
Journal of Advanced Ceramics 
2022, 11(8): 1307–1318 ISSN 2226-4108
https://doi.org/10.1007/s40145-022-0612-4  CN 10-1154/TQ

Research Article 
 
 

www.springer.com/journal/40145 

 
Maximizing the mechanical performance of Ti3AlC2-based  

MAX phases with aid of machine learning 

Xingjun DUANa,†, Zhi FANGa,†, Tao YANGa, Chunyu GUOa, Zhongkang HANb, 
Debalaya SARKERc, Xinmei HOUa,*, Enhui WANGa,* 

aBeijing Advanced Innovation Center for Materials Genome Engineering, Collaborative Innovation  
Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China 

bFritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany 
cUGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India 

Received: March 5, 2022; Revised: May 1, 2022; Accepted: May 13, 2022 

© The Author(s) 2022. 

Abstract: Mechanical properties consisting of the bulk modulus, shear modulus, Young’s modulus, 
Poisson’s ratio, etc., are key factors in determining the practical applications of MAX phases. These 
mechanical properties are mainly dependent on the strength of M–X and M–A bonds. In this study, a 
novel strategy based on the crystal graph convolution neural network (CGCNN) model has been 
successfully employed to tune these mechanical properties of Ti3AlC2-based MAX phases via the 
A-site substitution (Ti3(Al1−xAx)C2). The structure–property correlation between the A-site substitution 
and mechanical properties of Ti3(Al1−xAx)C2 is established. The results show that the thermodynamic 
stability of Ti3(Al1−xAx)C2 is enhanced with substitutions A = Ga, Si, Sn, Ge, Te, As, or Sb. The 
stiffness of Ti3AlC2 increases with the substitution concentration of Si or As increasing, and the higher 
thermal shock resistance is closely associated with the substitution of Sn or Te. In addition, the 
plasticity of Ti3AlC2 can be greatly improved when As, Sn, or Ge is used as a substitution. The findings 
and understandings demonstrated herein can provide universal guidance for the individual synthesis of 
high-performance MAX phases for various applications.  

Keywords: Ti3(Al1−xAx)C2; crystal graph convolution neural network (CGCNN) model; stability; 
mechanical properties  

 

1  Introduction 

Mn+1AXn phases are a kind of ternary layered materials 
belonging to a hexagonal crystal system, where M is 
the early transition metal, A represents the group 13– 
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16 element, X denotes C or N, and n is the integer [1]. 
The specific layered structure and chemical bond 
characteristics endow MAX phases with extraordinary 
ceramic properties (good mechanical properties, high 
oxidation, corrosion resistance, etc.) and metallic 
properties (excellent machinability, high thermal shock 
resistance, etc.). These merits allow the MAX phases 
to become promising candidates for aerospace, 
metallurgy, chemical engineering, and so forth [2–5]. 
Practical applications of the MAX phases are largely 
determined by their mechanical properties consisting 



1308  J Adv Ceram 2022, 11(8): 1307–1318 

www.springer.com/journal/40145 

of the elastic modulus, Poisson’s and Pugh’s ratios, etc. 
[6]. Benefited from the intrinsic ceramic and metallic 
features, the MAX phases exhibit diverse mechanical 
properties over a wide range [7,8]. On one hand, the 
MAX phases with a high elastic modulus possess higher 
strength and thus can be used as structural materials 
[8,9]. However, due to the weak M–A metallic bonds, 
the Vickers hardness (around 2–8 GPa) of MAX phases 
is much smaller than those of traditional ceramic 
materials (e.g., Si3N4 (19–69 GPa), AlON (16.7 GPa), 
and Al2O3/SiO2 (18 GPa)) [10–13], which leads to poor 
long-term stability. On the other hand, the MAX phases 
with a low elastic modulus possess better ductility, 
plasticity, and thermal shock resistance, exhibiting a 
huge potential in barrier coatings [14,15]. Nonetheless, 
the strong M–X covalent bonds prevent the reduction 
of elastic modulus, which tends to result in the failure 
of barrier coatings. Therefore, the extension of upper 
and lower limits on mechanical properties for the MAX 
phases has become an urgent task for their engineering 
application. 

