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Abstract: In this paper, both the 1D radial mode and the equivalent circuit of a piezoceramic disk 
resonator were theoretically analyzed based on IEEE standards. And then, the radial resonance 
frequency spectra of the PZT-based (Nb/Ce co-doped Pb(Zr0.52Ti0.48)O3, abbreviated as PZT–NC) 
piezoceramic circular disks were measured by an impedance analyzer. A set of resonance frequency 
spectra including six electrical parameters: Z, R, X, Y, G, and B, were used for making a value 
distinction between three possible resonance frequencies, and between three possible antiresonance 
frequencies. A new-form Nyquist diagram was depicted to describe the position relations of these 
characteristic frequencies. Such a complete resonance frequency spectrum was used to perform the 
accurate calculation of some material constants and electromechanical coupling parameters for the 
PZT–NC piezoceramics. Further, the frequency dependence of the AC conductive behavior of the 
specimen was characterized by the complex impedance measurement. The values of AC conductivity 
at resonance/antiresonance were deduced from the equivalent circuit parameters. Moreover, the Van 
Dyke circuit model was assigned to each element contribution and the simulated curves showed a nice 
fitting with the experimental results. Finally, an additional impedance analysis associated with 
resonance frequency calculation revealed a complicated coupled vibration mode existing in the 
annular disk specimen.  
Keywords: piezoceramic resonator; radial mode; AC conductivity; resonance frequency spectra 

 

1  Introduction 

Since born in 1944 with the discovery of the phenomenon 
of ferroelectricity, perovskite-type (ABO3) compounds 
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have been widely used because of their good frequency– 
temperature response and large electromechanical 
coupling ability [1]. Although numerous lead-free 
compositions, based primarily on the (Na1/2Bi1/2)TiO3, 
(K0.5Na0.5)NbO3 [2], (Ba,Ca)(Zr,Ti)O3 [3], and AgNbO3 

[4] systems, are actively explored and received increasing 
attention, Pb(Zr1–xTix)O3 (PZT) is the most widely 
studied and dominantly used piezoelectric materials till 
day [5,6]. Its applications can be found in many fields 
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such as (i) actuators and sensors for aerospace vibration 
control, (ii) sonar transducer for naval application, (iii) 
precision flow control, (iv) fuel injector system, (v) 
vibration energy harvesting, (vi) biomedical health 
monitoring, (vii) structural health monitoring, (viii) 
infrared light detection, (ix) dye wastewater treatment, 
and (x) other fields [7–9].  

The solid solutions of PZT in the vicinity of the 
morphotropic phase boundary (MPB) remain the most 
widely used commercially. Pb(Zr0.52Ti0.48)O3 is a 
composition near MPB of Pb(Zr,Ti)O3 that generates 
anomalously high piezoelectric and dielectric properties. 
However, almost all useful Pb(Zr0.52Ti0.48)O3 ceramics 
are doped or modified to tailor their properties for 
specific applications [1,5,6]. The introduction of new 
piezoelectric ceramics with improved electrical properties 
usually requires alternatives to the method of determining 
the material constants associated with radial mode 
resonance. In the past few decades, numerous authors 
developed many efficient methods for characterizing 
the material constants of piezoceramics in the radial 
model [10–14]. Moreover, some non-analytical methods 
are also used for identification of the elastic, dielectric, 
and piezoelectric constants of piezoceramic disk 
resonators [15,16]. In recent years, the continuous 
progress of the computer technology has created a 
specific numerical method, the Finite Element Method 
(FEM), to iteratively solve the problem of finding the 
material constants of piezoceramics [17]. 

By means of the electrical impedance measurement, 
the characteristics of the equivalent parameters of a 
Fe/Mn co-doped PZT (PZT-8, “hard”) ceramic element 
embedded in a sanded-cement cubic specimen which is 
under quasistatic loadings were researched [18]. Such 
changes in parameters of the PZT ceramic element 
indicate the stress level according to the relationships 
between the physical characteristics and the stress. 
Nowadays, the on-line monitoring or in-service 
techniques for the civil engineering structures have 
been developed. PZT-based impedance transducers are 
widely used for the structural health monitoring (SHM) 
due to their capability of actuation and sensing [19]. 
This technique is based on the principle of 
electromechanical impedance (EMI) in terms of the 
interaction between the host structure and the 
piezoceramic transducer where the PZT’s electrical 
impedance is directly related to the structure’s mechanical 
impedance.  

