllable inputs

of DMUj.

The principal advantage of producing a common

weights vector is restricting the weight flexibility of
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original DEA models to provide a consistent and identical

basis to evaluate all DMUs (Shabani et al., 2019). Con-

ducting CSW analysis, all DMUs do not get the full effi-

ciency score (Hosseinzadeh Lotfi et al., 2013). Regardless

of the approach to generating CSW, the common set of

weights models enable managers and policymakers to

evaluate the performance of all DMUs on a consistent basis

to enunciate strategies to enhance the performance of

inefficient ones. The rationale of the deal point method is

minimising the distance between every DMU and the ideal

or the best DMU with the lowest amount of inputs and the

highest amount of outputs (Sun et al., 2013). Thus, DMUI ,

the ideal DMU, is defined as Eq. 3:

DMUI ¼ Xmin; Ymaxð Þ ð3Þ

where xiðminÞ ¼ min xij

��j ¼ 1; . . .; n
� �

; i ¼ 1; . . .;mð Þ
andyrðmaxÞ ¼ max yrj

��j ¼ 1; . . .; n
� �

; r ¼ 1; . . .; sð Þ. In

Eq. 3, Xmin denotes the vector of inputs and Ymax denotes

the vector of outputs of the ideal DMU.

Since the ideal point model tries to minimise the dis-

tance between each DMU and the ideal DMU, then Model

(4) meets this objective and gives a CSW (Sun et al., 2013).

Min Z ¼
Xn

j¼1

Xs

r¼1

uryr maxð Þ �
Xs

r¼1

uryrj

 !

þ
Xn

j¼1

Xm

i¼1

vixij �
Xm

i¼1

vixi minð Þ

 !

Subject to :

Xs

r¼1

uryrj �
Xm

i¼1

vixij � 0; j ¼ 1; 2; . . .; n

Xm

i¼1

vixi minð Þ ¼ 1

Xs

r¼1

uryr maxð Þ ¼ 1

ur; vi � e[ 0; i ¼ 1; . . .:;m; r ¼ 1; . . .:; s

ð4Þ

The objective function in Model (4) minimises the total

distance between each DMU and the ideal DMU. The first

set of constraints guarantee that the relative efficiency of

DMUs do not exceed unity. The second and third

constraints determine weights of inputs and outputs to

ensure that the ideal DMU lie on the efficiency frontier.

Implementing the ideal point method to generate a

common set of weights for Model (2) results in the com-

mon weights Model (5):

Min Z ¼
Xn

j¼1

Xs

r¼1

uryr maxð Þ �
Xl

k¼1

fkzk minð Þ �
Xb

c¼1

hcdc minð Þ

" # 

�
Xs

r¼1

uryrj �
Xl

k¼1

fkzkj �
Xb

c¼1

hcdcj

" #!

þ
Xn

j¼1

Xm

i¼1

vixij �
Xm

i¼1

vixi minð Þ

 !

Subject to:

Xs

r¼1

uryrj �
Xl

k¼1

fkzkj �
Xb

c¼1

hcdcj �
Xm

i¼1

vixij � 0; j ¼ 1; 2; . . .; n

Xm

i¼1

vixi minð Þ ¼ 1

n
Xs

r¼1

uryr maxð Þ �
Xn

j¼1

Xl

k¼1

fkzkj �
Xn

j¼1

Xb

c¼1

hcdcj ¼ n

ur; vi � e[ 0 i ¼ 1; . . .:;m; r ¼ 1; . . .:; s

fk [ 0 k ¼ 1; . . .; l

hc ! free c ¼ 1; . . .; b

ð5Þ

Model (5) determines the common set of weights for

inputs (including non-discretionary and non-controllable)

and outputs to minimise the overall distance between all

DMUs and the idel DMU. Model (5) distinguishes from

Model (4) by modelling the non-discretionary and non-

controllbale inputs. Because managers do not have control

over these variables, they negatively contribute to the

outputs
Ps

r¼1 uryrj �
Pl

k¼1 f kzkj �
Pb

c¼1 hcdcj

h i
of DMUs.

The first set of constraints in Model (5) ensures that the

relative efficiency of each DMU remains in the range (0,1]

given that hc is a non-constrained-in-sign variable. The

second and third constraints position the ideal DMU on the

efficiency frontier.

The optimal solution of Model (5), u�
r ; v�i ; f �k ; h�

c

� �
; will

be the common set of weights to evaluate the relative

efficiency of DMUs which is obtained by Eq. 6, where E�
p

is the efficiency of DMUp calculated by the common set of

weights.

E�
p ¼

Ps
r¼1 u�

r yrp �
Pl

k¼1 f �kzkp �
Pb

c¼1 h�
cdcp

h i

Pm
i¼1 v�i xip

ð6Þ

Case Study: LPG Supply Chain

There has been a notable shift towards using LPG in the

energy domain, notably in Pacific region, motivated mainly

by its limited or absence of subsidies. LPG has emerged as

a viable option that is not only economically accessible and

environmentally friendly but also demonstrates superior

distribution capabilities. This practical energy source is

both cost-effective and easily transportable. Additionally, it

establishes a sustainable trajectory for attaining
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environmental goals by significantly reducing home and

industrial pollutants. This is especially evident when it

replaces more carbon-intensive fuels like firewood or ker-

osene in various applications (Abhimanyu Bhuchar, 2020).

LPG is progressively emerging as a cost-effective and

environmentally friendly intermediate alternative during

the shift from conventional liquid petroleum fuels to

renewable energy sources. LPG is now used by Pacific

Island governments and territories, mainly for domestic

culinary activities. If the use of LPG were to be extended to

replace all cooking kerosene and biomass throughout the

Pacific area, it is plausible that the existing demand may

see a twofold increase. The rationale for advocating for this

modification is grounded on health considerations, envi-

ronmental sustainability, and potential cost reductions for

individual homes. Nevertheless, it is reasonable to antici-

pate that the rise in demand will lead to varying degrees of

improved economies of scale across Pacific Island Coun-

tries and Territories. The potential escalation in volume

may prompt some Pacific Island Countries and Territories

to transition towards bulk distribution methods, hence

potentially exerting a substantial influence on the price at

which goods are transported. The use of LPG in trans-

portation or the implementation of local piped gas net-

works might potentially lead to an additional rise in

volumes and perhaps result in improved economic benefits

associated with bulk imports. The ongoing experimentation

in Fiji involves the use of LPG in heavy-duty vehicles and

the amalgamation of LPG with other fuel sources for power

production, drawing upon existing commercial technolo-

gies present in Australia. In 2050, although LPG continues

to have a restricted use in cooking within some rising

markets and developing nations, the predominant sources

catering to 95% of cooking energy requirements are elec-

tricity and contemporary bioenergy (Morgan & Atkinson,

2016). Therefore, all the processes that are related to LPG

have emerged as key elements of their economic frame-

work. Due to the intricate and expensive nature of instal-

ling infrastructure for LPG, it is essential to consider

numerous factors. Additionally, given the potential dis-

ruptions and risks across every stage of the process,

effective management is crucial to enhance the resilience

of the system. Energy SCs are of huge significance for

societies. Any disruption in the energy sector and its

associated SCs might have devastating economic impacts

on companies dealing with producing and distributing

energy products (Urciuoli et al., 2014).

Many factors, such as supply and demand nodes and

their available capacity, are important for assessing the

resilience of SCNs, as any disruption in those variables

results in the uncertainty and vulnerability of the SCN

(Alikhani et al., 2021; Lu et al., 2018). The inputs and

outputs for measuring supply chain resilience using com-

mon weight DEA model are explained below:

Outputs:

Node degree and clustering coefficient: These are

topographical measurements emphasising the SCN’s

structural design and connectivity. High connectivity typ-

ically suggests enhanced resilience as suppliers with

extensive connections have various alternatives to supply

goods, thereby reducing disruption risks (Pourhejazy et al.,

2017; Zhao et al., 2011). These parameters comprise the

average node degree (the mean number of connections per

node) and the average clustering coefficient (a measure of

the degree of mutual connectivity among nodes).

Both node degree (Chen & Lin, 2012; Hearnshaw &

Wilson, 2013; Kim et al., 2015; Sahlmueller & Hellingrath,

2022; Xia, 2020; Xu et al., 2016) and clustering coefficient

(Geng et al., 2014; Hearnshaw & Wilson, 2013; Li et al.,

2020; Mari et al., 2015; Xia, 2020) have positive impacts

on supply chain resilience by showing how SC nodes are

interconnected.