The strengths of M–X and M–A bonds are key 
factors in controlling the ceramic or metallic properties 
of MAX phases, hinting that tailoring the constituent 
elements for M, A, or X sites by the solid solution 
method should be an effective approach to tune the 
mechanical properties [16–19]. Gao et al. [20] have 
reported that the Si substitution at the A-site could 
increase the elastic modulus of Ti3(Al1−xSix)C2 solid 
solution, thus leading to higher Vickers hardness 
contributed by the stronger M–A bonds. Dubois et al. 
[21] have found that higher Sn concentration at the 
A-site reduced the elastic modulus of Ti3(Sn1−xAlx)C2 
solid solution, which is caused by the weakening effect 
of Ti–Sn bonds. Therefore, the optimizations of the 
elastic moduli of MAX phases should focus on the 
adjustment of the M–A bond strength via tuning the 
A-site chemical composition. However, most existing 
experiments rely on the trial–error method, and the 
amount of data obtained remains limited, resulting in a 
lack of the structure–property relationship of MAX 
phases. Therefore, it is unfavorable for guiding the 
screening of the upper and lower limit of mechanical 
properties of new MAX phases. Besides experimental 
studies, the commonly used high-throughput computing 
within the framework of density functional theory 
(DFT) can scan over a large number of samples for the 
rational design of desired properties [22,23]. However, 
the one-by-one scanning with DFT requires a large 

investment of time and effort when dealing with complex 
material systems. This imposes a limitation on the 
rapid search and precise design of new materials [24,25]. 
Therefore, a more effective method of predicting new 
MAX phases with tunable mechanical properties is 
urgently required. 

Recently, with the availability of large material 
databases, data-driven machine learning (ML) methods 
for material design and discovery have gained much 
attention due to their potential to predict new materials 
with desirable properties more quickly and precisely 
[36–29]. Among all ML methods, the majority employ 
the features and properties of the samples to train data 
and are not fully capable of providing the needed 
structure–property correlations for the MAX phases. 
Fortunately, the crystal graph convolution neural network 
(CGCNN) model [30], which utilizes the crystallographic 
information file (CIF), can establish a relationship 
between different crystal structures and materials’ physical 
properties. This method can efficiently predict the 
properties of crystal structures of new MAX phases. 
Nevertheless, the CIFs as inputs without optimized 
structures always reduce the accuracy of prediction 
results. Therefore, a necessary correction is required 
for further improving the CGCNN model. 

In this work, Ti3AlC2, a typical representative of 
MAX phases, has been adopted to build a series of 
Ti3(Al1−xAx)C2 (x = 0, 0.125, 0.25, 0.375, 0.5, 0.625, 
0.75, 0.875, and 1) via the A-site substitution. The 
relationship between the crystal structures and mechanical 
properties is then established via the CGCNN model, 
so as to design the potential MAX phases possessing better 
and tunable mechanical properties. In addition, a linear 
correction method for inputting CIFs is proposed, aiming 
to increase the accuracy of prediction results as per the 
level of DFT calculations. Based on this, the effects of 
different substitution elements on the strengths of M–X 
and M–A bonds together with the upper and lower limits 
of mechanical properties in MAX phases are elucidated. 

2  Methods 

In this work, nineteen elements that may occupy the 
A-site of the MAX phases have been selected as 
substitutions for Ti3(Al1−xAx)C2 (A = Si, P, S, Cu, Zn, 
Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Au, Hg, Tl, Pb, or 
Bi) to tune their mechanical properties rationally and 
efficiently. The strategy is shown in Fig. 1. For the  
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Fig. 1  Schematic diagram of screening new MAX phases with tunable mechanical properties based on CGCNN model. 
 