In our previous works [20,21], a kind of Nb/Ce 

co-doped Pb(Zr0.52Ti0.48)O3 piezoceramic prepared by a 
conventional solid-state reaction method has been 
identified as exhibiting good electrical and mechanical 
properties, such as a much higher TC than PIC151 (PI 
Ceramic, Lederhose, Germany) with a similar d33 [22], 
and a higher d33 than PZT-5A with an approached TC 
[23], as well as a high compression strength and a high 
fracture toughness. In this work, some material constants 
and electromechanical coupling parameters were obtained 
from the systematic analysis of the radial resonance 
frequency spectra, which is expected to provide a basis 
for its further study of SHM using EMI technique. 

2  Theoretical analysis 

2. 1  Radial resonance mode 

For a piezoceramic vibrator, when a harmonic AC 
electric field is applied to its electrodes with the 
frequency close to its natural resonance frequency, the 
mechanical deformation is generated. Thus the 
resonance in a piezoceramic vibrator involves both 
electrical and mechanical magnitudes. As shown in Fig. 
1, the piezoceramic vibrator is a thin circular disk with 
a diameter of D (= 2a) and a thickness of t, whose 
upper and lower surfaces of the disk are fully covered 
by electrodes, and poling axis is along the thickness 
direction. The x3 coordinate axis is set normal to the 
circular surfaces in which r and θ are measured. The 
applied electric field is uniform in the acoustic wave 
propagation direction. In the nontrivial boundary 
condition for the planar radial mode, the elastic stress 
(mechanical stress) Trr is equal to 0 at r = a, and the 
equation of motion for displacement ur is Bessel’s 
equation. 

When a sinusoidal voltage (V) is applied to the 
piezoelectric ceramic resonator, the current (I) is also 
sinusoidal with the same angular frequency (ω). The 
electrical admittance (Y) of the resonator has the form 
[24]:  
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where t is the disk thickness, a is the radius, ω is the 
driving frequency, T

33  is the stress-free dielectric 
constant in the x3-direction measured at low frequency  
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T 2 T
33 33/( )a t C   , kp is the standard planar 

electromechanical coupling factor, E is the Poisson’s 
ratio, and J0 and J1 are Bessel’s functions of the first 
kind and zeroth and first order, respectively, subjected 
to the relation J1(z) = zJ0(z)/J1(z) [25]. η is the product 
of wave vector ξ and specific resonator dimension a, 
named the dimensionless wave number.  

At resonance, the lossless resonator has an infinitely 
high admittance (Y→∞), η satisfies the following 
transcendental equation: 
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and at antiresonance (Y = 0) we have  
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ηr can be calculated numerically from Eq. (2) for a 
given E, using the known ηr and the ratio of wave 
numbers (ηa/ηr = fa/fr), kp could be calculated from the 
transcendental Eq. (3) as 
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For a given E, the planar elastic modulus p
11c  and the 

elastic compliance E
11S  can be calculated as follows: 
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Combination of T
33 , E

11S , E , and kp can give us the 
transverse piezoelectric constant d31: 
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On the other hand, the effective electromechanical 
coupling factor keff could be further expressed from the 
ratio of the resonance and antiresonance frequency. 
However, due to both transcendental equations for the 
resonance and antiresonance, kp has a very complicated 
relationship with keff, and their ratio kp/keff is a function 
of σE, usually ranging from 1.12 to 1.15 [24].  

2. 2  Equivalent electrical circuit  

In some instances an accurate measurement of the 
antiresonance frequency cannot be made, and it is then 
convenient to characterize the resonator by a lumped- 
parameter equivalent circuit and to calculate the material 
constants from the measured parameters of this circuit. 
The former IRE standards on piezoelectric vibrators 
(IEEE Standard 177-1966) focused on the parameters 
of equivalent circuit. In the neighborhood of a resonance, 
the electrical behavior of a piezoceramic vibrator can 
be described by the Van Dyke circuit model [26] as 
shown in Fig. 1(b). Such a model has been widely used 
for representing the equivalent circuit of a piezoelectric 
vibrator [27,28] and its use was recommended by the 
IEEE standard on piezoelectricity [29]. This circuit is 
composed of two shunted branches, one capacitor C0 
and the motional branch formed by resistance R1, 
inductance L1, and capacitance C1, and the impedance 
of the Van Dyke circuit model can be expressed as [17]: 
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The Van Dyke circuit model can be used to represent a 
piezo-electrically excited mechanical vibration system 
with one dominant resonant mode captured. To capture 
more modes, the Van Dyke circuit model can be modified 
and extended with additional RCL branches in parallel  

 

 
 

Fig. 1  Theoretical analysis for a piezoceramic circular disk in the radial mode: (a) diagrammatic sketch of the sample, (b) Van 
Dyke circuit model, and (c) ideal admittance circle. 
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[30]. It is noted that the derivation of the equivalent 
circuit parameters requires the modal expansion of 
Bessel’s function in the vicinity of its poles. 