The average node degree (AND) shows the average

number of connections for every node and is obtained by

Eq. 7;

AND ¼ 1

N

XN

i¼1

ki ð7Þ

where N is the total number of nodes in the network and ki

represents the number of connections between node i and

the reset of the network.

In addition, the average clustering coefficient (ACC)

evaluates the degree of mutual exchange connections

between the nodes in the network. ACC is calculated by

Eq. 8;

ACC ¼ 1

N

XN

i¼1

Ni

kiðki � 1Þ=2 ð8Þ

where Ni is the number of immediately connected neigh-

bours of node i.

Inputs:

Number of supply nodes: This parameter, another

topographical measure, indicates the quantity of supply

points in the SCN. A lower figure implies a more cen-

tralised network, which might result in slower recovery

post-disturbances. The number of supply nodes also

impacts the scale of potential disruptions, with a decen-

tralised system typically yielding less severe impacts due to

the distributed nature of the supply nodes. The number of

supply nodes can enhance the capacity of the SCN, better

accommodating demand than before. This can be equated

with supplier diversity; a greater number of nodes may

bolster flexibility (Etemadnia et al., 2015; Khan et al.,

2021; Lam, 2021; Wang et al., 2015; Zhao et al., 2022).
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The density of a supply network means that a higher

number of nodes are located at short distances. In case of

local disruptions such as natural disasters, a higher density

increases the vulnerability of the SCN and, as a result,

decreases the SCRes (Dixit et al., 2020b).

Available capacity: This operational metric reveals the

presence of spare supply capacity within the network. It is

deduced through the complete potential supply ability

across the network and an availability ratio. This measure

provides a lucid indication of the network’s robustness in

handling disruptions. Available capacity serves as a resi-

lient strategy for networks. While increasing capacity may

escalate costs, particularly holding and warehousing

expenses, it can strengthen the network against disruptions

(Hosseini et al., 2019; Mohammed et al., 2023; Shashi

et al., 2020; Tan et al., 2020).

Total distance: As an operational parameter, total dis-

tance signifies the cumulative distance between demand

and supply nodes. The distance between nodes has impli-

cations for lead times, transportation expenditures, and

vulnerability to disruptions. Minimising this distance can

shield the SCN from potential disruptions and uncertainties

(Chen & Lin, 2012; Djomo et al., 2023; Hearnshaw &

Wilson, 2013; Xu et al., 2016; Zahraee et al., 2022). Lesser

total distance generally contributes to increased resilience

as it reduces logistical complexities and facilitates more

efficient demand–supply balancing.

Population density: This societal factor assesses the

populace concentration around supply facilities. Higher

densities indicate heightened societal risk if a supply

facility hazard occurs. This measure provides an insight

into potential societal impact and can influence risk man-

agement strategies. This metric is paramount in evaluating

network resilience, with denser areas indicating heightened

potential societal impacts (Cooper et al., 2007; Gružauskas,

2020; Gružauskas & Burinskien _e, 2022; Haeri et al., 2020;

Liu & Zhao, 2015). This study considers population density

a non-controllable input (Cooper et al., 2007), as SC

managers and decision-makers do not control it.

Data for the SCNs are shown in Table 1, which are

adopted from Pourhejazy et al. (2017).

Running MATLAB R2016b to solve Models (2) and (5)

gives the efficiency score of SCNs. This study assumes that

outputs change at the same ratio that inputs change and

vice versa, so it employs the CCR model for efficiency

analysis. As mentioned, Model (2) provides different sets

of weights for each SCN. For example, Table 2 shows the

weights of inputs and outputs for SCN-1 and SCN-2 with

the highest and lowest ranks, respectively.

As the number of nodes in a network grows, the net-

work’s vulnerability becomes magnified, thereby exacer-

bating the potential for susceptibility (Alikhani et al.,

2023). This is because disruptions at any one node may

create delays and disruptions in manufacturing, distribu-

tion, and customer service across the whole SC (Sawik,

2022). A SC’s resilience can be enhanced by fortifying its

nodes to totally or partially shield facilities against threats

(Sawik, 2022).

Organisations seeking to increase their resilience to the

impact of disruptions might consider investing in the

available capacity and diversifying their supply sources to

swiftly adjust to unanticipated shifts in demand or supply

(Goldbeck et al., 2020). When dealing with disruptions, a

SC with excess capacity is stronger than one without

(Riccardo et al., 2021). This is because a ‘‘buffer’’ created

by the excess capacity can accommodate swings in demand

or supply. Therefore, the availability of backup capacity is

also crucial since it helps mitigate the impact of disruptions

(Hosseini et al., 2019). Back-up capacity helps speed up

the SC’s recovery after disruptions (Ivanov, 2019).

Distance, in this context, refers to the physical separa-

tion between the SC’s various nodes, such as suppliers,

manufacturers, distributors, and warehouses (Birkie &

Trucco, 2020).

Transportation costs, lead times, and vulnerability to

disruptions all rise in direct proportion to the distance and

separation of these nodes (Li et al., 2017; Musazzi et al.,

2020).

SC management faces difficulties in communication and

coordination due to the inherent complexity that distance

adds to the process (Li et al., 2017). There are a number of

ways in which physical separation weakens SCs. For

instance, as lead times are extended, SCs may be more

susceptible to disruptions since delays at any point in the

chain might have a ripple effect on the other parts (Sawik,

2023). In addition, transportation costs may rise with

increasing distance, cutting into SC profits (Mohammed

et al., 2019). Finally, as SCs get more complicated, it might

be more difficult to effectively coordinate and communi-

cate with other levels (Pimenta et al., 2022). However,

geographical diversification of suppliers is one method

through which businesses can mitigate the detrimental

effects of distance on SCRes (Li et al., 2017). By doing so,

businesses continue to provide a consistent supply of

products and services despite disruptions at a single site.

They could become more resilient and competitive as a

result.

Population density may have a substantial effect on

SCRes since it can alter the availability and efficacy of

resources and transportation networks (Salama & McGar-

vey, 2021). Population density can have a significant

impact on distribution strategies, as it can influence the

availability and efficiency of transportation systems, the

cost of resources, and the complexity of the SCN. The

allocation of resources in low-density areas may be more

challenging and require different distribution strategies
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than those in high-density areas (Gružauskas & Burin-

skien _e, 2022). Population density can impact the efficiency

of transportation networks since excessive traffic volume

and congestion can cause delays and interruptions in the

transfer of products. This may affect the speed and

dependability of delivery, which in turn can affect SCRes

(Gružauskas, 2020).

Node degree, when discussing SCNs, measures how

many connections an individual node has to other nodes

(Xia, 2020). The degree of a node is a topological indicator

that provides insight into the interconnectedness and

complexity of a SCN, both of which are vital in deter-

mining the network’s resilience (Zhao et al., 2011). Most

SC partners choose the company with the highest capacity,

and this is reflected in the node degree. Manufacturers and

distributors with a higher degree indicate stronger buying

power and a wider reach to potential clients, while sup-

pliers with a higher degree indicate a more robust supply

capacity. Hence, the new node is added to the network

according to the current nodes and a probability that is

Table 1 LPG SC data

Inputs Outputs

Discretionary Non-discretionary Non-controllable

SCN

config

No. of supply

nodes

Available capacity

(Ton)

Total distance

(Km)

Population

density*

Ave. node

degree

Clustering coefficient

(105)

SCN-1 2 53,002.5 162,700 4452 1.995 0.0008

SCN-2 3 77,996 160,200 4652 2 0.015

SCN-3 3 56,401.172 131,010 9308 2 0.008

SCN-4 4 80,070.852 127,770 4940 2.011 0.104

SCN-5 3 57,487.392 131,010 9308 2.000 0.008

SCN-6 4 80,781.569 127,770 4940 2.011 0.104

SCN-7 4 57,815.846 106,600 6411 2.011 0.133

SCN-8 5 85,005.144 106,870 13,895 2.022 1.600

SCN-9 4 59,357.692 106,600 6411 2.011 0.133

SCN-10 5 87,422.65 106,870 13,895 2.022 1.600

SCN-11 5 59,890.152 101,270 13,554 2.028 0.628

SCN-12 6 85,179.567 96,459 13,650 2.049 4.130

SCN-13 5 62,120.714 101,270 13,554 2.028 0.628

SCN-14 6 87,644.823 96,459 13,650 2.049 4.130

SCN-15 6 60,072.998 89,489 14,191 2.049 1.360

SCN-16 7 85,752.84 74,066 9084 2.077 9.640

SCN-17 6 62,357.684 89,489 14,191 2.049 1.360

SCN-18 7 88,436.857 74,066 9084 2.077 9.640

SCN-19 7 61,021.554 97,730 17,880 2.077 3.830

SCN-20 8 86,936.811 72,123 13,373 2.109 28,200

SCN-21 7 63,626.922 67,730 17,880 2.077 1.360

SCN-22 8 90,025.922 72,123 13,373 2.109 9.640

* This metric is calculated by summating the number of people over the SCN who are located within a radius of 480 m in the neighbourhood of

the supply node

Table 2 Weights of inputs and outputs using Model (2)

SCN u�
1 u�2 v�1 v�2 f �1 h�

1 CCR efficiency

SCN-1 0.5012 1.6685e-15 0.2500 1.8867e-5 2.1475e-19 2.4726e-19 1.0000

SCN-2 1.3239 3.0678e-5 0.3333 1.0936e-21 1.1859e-5 1.0110e-5 0.7009
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proportionate to the degree of the existing nodes. There-

fore, in addition to indicating the node’s relative relevance

in the network, a node’s degree may provide insight into its

practical capabilities (Geng et al., 2013).