CGCNN model, it is difficult to capture the minute 
changes in the crystal structures of Ti3(Al1−xAx)C2 caused 
by the A-site substitution, resulting in unsatisfactory 
prediction accuracy. To solve this issue, the design 
strategy of Ti3(Al1−xAx)C2 is proposed as follows. Firstly, 
datasets are created with the data obtained from the 
Materials Project (MP) [31]. The CGCNN model 
optimized via the activation function and hyperparameters 
is trained to establish a relationship between crystal 
structures and properties. Secondly, the crystal structures 
of Ti3(Al1−xAx)C2 optimized via the linear correction 
method are used as the inputs, followed by the prediction 
of the stability and mechanical properties through the 
trained model. Finally, the stable Ti3(Al1−xAx)C2 with 
tunable mechanical properties have been selected for 
the DFT calculations to verify the validity of optimized 
CGCNN model. 

2. 1  CGCNN model 

The CGCNN model used in this work utilizes an 
undirected multigraph-crystal graph consisting of the 
atom feature vector iv  and the bond feature vector u(i,j)k

 
to represent the crystal structures of Ti3(Al1−xAx)C2, as 
shown in Fig. 1. The atom feature vectors have been 
iteratively updated by the convolution function expressed 
as Eq. (1): 

( ) ( )( 1) ( ) ( ) ( ) ( ) ( )
c c s s( , ) ( , )

,

   ( ) ( )
k k

t tt t t t t t
i i i j i j
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where ( ) ( )( ) ( )
( , ) ( , )      

k k

t tt t
i ji j i jz v v u   is the concatenated 

vector formed via connecting all the atom and bond 

feature vectors,  denotes the matrix elementwise 

multiplication, ( ) ( )
c s, ,t tW W and ( )tb are the convolution 

weight matrix, the self-weight matrix, and the bias of 
the t-th layer, respectively, and   and g  represent the 

sigmoid function and the nonlinear activation function, 
respectively. Herein, the hyperbolic tangent function is 
applied to replace the softplus function used in the 
original CGCNN model, because it can regularize the 
latent vector. This regularization is able to assemble 
the eigenvectors of crystals with similar properties, 
which can improve the accuracy and interpretability of 
the model [32]. 

The implementation of CGCNN model is based on 
the Pytorch. The same initial atomic feature vectors as 
the original CGCNN model are used [30]. In addition, 
a neural network consisting of five convolutional 
layers and two fully connected hidden layers is utilized 
to train models and predict properties. The crystal 
structures and property parameters of 36,837 crystal 
materials are obtained from the MP database [31] to 
establish the datasets including the energy per atom, 
formation energy, bulk modulus, and shear modulus. 
The CGCNN model is then trained, tested, and validated 
with a random dataset split of 60 : 20 : 20. The Adam 
optimization scheme [33] is adopted for the model 
parameter optimization with a learning rate of 0.01 and 
a batch size of 256. In this work, the dropout with p = 
0.1 is applied to improve the accuracy based on the 
Monte Carlo operation, which is used as the Bayesian 
approximation tool to solve the uncertainty of the 
prediction results [34,35]. 
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2. 2  Property prediction 

The rapid generation of Ti3(Al1−xAx)C2 has been 
accomplished through a Python script that randomly 
occupies the Al-sites in Ti3AlC2 with A substitution 
atoms as shown in Fig. 2. Considering the changes of 
lattice parameters of the crystal structures resulted 
from A substitution at the Al-sites, a correction method 
that introduces the linear coefficient of the lattice 
constant at different composition x is adopted to reduce 
the error caused by the direct substitution. To predict 
the total energy per atom, 100 crystal structures of 
Ti3(Al1−xAx)C2 at different substitution concentrations 
are hence obtained and have been used as the inputs of 
the training models. Based on this, the crystal structure 
with the lowest total energy is screened out to determine 
the most stable one. Subsequently, the formation energy 
per atom, bulk modulus, and shear modulus are predicted 
to assess the stability and mechanical properties of 
Ti3(Al1−xAx)C2. 