A node’s tendency to cluster with others is quantified by

its clustering coefficient. Each node’s clustering may be

thought of as the percentage of all potential triangles (3

loops) that pass through that node (Li et al., 2020). A high

clustering coefficient enhances the SC’s susceptibility

(Brandon-Jones et al., 2015). The development of SCNs is

intricately linked to the manner in which levels engage

with each other through interconnections and interactions.

In this regard, the clustering coefficient serves as an

invaluable metric for measuring the level of connectivity

within such networks. By capturing the extent to which

nodes are interconnected within the network, the clustering

coefficient offers a powerful tool for evaluating the evo-

lution of SC systems (Geng et al., 2014).

The flexibility of weights and choosing different

weighting schemes by the conventional CCR model results

in having 13 efficient SCNs with an efficiency score of 1.

When 59% of SCNs are identified as efficient, discrimi-

nating them for complete ranking is almost impossible. The

proposed CSW model resolves this issue by generating a

common set of weights to analyse the resilience of SCNs as

follows:

u�
1 ¼ 0:4742; u�

2 ¼ 2:0673e � 17

v�1 ¼ 7:0303e � 13; v�2 ¼ 1:8867e � 5

f �1 ¼ 9:9404e � 18; h�
1 ¼ 3:5688e � 17

Using Eq. 6, the efficiency score of SCNs in terms of

resiliency is obtained, as shown in Table 3. The projection

of discretionary inputs on the CCR efficiency frontier (4th

and 5th columns) shows that SCNs can reduce their inputs

to the projected values to produce the same outputs in order

to become efficient (resilient). On the other hand, the

projection of outputs on the CCR efficiency frontier (6th

Table 3 Resilience score of LPG SCNs

SCN

configuration

CCR resilience score

(rank)-Model (2)

CCR-CSW resilience score

(rank)- Model (5)

Projection of inputs on the CCR

efficiency frontier

Projection of outputs on the

CCR efficiency frontier

No. of supply

nodes

Available

capacity (Ton)

Ave. node

degree

Clustering

coefficient (105)

SCN-1 1.0000 (1) 0.9459 (1) 2 50,123.36 2.110 0.001

SCN-2 0.7009 (22) 0.6444 (12) 2 50,248.97 3.104 0.023

SCN-3 1.0000 (1) 0.8912 (2) 3 50,248.58 2.245 0.009

SCN-4 1.0000 (1) 0.6312 (13) 3 50,525.08 3.187 0.165

SCN-5 1.0000 (1) 0.8743 (3) 3 50,248.6 2.288 0.009

SCN-6 1.0000 (1) 0.6256 (14) 3 50,525.09 3.215 0.166

SCN-7 1.0000 (1) 0.8741 (4) 4 50,524.58 2.301 0.152

SCN-8 0.8086 (20) 0.5978 (18) 3 50,802 3.383 2.677

SCN-9 1.0000 (1) 0.8514 (7) 4 50,524.63 2.363 0.156

SCN-10 0.8086 (21) 0.5813 (22) 3 50,802.05 3.480 2.753

SCN-11 0.9789 (15) 0.8510 (8) 5 50,951.57 2.384 0.738

SCN-12 0.8165 (18) 0.6045 (17) 4 51,481.38 3.390 6.833

SCN-13 0.9444 (17) 0.8204 (10) 5 50,951.65 2.473 0.766

SCN-14 0.8165 (19) 0.5875 (21) 4 51,481.43 3.488 7.031

SCN-15 1.0000 (1) 0.8572 (5) 6 51,479.11 2.391 1.587

SCN-16 1.0000 (1) 0.6087 (16) 5 52,187.46 3.413 15.840

SCN-17 0.9665 (16) 0.8258 (9) 5 51,479.21 2.482 1.647

SCN-18 1.0000 (1) 0.5902 (19) 5 52,187.53 3.520 16.336

SCN-19 0.9896 (14) 0.8554 (6) 6 52,183.47 2.429 4.479

SCN-20 1.0000 (1) 0.6097 (15) 5 53,000.97 3.459 46.256

SCN-21 1.0000 (1) 0.8204 (11) 6 52,182.29 2.533 1.658

SCN-22 1.0000 (1) 0.5887 (20) 5 52,991.23 3.583 16.377

Average

efficiency

0.9468 0.7335
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and 7th columns) show that SCNs can become efficient/

resilient by expanding their clustering coefficient and node

degree while using the same amount of inputs. Findings

show that the CCR model identifies 13 efficient SCNs with

an average efficiency score of 0.9468, while the proposed

CSW model identifies one SCN with the highest efficiency

score with the average of 0.7335. Therefore, the proposed

CSW model ensures complete ranking of DMUs with a

higher discrimination power.

Findings show the resilience score of 22 SCNs, indi-

cating that SCN-1 has the highest resilience score (0.9459)

and SCN-10 has the lowest resilience score (0.5813).

Comparing the configuration of SCN-1 and SCN-3, the two

top SCNs show that SCN-1 has yielded fewer outputs using

fewer discretionary inputs. While their first outputs are

close to each other, the clustering coefficient of SCN-1 is

ten times smaller than that of SCN-3. The higher resilience

score of SCN-1 can be attributed to inputs, both discre-

tionary inputs (number of supply nodes and available

capacity) and non-discretionary inputs (total distance) and

non-controllable inputs (population density). SCN-1 has

technically operated very well as it has used fewer

resources compared to SCN-3. While SCN-1 has a better

status than SCN-3 in terms of population density (less

population density increases SCRes), it suffers from a long

geographical distance to demand nodes which reduces its

capability to respond to disruptions and be resilient. The

optimal solution shows that the average node degree is the

most important output variable (u�
1 ¼ 0:4742) in deter-

mining the resilience of SCNs. This variable measures the

connectivity of elements of the SCN, and higher connec-

tivity means that knowledge sharing among the nodes is

higher, so they have a common understanding of the dis-

ruptive situations and are better prepared to respond to

them.

Comparing SCN-1 as the highly resilient and SCN-10 as

the least resilient SCN shows that SCN-10 has produced

much higher outputs with significantly higher amounts of

discretionary inputs. While SCN-10 enjoys a shorter dis-

tance (over 34% shorter), its population density is over

200% more than that of SCN-1, which reduces its capacity

to respond to disruptions and recover from them after any

disruption occurs. As the technical efficiency of SCN-10 is

0.5813, so, 0.4187 parts of the discretionary inputs are not

efficiently used to contribute to its resilience. In order to

improve its resilience and operate as a fully resilient SCN,

while it is operating under a 106,870 km distance and

13,895 population density, SCN-10 can reduce its discre-

tionary inputs from (5, 87,422.7) to

2:9065 � 3; 50818:82ð Þ to yield the same outputs (2.022,

1.6). To improve the market share and SC surplus, SCNs

tend to expand their outputs instead of reducing the inputs.

Focusing on SCN-10 from the output perspective reveals

that if this SCN makes more connections with other net-

works and increases the outputs from (2.022, 1.600) to

(3.4784, 2.7525), can position itself on the efficiency

frontier and become a resilient network. These bench-

marking practices help SCNs to focus on their capabilities

to enhance their resilience.

Conclusion

Results show that various configurations of SCNs can

impact the resilience level. For the Pacific region, this

could imply that optimal planning and management of the

number of supply nodes, their capacities, and their geo-

graphical locations could enhance the resilience of their

LPG SCs. Managers can easily control discretionary inputs

such as the number of supply bases and the network’s

available capacity in supplying the items during recovery.

While increasing the capacity and adding to the supply

nodes are costly for the SCN, these practices increase the

resilience of SCNs, and if required, managers implement

strategies to accomplish them.

The LPG SCs in the Pacific region are recommended to

increase capacity and diversify supply sources to improve

SCRes. Table 3 implies that LPG SCs should invest in

infrastructures to increase capacity and diversify sources of

LPG to react expeditiously to changing demand and sup-

ply. On the other hand, we found that non-discretionary

inputs such as total distance among the supply and demand

nodes and population density greatly impact the resilience

of SCNs. Since manipulating non-controllable inputs such

as population density is impossible and changing some

non-discretionary inputs such as total distance among the

supply and demand nodes is extremely costly (and even in

many cases, the losses of the SCN because of longer dis-

tances are less than the cost of moving supply nodes to

geographically closer locations), managers must formulate

strategies to minimise the negative impacts of disruptions.

Provided the above-mentioned non-discretionary inputs,

holding extra inventories in the supply bases and securing

multiple supply sources improves the resilience of SCNs.

Given the unique geographical dispersion of the Pacific

Islands, the distance between SC nodes could impact

SCRes. Therefore, determining the supply node’s optimal

and strategic location and focusing on efficient trans-

portation is important in helping managers make optimal

decisions. Besides, key nodes, i.e. major distribution cen-

tres or suppliers, should have strong connections to other

nodes to react to disruptions appropriately. The Pacific

Island nations can enhance the resilience of their SCs by

increasing the clustering coefficient and node degree of

their SCNs by building more connections with other SCs,

thus ensuring smoother operations during disruptions.

S90 Global Journal of Flexible Systems Management (December 2023) 24(Suppl 1):S77–S99

123



Given the flow of materials, cash, and information

between the SC partners, it is expected that the information

flow experiences a higher clustering coefficient compared

to the other flows in the efficient SCs. The drawback of

having a low clustering coefficient is that it might result in

more inefficiencies due to the higher difficulty of coordi-

nation and collaboration throughout the network (Hearn-

shaw & Wilson, 2013). Thus, to improve the efficiency and

therefore the resilience of supply networks, SC managers

can build more social connections with other members of

the network to increase the mutual flow of materials and

information. Furthermore, in the post-pandemic era, good

resilient strategies involve proactive strategies that antici-

pate changes and reactive strategies that respond to new

challenges.

SCs are constantly exposed to disruptions, including

natural disasters and man-made disruptive events. SCs

need to improve their capabilities to proactively and

reactively respond to disruptions through risk mitigation

and devising business continuity plans. In the post-pan-

demic period, the issue of SCRes is to adapt to new and

unanticipated disruptions while maintaining a balance

between efficiency and adaptability. The pandemic has

shown the weaknesses and interdependencies of global

SCs, requiring companies to engage in resilience-building

strategies such as supplier diversity, enhanced visibility

and transparency, and the use of new technology.

Nonetheless, these solutions may need substantial expen-

ditures and may have an effect on the cost and pace of

operations, resulting in a trade-off between resilience and

profitability. In this context, SC finance emerges as a

critical lever to balance this trade-off. By providing more

efficient financing options, it enhances SC cost optimisa-

tion, thereby reducing the cost burden of resilience strate-

gies. Additionally, it can mitigate SCRes risks by ensuring

more robust financial flows, contributing to SCRes through

enhanced financial stability, which is vital in periods of

disruption. Moreover, the strategic use of SC finance is

instrumental in enhancing SC performance by aligning

financial flows with operational needs, ensuring that SCs

are not only resilient but also financially optimised. The

SCRes of 22 LPG SCs has been measured and analysed in

this study. Given the presence of several non-discretionary

and non-controllable factors and their impacts (which are

more likely negative) on the resilience of SCs, we devel-

oped a common set of weights model with non-discre-

tionary and non-controllable inputs to evaluate the

resilience of SCNs. The proposed model has the capability

to provide SC managers with the complete ranking of the

SCNs and highlight the best practices by solving only one

linear program. SCNs are able to determine their excess

inputs and try to minimise them to increase resilience.

Looking at the population density and total distance among

supply and demand nodes, holding extra inventories and

extending the supplier base are two suitable strategies that

speed up the recovery from disruptions. Despite the pro-

vided strengths of the proposed model, it does not look at

the outputs and how much they should increase to make the

network efficient. Future studies can extend the proposed

methodology to non-oriented DEA models to assess the

resilience of SCNs to offer a wider view of SCRes and the

needed output upswing for peak operations. Secondly,

investigating the changing nature of SCs can delve deeper

into resilient responses to evolving situations. Lastly,

studying the effects of technologies like artificial intelli-

gence and blockchain on SCRes can shed light on the

influence of digital evolution on SC efficiency and

adaptability.

Author Contributions RKM, MP, and SA contributed to concep-

tualisation; RKM and SAHS contributed to methodology; RKM and

NKM contributed to formal analysis and investigation; NKM and

SAHS contributed to writing—original draft preparation; RKM, MP,

SA contributed to writing—review and editing; RKM supervised the

study.

Funding Open Access funding enabled and organized by CAUL and

its Member Institutions. There is no funding received.

Data Availability Statement The authors confirm that the data

supporting the findings of this study are available within the article

and are extracted from (Pourhejazy et al., 2017), as shown in Table 1.

We declare that this research did not receive any financial support

from funding agencies in the public, commercial, or not-for-profit

sectors. We declare that the fourth author, Associate Professor Mat-

thew Pepper, is on the guest editorial team of this special issue.

Declarations

Conflict of interest The authors have no competing interests to

declare that are relevant to the content of this article. The co-author

Matthew Pepper is a Guest Editor for the Special Issue.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Abedian, M., Saghafinia, A., & Hejazi, M. (2023). A fuzzy analysis

approach to green-resilient supplier selection in electronic

Global Journal of Flexible Systems Management (December 2023) 24(Suppl 1):S77–S99 S91

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


manufacturing systems. Cybernetics and Systems, 54(5),
577–603. https://doi.org/10.1080/01969722.2022.2067633

Abhimanyu Bhuchar, E. L. (2020). LPG usage in Asia Pacific: A
means or an end to meeting energy needs. O. Wyman. https://

www.marshmclennan.com/content/dam/mmc-web/insights/publi

cations/2020/february/lpg-usage-in-asia-pacific.pdf

Agarwal, N., Seth, N., & Agarwal, A. (2022). Evaluation of supply

chain resilience index: A graph theory based approach. Bench-
marking-an International Journal, 29(3), 735–766. https://doi.
org/10.1108/Bij-09-2020-0507

Al Naimi, M., Faisal, M. N., Sobh, R., & Bin Sabir, L. (2021). A

systematic mapping review exploring 10 years of research on

supply chain resilience and reconfiguration. International Jour-
nal of Logistics Research and Applications, 25(8), 1191–1218.
https://doi.org/10.1080/13675567.2021.1893288

Albertini, F., Gomes, L. P., Grondona, A. E. B., & Caetano, M. O.

(2021). Assessment of environmental performance in building

construction sites: Data envelopment analysis and Tobit model

approach. Journal of Building Engineering, 44, 102994. https://
doi.org/10.1016/j.jobe.2021.102994

Alfarsi, F., Lemke, F., & Yang, Y. (2019). The Importance of Supply

Chain Resilience: An Empirical Investigation. In 25th Interna-
tional Conference on Production Research Manufacturing
Innovation: Cyber Physical Manufacturing, Chicago, Illinoise,
USA.

Ali, I., Nagalingam, S., & Gurd, B. (2017). Building resilience in

SMEs of perishable product supply chains: Enablers, barriers

and risks. Production Planning & Control, 28(15), 1236–1250.
https://doi.org/10.1080/09537287.2017.1362487

Ali, M. H., Suleiman, N., Khalid, N., Tan, K. H., Tseng, M. L., &

Kumar, M. (2021). Supply chain resilience reactive strategies for

food SMEs in coping to COVID-19 crisis. Trends in Food
Science & Technology, 109, 94–102. https://doi.org/10.1016/j.
tifs.2021.01.021

Alikhani, R., Torabi, S. A., & Altay, N. (2021). Retail supply chain

network design with concurrent resilience capabilities. Interna-
tional Journal of Production Economics. https://doi.org/10.1016/
j.ijpe.2021.108042

Alikhani, R., Ranjbar, A., Jamali, A., Torabi, S. A., & Zobel, C. W.