2. 3  Screening and verification 

According to the two criteria of mixing energy and 
energy above hull calculated through the predicted total 
energy and formation energy per atom, the composition 
and configurations of Ti3(Al1−xAx)C2 with higher 
thermodynamic stability are screened out. Based on 
this, the elastic modulus of stable Ti3(Al1−xAx)C2 is 
predicted to screen the new MAX phase with tunable 
mechanical properties. Eventually, the DFT calculations 
with the Vienna ab initio simulation package (VASP) 
[36,37] and experimental measurements from literature 
are used to verify the prediction results. In our DFT 
calculations, the wave functions of the system are 
expanded by the plane-wave basis set [38]. The exchange- 
correlation potential between electrons is described by 

the Perdew, Becke, and Ernzerhof (PBE) functional of 
the Generalized Gradient Approximation (GGA) [39]. 
The Brillouin zone integrations are carried out by the 
Monkhorst-pack mesh [40]. For the Brillouin zone 
sampling, the k-point mesh parameters of 12 × 12 × 4 
and 6 × 6 × 2 are set for the pure MAX phases and 
solid solution systems with a 2 × 2 × 2 supercell, 
respectively. Besides, the plane-wave cutoff energy of 
700 eV, and the convergence criteria of 2×10−6 eV for 
electronic relaxation and 0.05 eV/Å for ionic force are 
used to ensure sufficient precision. 

3  Results and discussion 

3. 1  Evaluation of CGCNN model 

In this section, the CGCNN model is evaluated to 
substantiate its feasibility and accuracy. The performances 
of the total energy and formation energy per atom 
predicted by the CGCNN model on 7367 test crystals 
are demonstrated in Figs. 3(a) and 3(b). It can be seen 
that, most of the predicted data points fall around the 
line y = x, indicating a high prediction accuracy of the 
CGCNN model. Among them, the goodness of fit (R2) 
of the total energy and formation energy per atom 
yielded by the model are 0.9877 and 0.9883, respectively. 
Also, the mean absolute error (MAE) of them are 
0.1317 and 0.0751 eV/atom, respectively, which are 
close to the accuracy of the DFT calculation with the 
MAE ranging from 0.081 to 0.136 eV/atom [41]. The 
performances of bulk modulus and shear modulus 
predicted through the CGCNN model on 1490 test crystals 
are shown in Figs. 3(c) and 3(d). The corresponding R2 
of the bulk modulus and shear modulus in the prediction 
results are 0.9554 and 0.9043, respectively. Also, the  

 

 
 

Fig. 2  Crystal structures of Ti3(Al1 −xAx)C2 at different substitution concentrations. 
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Fig. 3  2D histogram visualizing the predictive performance by CGCNN models: (a) total energy, (b) formation energy, (c) bulk 
modulus, and (d) shear modulus. 

 

MAE are 0.0890 and 0.1096 log(GPa). Compared with 
the total energy and formation energy per atom, the 
prediction accuracy of the elastic modulus based on the 
CGCNN model is relatively lower, which is mainly 
ascribed to the smaller training dataset. 

3. 2  Stability of Ti3(Al1−xAx)C2 predicted by CGCNN 
model 

3.2.1  Screening criterion of mixing energy 

To evaluate the stability of Ti3(Al1−xAx)C2, the mixing 
energy [42,43] is selected as a criterion, which can be 
calculated by Eq. (2): 

 
3 1 2 3 2 3 2mixing Ti Al A C Ti AlC Ti AC( )    (1 )

x x
E E x E xE


    (2) 

where ETi3(Al1−xAx)C2, ETi3AlC2, and ETi3AC2 are the total energy 
of Ti3(Al1−xAx)C2, Ti3AlC2, and Ti3AC2, respectively. 
These parameters can be predicted by the CGCNN 
model. Positive mixing energy indicates that there is a 
tendency to separate into the end-member pure MAX 
phases, which is unfavorable for the formation of the 
corresponding Ti3(Al1−xAx)C2 from the point of 
thermodynamics. 

Figure 4 demonstrates the mixing energy of 

Ti3(Al1−xAx)C2 as a function of substitutional composition 
x. It can be found that, the mixing energy of all 
Ti3(Al1−xAx)C2 are in the range of [−200, 320] meV/atom, 
which are approximately consistent with the results 
calculated through the high throughput density functional 
clusters expansion by Arróyave et al. [42]. 

Herein, the mixing energy predicted by the CGCNN 
model based on the MP databases is calculated at 0 K. 
The Ti3(Al1−xAx)C2 solid solution are assumed to be 
thermodynamically stable within a buffer of about 
50 meV/atom mixing energy. The reasons for the 
above choice are as follows. On one hand, room 
temperature (300 K) can account for 26 meV/atom of 
available thermal energy [24]. On the other hand, there 
is an average difference of around 24 meV/atom between 
the DFT and experimental measurements for the 
internal energy of elemental solids [44]. According to 
the calculated mixing energy, there are following two 
cases marked with different colors in Fig. 4. 

As for the green region, the mixing energy of 
Ti3(Al1−xAx)C2 is less than 50 meV/atom. Studies have 
shown that Sn as the dopant in Ti3(Al1−xSnx)C2 is 
helpful to stabilize solid solution [21,45]. According to 
the prediction, the substitutions of Pb, Sb, or Bi in 
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Ti3AlC2 are expected to obtain similar results, indicating 
that they can promote the formation of the corresponding 
solid solution. When A = Si, Ga, In, or Te, the mixing 
energy is close to 0, demonstrating that they are ideally 
mixed. In addition, these substitutions have almost 
negligible chemical interaction with Al, and thus they 
can be selected as probable candidates for the formation 
of Ti3(Al1−xAx)C2. 

In view of the red region, the mixing energy of 
Ti3(Al1−xAx)C2 is greater than 50 meV/atom. These 
substitutions (S, Se, P, Au, Cd, Cu, Hg, Zn, or Tl) 
exhibit a larger endothermic interaction with Al in the 
A layer, resulting in a clear tendency of phase separation, 
which is not conducive to the formation of solid solution. 
Therefore, they are not appropriate choices for 
stabilizing substitutions in Ti3(Al1−xAx)C2 in this region. 

The heat map in conjunction with the periodic table 
as shown in Fig. 5 depicts a more distinct exhibition of  

 

 
 

Fig. 4  Mixing energy of the Ti3(Al1−xAx)C2 with respect 
to composition x. 

 

 
 

Fig. 5  Heat map of the mixing energy of Ti3(Al1−xAx)C2 
at x = 0.5. 

the mixing energy for all Ti3(Al1−xAx)C2. The bluer 
region indicates that the mixing energy is small, which 
is favorable for the formation of Ti3(Al1−xAx)C2 from 
the point of thermodynamics. On the contrary, the red 
region denotes that the mixing energy is large, indicating 
that the corresponding Ti3(Al1−xAx)C2 phases are unstable. 
Finally, ten candidate elements (A = Ga, Si, Sn, Ge, In, 
Pb, As, Bi, Te, or Sb) that make the mixing energy less 
than 50 meV/atom are selected for further screening. 

3.2.2  Screening criterion of energy above hull 

For Ti3(Al1−xAx)C2 that passes the first screening by 
mixing energy, the energy above hull [24,46] is 
estimated by the grand-canonical linear programming 
(GCLP) method [47,48] to further measure their phase 
stability relative to competing ordered phases in the 
Ti–Al–A–C quaternary systems, which can be calculated 
through Eq. (3): 

 stab f hullΔ   Δ   H H E   (3) 

where fΔH  is the formation energy of Ti3(Al1−xAx)C2 
predicted by the CGCNN model, and hullE  is the convex 
hull energy relating to the ordered compounds that are 
retrieved from the Open Quantum Materials Database 
(OQMD). It is reported that the compound is generally 
stable or nearly stable with the energy above hull less 
than or equal to 50 meV/atom [24,45]. 

For the ten substitutions selected above, the energy 
above hull of Ti3(Al1−xAx)C2 is further calculated, and 
the results are shown in Fig. 6. Since the end-member 
MAX phases Ti3AlC2, Ti3SiC2, Ti3GeC2, and Ti3SnC2 
are all known to be thermodynamically stable [49–51],  

 

 
 

Fig. 6  Energy above hull of the Ti3(Al1−xAx)C2 with 
respect to composition x. The red dotted line indicates that 
the energy above hull is 50 meV/atom. 
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the energy above hull of them is zero according to the 
definition. Therefore, it can confirm the accuracy of 
calculated results. Figure 6 shows that for A = Ga, Si, 
Sn, Ge, As, Te, or Sb, the energy above hull of 
Ti3(Al1−xAx)C2 is less than 50 meV/atom regardless of 
x, suggesting that the formed solid solution is more 
stable. By contrast, for A = Pb, In, or Bi, the higher 
energy above hull indicates that the corresponding 
Ti3(Al1−xAx)C2 phases should not be stable from the 
point of thermodynamics. 