(2023). Towards increasing synergistic effects of resilience

strategies in supply chain network design. Omega, 116, 102819.
Alvarez-Rodriguez, C., Martin-Gamboa, M., & Iribarren, D. (2020).

Sustainability-oriented efficiency of retail supply chains: A

combination of life cycle assessment and dynamic network data

envelopment analysis. Science of the Total Environment, 705,
135977. https://doi.org/10.1016/j.scitotenv.2019.135977

Ambulkar, S., Blackhurst, J., & Grawe, S. (2015). Firm’s resilience to

supply chain disruptions: Scale development and empirical

examination. Journal of Operations Management, 33–34(1),
111–122. https://doi.org/10.1016/j.jom.2014.11.002

Arabsheybani, A., & Khasmeh, A. A. (2021). Robust and resilient

supply chain network design considering risks in food industry:

Flavour industry in Iran. International Journal of Management
Science and Engineering Management, 16(3), 197–208. https://
doi.org/10.1080/17509653.2021.1907811

Asian, S., & Nie, X. F. (2014). coordination in supply chains with

uncertain demand and disruption risks: Existence, analysis, and

insights. IEEE Transactions on Systems Man Cybernetics-
Systems, 44(9), 1139–1154. https://doi.org/10.1109/Tsmc.2014.

2313121

Asian, S., Wang, J., & Dickson, G. (2020). Trade disruptions,

behavioral biases, and social influences: Can luxury sporting

goods supply chains be immunized? Transportation Research
Part E: Logistics and Transportation Review, 143, 102064.

Aslam, H., Khan, A. Q., Rashid, K., & Rehman, S. U. (2020).

Achieving supply chain resilience: The role of supply chain

ambidexterity and supply chain agility. Journal of Manufactur-
ing Technology Management, 31(6), 1185–1204. https://doi.org/
10.1108/Jmtm-07-2019-0263

Azadeh, A., & Alem, S. M. (2010). A flexible deterministic,

stochastic and fuzzy Data Envelopment Analysis approach for

supply chain risk and vendor selection problem: Simulation

analysis. Expert Systems with Applications, 37(12), 7438–7448.
https://doi.org/10.1016/j.eswa.2010.04.022

Azadeh, A., Atrchin, N., Salehi, V., & Shojaei, H. (2014). Modelling

and improvement of supply chain with imprecise transportation

delays and resilience factors. International Journal of Logistics-
Research and Applications, 17(4), 269–282. https://doi.org/10.
1080/13675567.2013.846308

Azadi, M., Moghaddas, Z., Saen, R. F., Gunasekaran, A., Mangla, S.

K., & Ishizaka, A. (2022). Using network data envelopment

analysis to assess the sustainability and resilience of healthcare

supply chains in response to the COVID-19 pandemic. Annals of
Operations Research. https://doi.org/10.1007/s10479-022-

05020-8

Azevedo, S. G., Govindan, K., Carvalho, H., & Cruz-Machado, V.

(2013). Index to assess the greenness and resilience of the

upstream automotive supply chain. Journal of Cleaner Produc-
tion, 56, 131–146. https://doi.org/10.1016/j.jclepro.2012.04.011

Bag, S., Dhamija, P., Luthra, S., & Huisingh, D. (2023). How big data

analytics can help manufacturing companies strengthen supply

chain resilience in the context of the COVID-19 pandemic.

International Journal of Logistics Management, 34(4),
1141–1164. https://doi.org/10.1108/Ijlm-02-2021-0095

Balakrishnan, A. S., & Ramanathan, U. (2021). The role of digital

technologies in supply chain resilience for emerging markets’

automotive sector. Supply Chain Management-an International
Journal, 26(6), 654–671. https://doi.org/10.1108/Scm-07-2020-

0342

Barratt, M., & Barratt, R. (2011). Exploring internal and external

supply chain linkages: Evidence from the field. Journal of
Operations Management, 29(5), 514–528. https://doi.org/10.

1016/j.jom.2010.11.006

Bhunia, S., Karmakar, S., Bhattacharjee, S., Roy, K., Kanthal, S.,

Pramanick, M., Baishya, A., & Mandal, B. (2021). Optimization

of energy consumption using data envelopment analysis (DEA)

in rice-wheat-green gram cropping system under conservation

tillage practices. Energy. https://doi.org/10.1016/j.energy.2021.
121499

Birkie, S. E., & Trucco, P. (2020). Do not expect others do what you

should! Supply chain complexity and mitigation of the ripple

effect of disruptions. International Journal of Logistics Man-
agement, 31(1), 123–144.

Brandon-Jones, E., Squire, B., Autry, C. W., & Petersen, K. J. (2014).

A contingent resource-based perspective of supply chain

resilience and robustness. Journal of Supply Chain Management,
50(3), 55–73. https://doi.org/10.1111/jscm.12050

Brandon-Jones, E., Squire, B., & Van Rossenberg, Y. G. T. (2015).

The impact of supply base complexity on disruptions and

performance: The moderating effects of slack and visibility.

International Journal of Production Research, 53(22),
6903–6918. https://doi.org/10.1080/00207543.2014.986296

Burgos, D., & Ivanov, D. (2021). Food retail supply chain resilience

and the COVID-19 pandemic: A digital twin-based impact

analysis and improvement directions. Transp Res E Logist
Transp Rev, 152, 102412. https://doi.org/10.1016/j.tre.2021.

102412

Chandra, C., & Grabis, J. (2009). Configurable supply chain:

framework, methodology and application. International Journal
of Manufacturing Technology and Management. https://doi.org/
10.1504/ijmtm.2009.023776

S92 Global Journal of Flexible Systems Management (December 2023) 24(Suppl 1):S77–S99

123

https://doi.org/10.1080/01969722.2022.2067633
https://www.marshmclennan.com/content/dam/mmc-web/insights/publications/2020/february/lpg-usage-in-asia-pacific.pdf
https://www.marshmclennan.com/content/dam/mmc-web/insights/publications/2020/february/lpg-usage-in-asia-pacific.pdf
https://www.marshmclennan.com/content/dam/mmc-web/insights/publications/2020/february/lpg-usage-in-asia-pacific.pdf
https://doi.org/10.1108/Bij-09-2020-0507
https://doi.org/10.1108/Bij-09-2020-0507
https://doi.org/10.1080/13675567.2021.1893288
https://doi.org/10.1016/j.jobe.2021.102994
https://doi.org/10.1016/j.jobe.2021.102994
https://doi.org/10.1080/09537287.2017.1362487
https://doi.org/10.1016/j.tifs.2021.01.021
https://doi.org/10.1016/j.tifs.2021.01.021
https://doi.org/10.1016/j.ijpe.2021.108042
https://doi.org/10.1016/j.ijpe.2021.108042
https://doi.org/10.1016/j.scitotenv.2019.135977
https://doi.org/10.1016/j.jom.2014.11.002
https://doi.org/10.1080/17509653.2021.1907811
https://doi.org/10.1080/17509653.2021.1907811
https://doi.org/10.1109/Tsmc.2014.2313121
https://doi.org/10.1109/Tsmc.2014.2313121
https://doi.org/10.1108/Jmtm-07-2019-0263
https://doi.org/10.1108/Jmtm-07-2019-0263
https://doi.org/10.1016/j.eswa.2010.04.022
https://doi.org/10.1080/13675567.2013.846308
https://doi.org/10.1080/13675567.2013.846308
https://doi.org/10.1007/s10479-022-05020-8
https://doi.org/10.1007/s10479-022-05020-8
https://doi.org/10.1016/j.jclepro.2012.04.011
https://doi.org/10.1108/Ijlm-02-2021-0095
https://doi.org/10.1108/Scm-07-2020-0342
https://doi.org/10.1108/Scm-07-2020-0342
https://doi.org/10.1016/j.jom.2010.11.006
https://doi.org/10.1016/j.jom.2010.11.006
https://doi.org/10.1016/j.energy.2021.121499
https://doi.org/10.1016/j.energy.2021.121499
https://doi.org/10.1111/jscm.12050
https://doi.org/10.1080/00207543.2014.986296
https://doi.org/10.1016/j.tre.2021.102412
https://doi.org/10.1016/j.tre.2021.102412
https://doi.org/10.1504/ijmtm.2009.023776
https://doi.org/10.1504/ijmtm.2009.023776


Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the

efficiency of decision making units. European Journal of
Operational Research, 2(6), 429–444. https://doi.org/10.1016/

0377-2217(78)90138-8

Chen, H.-H., & Lin, A.-M. (2012). Complex network characteristics

and invulnerability simulating analysis of supply chain. Journal
of Networks, 7(3), 591.