In summary, according to the above two screening 
criteria, the seven elements (Ga, Si, Sn, Ge, Te, As, 
or Sb) are selected. The corresponding phases of 
Ti3(Al1−xAx)C2 are presumably easier to be synthesized 
through experiments from the point of thermodynamics, 
which lays a foundation for the follow-up prediction of 
the mechanical properties of Ti3(Al1−xAx)C2. 

3. 3  Mechanical properties of Ti3(Al1−xAx)C2 predicted 
by CGCNN model 

Herein, the optimized CGCNN model is used to 
predict the bulk modulus (B) and shear modulus (G) of 
Ti3(Al1−xAx)C2, and then the Young’s modulus (E) and  

 

Poisson’s ratio ( ) are obtained through Eq. (4) [52]: 

 
9 3 2

    
3 2(3 )

BG B G
E

B G B G
 

 
 

,  (4) 

where B, G, E, and   of Ti3(Al1−xAx)C2 for different 
composition x are shown in Fig. 7. In general, B can be 
used to express the strength of average valence bond in 
crystal, G represents the shear deformation resistance 
caused by external pressure, E provides a measure of 
the stiffness and is inversely proportional to the critical 
thermal shock resistance, and   reflects the shear 
stability and provides information regarding the 
properties of bonding force [53]. As shown in Fig. 7(a), 
when A = As, Si, Ge, Sn, or Sb, the B of Ti3(Al1−xAx)C2 
increases with the increment of substitution concentration, 
indicating that these elements improve the average 
valence bond strength of the crystal and make the 
Ti3(Al1−xAx)C2 exhibit stronger resistance to deformation. 
For A = Ga or Te, the B varies little with the substitution 
concentration, but Te with a higher substitution 
concentration will reduce the B of Ti3(Al1−xTex)C2. For 
G and E as shown in Figs. 7(b) and 7(c), the variation 
trends of different elements in different composition x  

 
 

Fig. 7  Elastic properties of the Ti3(Al1−xAx)C2 with respect to substitution concentration x: (a) bulk modulus, (b) shear modulus, 
(c) Young’s modulus, and (d) Poisson’s ratio. 
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are almost accordant. When A = Si, the G and E 
increase as the Si concentration increases, indicating 
that Ti3(Al1−xSix)C2 possesses stronger shear resistance 
and higher stiffness. For A = Ga, Ge, or Sb, there is a 
slight change in the G and E of Ti3(Al1−xAx)C2 with the 
variation of x. Similarly, the G of Ti3(Al1−xAsx)C2 is 
slightly influenced by the substitution concentration of 
As, while the E is evidently increased. When substituted 
with Sn or Te, the E and G of Ti3(Al1−xAx)C2 decrease 
with the substitution concentration increasing, which 
indicates that Sn or Te can reduce the strength and thus 
endow Ti3AlC2 with better thermal shock resistance. 
For   as seen from Fig. 7(d), the law is the same for 
all substitutions, i.e.,   for all of Ti3(Al1−xAx)C2 increases 
with the substitution concentration x increasing, which 
suggests that these substitutions contribute to the 
enhancement of plasticity. 

According to the Pugh’s criterion [54], the ratio of bulk 
modulus to shear modulus is used to predict whether 
the failure mode of Ti3(Al1−xAx)C2 is brittle or ductile, 
where B/G = 1.75 is the critical value to distinguish. It 
can be found from Fig. 8 that, the Pugh’s module ratios 
of all systems are less than 1.75, indicating that the 
Ti3(Al1−xAx)C2 solid solution is brittle, which should 
originate from the ceramic properties. Whereas, with 
the increase of the substitution concentration, the Pugh’s  

 

module ratio increases, i.e., the ductility of Ti3(Al1−xAx)C2 
is improved, which is also in accordance with the trend 
of  . 