Chiang, C. I., Hwang, M. J., & Liu, Y. H. (2011). Determining a

common set of weights in a DEA problem using a separation

vector. Mathematical and Computer Modelling, 54(9–10),
2464–2470. https://doi.org/10.1016/j.mcm.2011.06.002

Chowdhury, M. M. H., & Quaddus, M. (2016). Supply chain

readiness, response and recovery for resilience. Supply Chain
Management-an International Journal, 21(6), 709–731. https://
doi.org/10.1108/Scm-12-2015-0463

Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment
analysis: A comprehensive text with models, applications,
references and DEA-solver software (Vol. 2). Berlin: Springer.

Day, J. M. (2014). Fostering emergent resilience: The complex

adaptive supply network of disaster relief. International Journal
of Production Research, 52(7), 1970–1988. https://doi.org/10.
1080/00207543.2013.787496

Ding, Y. T., Zhang, M., Chen, S., & Nie, R. (2020). Assessing the

resilience of China’s natural gas importation under network

disruptions. Energy. https://doi.org/10.1016/j.cnergy.2020.

118459

Dixit, V., Verma, P., & Tiwari, M. K. (2020b). Assessment of pre and

post-disaster supply chain resilience based on network structural

parameters with CVaR as a risk measure. International Journal
of Production Economics. https://doi.org/10.1016/j.ijpe.2020.

107655

Dixit, V., Seshadrinath, N., & Tiwari, M. K. (2016). Performance

measures based optimization of supply chain network resilience:

A NSGA-II plus Co-Kriging approach. Computers & Industrial
Engineering, 93, 205–214. https://doi.org/10.1016/j.cie.2015.12.
029

Dixit, V., Verma, P., & Tiwari, M. K. (2020a). Assessment of pre and

post-disaster supply chain resilience based on network structural

parameters with CVaR as a risk measure. International Journal
of Production Economics, 227, 107655. https://doi.org/10.1016/j.
ijpe.2020.107655

Djomo, S. N., Staritsky, I., Elbersen, B., Annevelink, B., & Gabrielle,

B. (2023). Supply costs, energy use, and GHG emissions of

biomass from marginal lands in Brittany, France*. Renewable &
Sustainable Energy Reviews, 181, 113244. https://doi.org/10.

1016/j.rser.2023.113244

Dolgui, A., & Ivanov, D. (2022). 5G in digital supply chain and

operations management: Fostering flexibility, end-to-end con-

nectivity and real-time visibility through internet-of-everything.

International Journal of Production Research, 60(2), 442–451.
Dubey, R., Gunasekaran, A., Childe, S. J., Wamba, S. F., Roubaud,

D., & Foropon, C. (2021). Empirical investigation of data

analytics capability and organizational flexibility as comple-

ments to supply chain resilience. International Journal of
Production Research, 59(1), 110–128. https://doi.org/10.1080/
00207543.2019.1582820

Duong, L. N. K., & Chong, J. (2020). Supply chain collaboration in

the presence of disruptions: A literature review. International
Journal of Production Research, 58(11), 3488–3507. https://doi.
org/10.1080/00207543.2020.1712491

Dwivedi, A., Agrawal, D., Jha, A., Gastaldi, M., Paul, S. K., &

D’Adamo, I. (2021). Addressing the challenges to sustainable

initiatives in value chain flexibility: Implications for sustainable

development goals. Global Journal of Flexible Systems Man-
agement, 22(Suppl 2), S179-S197.

Ekanayake, E. M. A. C., Shen, G., Kumaraswamy, M., & Owusu, E.
K. (2022). A fuzzy synthetic evaluation of vulnerabilities

affecting supply chain resilience of industrialized construction

in Hong Kong. Engineering Construction and Architectural
Management, 29(6), 2358–2381. https://doi.org/10.1108/Ecam-

12-2020-1010

El Baz, J., & Ruel, S. (2021). Can supply chain risk management

practices mitigate the disruption impacts on supply chains’

resilience and robustness? Evidence from an empirical survey in

a COVID-19 outbreak era. International Journal of Production
Economics, 233, 107972.

Elias, A. A., Donadelli, F., Paiva, E. L., & Araujo, P. P. B. (2021).

Analysing the complexities of sustainable wood supply chain in

the Amazon: A systems thinking approach. International Journal
of Logistics Management, 32(4), 1481–1505. https://doi.org/10.
1108/Ijlm-07-2020-0276

Engelhardt-Nowitzki, C. (2012). Improving value chain flexibility

and adaptability in build-to-order environments. International
Journal of Physical Distribution & Logistics Management,
42(4), 318–337. https://doi.org/10.1108/09600031211231317

Etemadnia, H., Goetz, S. J., Canning, P., & Tavallali, M. S. (2015).

Optimal wholesale facilities location within the fruit and

vegetables supply chain with bimodal transportation options:

An LP-MIP heuristic approach. European Journal of Opera-
tional Research, 244(2), 648–661. https://doi.org/10.1016/j.ejor.
2015.01.044

Gao, Y., Feng, Z., & Zhang, S. B. (2021). Managing supply chain

resilience in the era of VUCA. Frontiers of Engineering
Management, 8(3), 465–470. https://doi.org/10.1007/s42524-

021-0164-2

Geng, L., Xiao, R. B., & Xie, S. S. (2013). Research on self-

organization in resilient recovery of cluster supply chains.

Discrete Dynamics in Nature and Society. https://doi.org/10.

1155/2013/758967

Geng, L., Xiao, R. B., & Xu, X. (2014). Research on MAS-based

supply chain resilience and its self-organized criticality. Discrete
Dynamics in Nature and Society. https://doi.org/10.1155/2014/
621341

Geng, J. B., Ji, Q., Fan, Y., & Shaikh, F. (2017). Optimal LNG

importation portfolio considering multiple risk factors. Journal
of Cleaner Production, 151, 452–464. https://doi.org/10.1016/j.
jclepro.2017.03.053

Gerami, J., Mavi, R. K., Saen, R. F., & Mavi, N. K. (2023). A novel

network DEA-R model for evaluating hospital services supply

chain performance. Annals of Operations Research, 324(1–2),
1041–1066. https://doi.org/10.1007/s10479-020-03755-w

Gharakhani, D., Eshlaghy, A. T., Hafshejani, K. F., Mavi, R. K., &

Lotfi, F. H. (2018). Common weights in dynamic network DEA

with goal programming approach for performance assessment of

insurance companies in Iran. Management Research Review,
41(8), 920–938. https://doi.org/10.1108/Mrr-03-2017-0067

Goker, N., & Karsak, E. E. (2021). Two-stage common weight DEA-

Based approach for performance evaluation with imprecise data.

Socio-Economic Planning Sciences, 74, 100943. https://doi.org/
10.1016/j.seps.2020.100943

Goldbeck, N., Angeloudis, P., & Ochieng, W. (2020). Optimal supply

chain resilience with consideration of failure propagation and

repair logistics. Transportation Research Part E-Logistics and
Transportation Review, 133, 101830. https://doi.org/10.1016/j.
tre.2019.101830
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Småros, J., Lehtonen, J. M., Appelqvist, P., & Holmström, J. (2003).

The impact of increasing demand visibility on production and

inventory control efficiency. International Journal of Physical
Distribution & Logistics Management, 33(4), 336–354.

Sodhi, M. S., & Lee, S. (2007). An analysis of sources of risk in the

consumer electronics industry. The Journal of the Operational
Research Society, 58(11), 1430–1439. https://doi.org/10.1057/

palgrave.jors.2602410

Sokolov, B., Ivanov, D., Dolgui, A., & Pavlov, A. (2015). Structural

quantification of the ripple effect in the supply chain. Interna-
tional Journal of Production Research, 54(1), 152–169. https://
doi.org/10.1080/00207543.2015.1055347

Somapa, S., Cools, M., & Dullaert, W. (2018). Characterizing supply

chain visibility - a literature review. International Journal of
Logistics Management, 29(1), 308–339. https://doi.org/10.1108/
Ijlm-06-2016-0150

Soni, U., Jain, V., & Kumar, S. (2014). Measuring supply chain

resilience using a deterministic modeling approach. Computers
& Industrial Engineering, 74, 11–25. https://doi.org/10.1016/j.
cie.2014.04.019

Soosay, C. A., & Hyland, P. (2015). A decade of supply chain

collaboration and directions for future research. Supply Chain
Management-an International Journal, 20(6), 613–630. https://
doi.org/10.1108/Scm-06-2015-0217

Spiegler, V. L. M., Naim, M. M., & Wikner, J. (2012). A control

engineering approach to the assessment of supply chain

resilience. International Journal of Production Research,
50(21), 6162–6187. https://doi.org/10.1080/00207543.2012.

710764

Sudusinghe, J. I., & Seuring, S. (2021). Supply chain collaboration

and sustainability performance in circular economy: A system-

atic literature review. International Journal of Production
Economics, 25, 108402.

Sun, J. S., Wu, J., & Guo, D. (2013). Performance ranking of units

considering ideal and anti-ideal DMU with common weights.

Applied Mathematical Modelling, 37(9), 6301–6310. https://doi.
org/10.1016/j.apm.2013.01.010

Tan, W. J., Cai, W., & Zhang, A. N. (2020). Structural-aware

simulation analysis of supply chain resilience. International
Journal of Production Research, 58(17), 5175–5195.

Tan, W. J., Zhang, A. N., & Cai, W. T. (2019). A graph-based model

to measure structural redundancy for supply chain resilience.

International Journal of Production Research, 57(20),
6385–6404. https://doi.org/10.1080/00207543.2019.1566666

Tavana, M., Kazemi, S., & Kiani Mavi, R. (2015). A stochastic data

envelopment analysis model using a common set of weights and

the ideal point concept. International Journal of Applied
Management Science, 7(2), 81–92.

Tavares, R. S., Angulo-Meza, L., & Sant’Anna, A. P. (2021). A

proposed multistage evaluation approach for Higher Education

Institutions based on network data envelopment analysis: A

Brazilian experience. Evaluation and Program Planning, 89,
101984. https://doi.org/10.1016/j.evalprogplan.2021.101984

Torres-Ruiz, A., & Ravindran, A. R. (2019). Use of interval data

envelopment analysis, goal programming and dynamic eco-

efficiency assessment for sustainable supplier management.

Computers & Industrial Engineering, 131, 211–226. https://

doi.org/10.1016/j.cie.2019.02.008

Tsolakis, N., Zissis, D., & Tjahjono, B. (2021). Scrutinising the

interplay between governance and resilience in supply chain

management: A systems thinking framework. European Man-
agement Journal, 41(1), 164–180.

Global Journal of Flexible Systems Management (December 2023) 24(Suppl 1):S77–S99 S97

123

https://doi.org/10.1108/Scm-09-2018-0329
https://doi.org/10.1108/Scm-06-2013-0191
https://doi.org/10.1108/Scm-06-2013-0191
https://doi.org/10.1108/ijopm-01-2020-789
https://doi.org/10.1108/ijopm-01-2020-789
https://doi.org/10.1016/j.omega.2018.08.002
https://doi.org/10.1080/13675567.2021.1893671
https://doi.org/10.1080/13675567.2021.1893671
https://doi.org/10.1002/bse.2428
https://doi.org/10.3390/su13094669
https://doi.org/10.1016/j.promfg.2017.07.329
https://doi.org/10.1016/j.seta.2021.101453
https://doi.org/10.1057/palgrave.jors.2602410
https://doi.org/10.1057/palgrave.jors.2602410
https://doi.org/10.1080/00207543.2015.1055347
https://doi.org/10.1080/00207543.2015.1055347
https://doi.org/10.1108/Ijlm-06-2016-0150
https://doi.org/10.1108/Ijlm-06-2016-0150
https://doi.org/10.1016/j.cie.2014.04.019
https://doi.org/10.1016/j.cie.2014.04.019
https://doi.org/10.1108/Scm-06-2015-0217
https://doi.org/10.1108/Scm-06-2015-0217
https://doi.org/10.1080/00207543.2012.710764
https://doi.org/10.1080/00207543.2012.710764
https://doi.org/10.1016/j.apm.2013.01.010
https://doi.org/10.1016/j.apm.2013.01.010
https://doi.org/10.1080/00207543.2019.1566666
https://doi.org/10.1016/j.evalprogplan.2021.101984
https://doi.org/10.1016/j.cie.2019.02.008
https://doi.org/10.1016/j.cie.2019.02.008


Tucker, E. L., Daskin, M. S., Sweet, B. V., & Hopp, W. J. (2020).

Incentivizing resilient supply chain design to prevent drug

shortages: Policy analysis using two- and multi-stage stochastic

programs. IISE Transactions, 52(4), 394–412. https://doi.org/10.
1080/24725854.2019.1646441

Urciuoli, L., Mohanty, S., Hintsa, J., & Boekesteijn, E. G. (2014). The

resilience of energy supply chains: A multiple case study

approach on oil and gas supply chains to Europe. Supply Chain
Management-an International Journal, 19(1), 46–63. https://doi.
org/10.1108/Scm-09-2012-0307

Vergara, J. I. T., Martı́nez, J. A. S., & Salais-Fierro, T. E. (2023).

Performance measurement of a resilient-sustainable supply chain

through fuzzy multi-criteria techniques. Computers & Industrial
Engineering, 177, 109059. https://doi.org/10.1016/j.cie.2023.

109059

Waller, M. A., Fawcett, S. E., & Johnson, J. L. (2015). The luxury

paradox: How systems thinking and supply chain collaboration

can bring sustainability into mainstream practice, (Vol. 36,

pp. 303–305) Wiley Online Library.

Wang, W., Street, W. N., & deMatta, R. E. (2015). Topological

resilience analysis of supply networks under random disruptions

and targeted attacks. In Proceedings of the 2015 IEEE/ACM
international conference on advances in social networks analysis
and mining 2015.

Wang, M., Asian, S., Wood, L. C., & Wang, B. (2020). Logistics

innovation capability and its impacts on the supply chain risks in

the Industry 4.0 era. Modern Supply Chain Research and
Applications, 2(2), 83–98.

Wang, Q., Wei, K. K., Zhang, Y., & Wang, X. (2021). Data

envelopment analysis method based on a common set of

normalized weights using bargaining game thought. Computers
& Industrial Engineering. https://doi.org/10.1016/j.cie.2020.

107047

Wang, Y. M., Luo, Y., & Lan, Y. X. (2011). Common weights for

fully ranking decision making units by regression analysis.

Expert Systems with Applications, 38(8), 9122–9128. https://doi.
org/10.1016/j.eswa.2011.01.004

Wided, R. (2023). IT capabilities, strategic flexibility and organiza-

tional resilience in SMEs Post-COVID-19: A mediating and

moderating role of big data analytics capabilities. Global Journal
of Flexible Systems Management, 24(1), 123–142. https://doi.
org/10.1007/s40171-022-00327-8

Wieland, A., Stevenson, M., Melnyk, S. A., Davoudi, S., & Schultz,

L. (2023). Thinking differently about supply chain resilience:

What we can learn from social-ecological systems thinking.

International Journal of Operations & Production Management,
43(1), 1–21. https://doi.org/10.1108/Ijopm-10-2022-0645

Wilden, D., Hopkins, J., & Sadler, I. (2022). The prevalence of

systems thinking in supply chain management: A systematic

literature review. Syst Pract Action Res, 35(4), 491–526. https://
doi.org/10.1007/s11213-021-09578-5

Wong, W. P., Soh, K. L., Le Chong, C., & Karia, N. (2015). Logistics

firms performance: Efficiency and effectiveness perspectives.

International Journal of Productivity and Performance Man-
agement, 64(5), 686–701. https://doi.org/10.1108/Ijppm-12-

2013-0205

Wu, X. H., Ji, Z. Y., Gong, Y. M., Chen, Y. F., & Toloo, M. (2021).

Haze emission efficiency assessment and governance for

sustainable development based on an improved network data

envelopment analysis method. Journal of Cleaner Production.
https://doi.org/10.1016/j.jclepro.2021.128424

Wu, T., Huang, S. M., Blackhurst, J., Zhang, X. L., & Wang, S. S.