To further verify the accuracy of the CGCNN model, 
the values of E and G of Ti3(Al1−xSix)C2 and 
Ti3(Al1−xSnx)C2 at different composition x obtained via 
experimental measurements [20], the DFT calculations 
and the model predictions are compared as shown in Figs. 
9(a) and 9(b). It can be seen that, the prediction results  

 

 
 

Fig. 8  Pugh’s modulus ratio of the Ti3(Al1−xAx)C2 with 
respect to substitution concentration x. 

 
 

Fig. 9  Comparisons of experimental measurements (exp), DFT calculations (cal), and model predictions (pre): (a, b) the E and 
G of Ti3(Al1−xSix)C2 and Ti3(Al1−xSnx)C2, respectively, and (c, d) the E and G of Ti3AlC2, Ti3SiC2, Ti3SnC2, and Ti3GeC2, 
respectively. The experimental measurement of shear modulus of Ti3SnC2 is absent owing to the lack of the data in the literature. 
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of CGCNN model agree well with the DFT calculations 
and experimental measurements. In addition, the E and 
G of four pure MAX phases obtained by the experimental 
measurements [6,20], the DFT calculations, and the 
model predictions are also compared as shown in Figs. 
9(c) and 9(d). The prediction results are well consistent 
with the values obtained experimentally and theoretically. 

Furthermore, the bond parameters of Ti3(Al1−xAx)C2 
(A = Si, Sn) as representatives are calculated via DFT 
to demonstrate the effect of A-site substitution on their 
mechanical properties. Figures 10(a) and 10(b) show 

the lengths of M–A, M1–X, and M2–X bonds of 
Ti3(Al1−xAx)C2 with respect to the substitution 
concentration x. Figures 10(c) and 10(d) correspond to 
the two-dimensional representations of the electron 
localization function (ELF) of Ti3(Al1−xSix)C2 and 
Ti3(Al1−xSnx)C2 on the (010) plane, respectively. As 
shown in Fig. 10, with the Si concentration increasing, 
the length of M–A bond decreases while the densities 
of electrons between M and A increase, indicating that 
the strength of M–A bond is enhanced. On the contrary, 
with the Sn concentration increasing, the increment in  

 

 
 

Fig. 10  (a, b) Lengths of M–A, M1–X, and M2–X bonds of Ti3(Al1−xSix)C2 and Ti3(Al1−xSnx)C2, respectively, where M1 is the 
M element near the A element, and M2 is the M element far from the A element. (c, d) Contour plots of the calculated ELF 
within the (010) plane of Ti3(Al1−xSix)C2 and Ti3(Al1−xSnx)C2 with respect to the substitution concentration x, respectively. 
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length of the M–A bond together with the decrement of 
electron densities between M and A suggest that the 
strength of M–A bond is weakened. These variations in 
bond strength are well consistent with the changes in 
mechanical properties of Ti3(Al1−xAx)C2 predicted, 
thereby verifying the feasibility and accuracy of CGCNN 
model. 

4  Conclusions 

To design new MAX phases with multifunctional 
applications, the optimized CGCNN model with a liner 
correction method has been proposed to elucidate the 
effect of A-site substitution on the upper and lower 
limits of mechanical properties of Ti3AlC2. The model 
can predict the mechanical properties of Ti3(Al1−xAx)C2 
with great efficiency and the accuracy as per the DFT 
calculations. Among the selected nineteen elements, the 
Ti3(Al1−xAx)C2 phases are more stable when A = Ga, Si, 
Sn, Ge, Te, As, or Sb. With the increase of substitution 
concentration, Si or As improves the stiffness, while Sn 
or Te contributes to the thermal shock resistance of 
Ti3AlC2. Additionally, the plasticity of Ti3AlC2 can be 
greatly improved when As, Sn, or Ge is used as a 
substitution. This work can provide a reliable guideline 
for individual synthesis of high-performance MAX 
phases applied in various applications. 
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