(2013). Supply chain risk management: an agent-based simula-

tion to study the impact of retail stockouts. IEEE Transactions
on Engineering Management, 60(4), 676–686. https://doi.org/10.
1109/Tem.2012.2190986

Xia, H. (2020). Improve the resilience of multilayer supply chain

networks. Complexity, 2020, 1–9. https://doi.org/10.1155/2020/
6596483

Xu, N. R., Liu, J. B., Li, D. X., & Wang, J. (2016). Research on

evolutionary mechanism of agile supply chain network via

complex network theory. Mathematical Problems in Engineer-
ing. Doi https://doi.org/10.1155/2016/4346580

Yazdanparast, R., Tavakkoli-Moghaddam, R., Heidari, R., & Ali-

abadi, L. (2018). A hybrid Z-number data envelopment analysis

and neural network for assessment of supply chain resilience: A

case study. Central European Journal of Operations Research,
29(2), 611–631. https://doi.org/10.1007/s10100-018-0596-x

Zahiri, B., Zhuang, J., & Mohammadi, M. (2017). Toward an

integrated sustainable-resilient supply chain: A pharmaceutical

case study. Transportation Research Part E-Logistics and
Transportation Review, 103, 109–142. https://doi.org/10.1016/j.
tre.2017.04.009

Zahraee, S. M., Golroudbary, S. R., Shiwakoti, N., & Stasinopoulos,

P. (2022). Palm oil biomass global supply chain: Environmental

emissions vs. technology development of maritime transporta-

tion. Procedia CIRP, 105, 817–822.
Zaoui, S., Foguem, C., Tchuente, D., Fosso-Wamba, S., & Kamsu-

Foguem, B. (2023). The viability of supply chains with

interpretable learning systems: The case of COVID-19 vaccine

deliveries. Global Journal of Flexible Systems Management,
24(4), 633-657.

Zhao, K., Kumar, A., Harrison, T. P., & Yen, J. (2011). Analyzing the

resilience of complex supply network topologies against random

and targeted disruptions. IEEE Systems Journal, 5(1), 28–39.

https://doi.org/10.1109/Jsyst.2010.2100192

Zhao, P. X., Li, Z. Y., Han, X., & Duan, X. Y. (2022). Supply chain

network resilience by considering disruption propagation: topo-

logical and operational perspectives. IEEE Systems Journal,
16(4), 5305–5316. https://doi.org/10.1109/Jsyst.2022.3161788

Key Questions for Future Reflection

1. How can supply chain managers enhance the resilience of

their networks, especially in the post-COVID-19 pandemic

era?

2. What are the trade-offs between resilience and profitability in

supply chains considering the challenges posed by the

COVID-19 pandemic?

3. How can supply chain flexibility influence supply chain

resilience and robustness?

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Dr. Reza Kiani Mavi is a senior lecturer of

Supply Chain and Project Management at the

School of Business and Law, Edith Cowan

University (ECU), Australia. His research interests

include eco-innovation, eco-efficiency, and supply

chain resilience. As an applied operations research

scholar, Reza extends data envelopment analysis

by developing common set of weights models for

performance analysis. He serves on the advisory board of Techno-

logical Forecasting & Social Change and Management Decision and

is an associate editor for the Journal of Intelligent and Fuzzy Systems.

S98 Global Journal of Flexible Systems Management (December 2023) 24(Suppl 1):S77–S99

123

https://doi.org/10.1080/24725854.2019.1646441
https://doi.org/10.1080/24725854.2019.1646441
https://doi.org/10.1108/Scm-09-2012-0307
https://doi.org/10.1108/Scm-09-2012-0307
https://doi.org/10.1016/j.cie.2023.109059
https://doi.org/10.1016/j.cie.2023.109059
https://doi.org/10.1016/j.cie.2020.107047
https://doi.org/10.1016/j.cie.2020.107047
https://doi.org/10.1016/j.eswa.2011.01.004
https://doi.org/10.1016/j.eswa.2011.01.004
https://doi.org/10.1007/s40171-022-00327-8
https://doi.org/10.1007/s40171-022-00327-8
https://doi.org/10.1108/Ijopm-10-2022-0645
https://doi.org/10.1007/s11213-021-09578-5
https://doi.org/10.1007/s11213-021-09578-5
https://doi.org/10.1108/Ijppm-12-2013-0205
https://doi.org/10.1108/Ijppm-12-2013-0205
https://doi.org/10.1016/j.jclepro.2021.128424
https://doi.org/10.1109/Tem.2012.2190986
https://doi.org/10.1109/Tem.2012.2190986
https://doi.org/10.1155/2020/6596483
https://doi.org/10.1155/2020/6596483
https://doi.org/10.1155/2016/4346580
https://doi.org/10.1007/s10100-018-0596-x
https://doi.org/10.1016/j.tre.2017.04.009
https://doi.org/10.1016/j.tre.2017.04.009
https://doi.org/10.1109/Jsyst.2010.2100192
https://doi.org/10.1109/Jsyst.2022.3161788


He has published over 60 refereed papers in many prestigious journals

such as Technological Forecasting and Social Change, Journal of

Environmental Management, Resources, Conservation and Recycling,

Computers and Industrial Engineering, and Supply Chain Manage-

ment, just to name a few.

Dr. Neda Kiani Mavi is doing her second Ph.D.

in project management at the School of Business

and Law, Edith Cowan University (ECU), Aus-

tralia. Her research interests include project suc-

cess, eco-innovation, Adaptive Neuro Fuzzy

Inference Systems, and data envelopment analysis.

Neda has published over 17 refereed papers in

many prestigious journals such as Technological

Forecasting and Social Change; Journal of Environmental Manage-

ment; Annals of Operations Research; Resources, Conservation and

Recycling; and International Journal of Construction Management.

Mr. Seyed Ashkan Hosseini Shekarabi is a

Ph.D. candidate at the School of Business and

Law, Edith Cowan University, specialising in the

field of supply chain resilience. His academic

journey is marked by a deep engagement with

data-driven robust optimisation and stochastic

programming, particularly as these methodologies

apply to decision-making under conditions of

uncertainty. His research scope extensively covers supply chain net-

work and inventory modelling, embracing a wide spectrum of

methodologies ranging from exact, heuristic, and meta-heuristic

algorithms. He exhibits profound expertise in optimising lot-sizing

and replenishment strategies within integrated inventory systems,

including EPQ (economic production quantity) and EOQ (economic

order quantity) models. His proficiency in tackling these complex

systems is evident through his adept use of mixed integer nonlinear

programming (MINLP), nonlinear programming (NLP), and mixed

integer programming (MIP) models. Furthermore, he has a strong

inclination towards robust optimisation, notably data-driven and dis-

tributionally robust optimisation, and multi-criteria decision-making

(MCDM), areas that constitute a significant segment of his research

pursuits. His academic contributions are not only pivotal in advancing

the understanding of supply chain dynamics but also instrumental in

offering practical solutions to contemporary challenges in the field.

Matthew Pepper’s Ph.D. research centred on the

design and application of continuous improvement

frameworks in process industry supply chains. His

recent research and consultancy activities focus on

lean thinking, Six Sigma-based process improve-

ment and supply chain design and optimisation.

Matt has undertaken research and consultancy

across a range of industry sectors, including the

manufacturing and process industries as well as local government.

Most recently his work has focused on the implementation of con-

tinuous improvement in service environments. Matt is a member of

the Editorial Advisory Boards for the Journal of Manufacturing

Technology Management, the International Journal of Lean Six

Sigma, International Journal of Information and Operations Man-

agement Education. He is also an Associate Editor for the Global

Journal of Flexible Systems Management and the IIMK Society and

Management Review Journal.

Dr. Sean Arisian is the founder and coordinator

of the Logistics and Supply Chain Management

program at La Trobe Business School. As an

applied operations researcher, Sean has a special

interest in modeling and solving practical logistics

and supply chain problems. His multidisciplinary

research addresses issues related to security and

resiliency at the global supply chain/international

trade interface.Sean’s research has been published in leading journals

(UTD24 and ABDC A*/A), including Production and Operations

Management, IEEE Transaction on Systems, Man, and Cybernetics,

Transportation Research (Part E), International Journal of Production

Economics, and International Journal of Production Research among

others. Sean has close ties with the local industry and international

scholars, and has successfully established a strong collaboration

network. Sean is a member of the Editorial Advisory Board for

‘‘Transportation Research Part E’’ and also serves as an external

assessor for the National Research Grants Council (Hong Kong).

Global Journal of Flexible Systems Management (December 2023) 24(Suppl 1):S77–S99 S99

123


	Supply Chain Resilience: A Common Weights Efficiency Analysis with Non-discretionary and Non-controllable Inputs
	Abstract
	Introduction
	Literature Review
	Supply Cain Resilience
	Measuring SCRes
	Statistical Analysis of SCRes
	Optimisation for SCRes
	Simulation of SCRes
	Graph/Network Theory for SCRes
	Multi-criteria Analysis of SCRes

	Data Envelopment Analysis and SCRes

	Research Gap
	Proposed Ideal Point Common Weights Model with Non-discretionary and Non-controllable Inputs
	Case Study: LPG Supply Chain
	Conclusion
	Author Contributions
	Open Access
	References