For the dominant radial resonant mode of piezoelectric 
vibrator, the voltage resonance in series circuit 
corresponds to resonant frequency when R1 = Zmin = 
1/Ymax, while the current resonance in parallel circuit 
corresponds to antiresonant frequency when R1 = Zmax = 
1/Ymin. The piezoelectric resonator’s admittance (Y) is 
inter-electrode capacity C0 conductivity produced on 
antiresonance to resonance determinants ratio [31]. C0 
can be obtained from the following equation [24]: 

 
2
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In the lossless resonator, f1 and f2 coincide with the 
admittance and impedance maximum, and each has 
three associated frequencies, f1→(fm, fs, fr) and f2→(fn, 
fp, fa) corresponding to maximum absolute admittance 
(impedance), maximum conductance (resistance), and 
zero susceptance (reactance), respectively [29]. In the 
case of internal losses, the values of fm, fs, and fr can 
differ depending on the value of R1. The same is valid 
for fn, fp, and fa. If we used a loss resistance R0 for 
representing the total dielectric loss of the piezoceramic 
vibrator subjected to an AC electric field, when the 
variation amplitude of susceptance is much larger than  

 

that of ωC0, the trajectory of admittance following 
susceptanc will approximately obey a circle equation 
with a diameter of 1/R1 and a basically settled centre, as 
shown in Fig. 1(c). However, this is an ideal admittance 
circle; in fact, with increasing the measuring frequency, 
its centre tends to move up along the susceptance axis. 

In the IEEE standard on piezoelectricity, fs is 
defined as the frequency of maximum conductance and 
fp is defined as the frequency of maximum resistance. 
These two important frequencies can be computed as 
follows [24]: 
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The motional resistance R1 in the equivalent circuit 
represents the mechanical dissipation of the piezoelectric 
resonator. A dimensionless measure of the dissipation 
is the quality factor Qm: 
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where Zs is the impedance at resonance while CT
33 is the 

free capacity at 1 kHz. The corresponding accuracy is  
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And then the planar electromechanical coupling factor 
kp can be calculated as follows 
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The corresponding accuracy is 
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However, the relative difference in the frequencies fs 
and fp depends on both the material coupling factor and 
the resonator geometry. For this reason a quantity called 
the effective coupling factor (keff) has been used, not 
dependent on the specific vibration mode boundary 
conditions, as a convenient measure of this difference 

[17,24,29]: 
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The electromechanical coupling coefficient is an 
important characteristic of piezoceramic elements used 
to measure the energy conversion efficiency. Also, the 
resonator figure of merit M is defined in terms of keff 
and Qm as follows: 
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When keff is small, this reduces to the definition given 
M in IEEE Standard 177-1978.  

On the other hand, the planar electromechanical 
coupling factor kp can be also related to the transversal 
electromechanical coupling factor k31 with the 
participation of Poisson’s ratio σE: 
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3  Experimental procedures 

The specimen selected for the experiment is a kind of 
Nb/Ce co-doped PZT ceramics with a chemical formula 
of Pb(Zr0.52Ti0.48)0.95Nb0.05O3+0.2wt%CeO2 (PZT–NC), 
which were fabricated by a conventional solid-state 
reaction from oxide precursors and sintered at 1225 ℃ 
for 2 h in a sealed crucible before [19]. To illustrate the 
determination of the resonance frequencies and the use 
of the Van Dyke circuit model for the PZT–NC 
piezoceramics, two kinds of specimens: circular disks 
(D (~10 mm) × t (~0.5 mm)) and annular disks (D0 

(~10 mm) × Di (~4 mm) × t (~0.5 mm)) were prepared 
in this experiment. After poling along the thickness 
direction, the electrical impedance with stress-free 
boundary conditions was measured for these specimens 
between 80 and 560 kHz using an impedance analyzer 
(PV70A, Beijing Band Era Co., LTD, Beijing, China). 
Measurements were made at room temperature with an 
applied voltage of 1 V. The equivalent circuit parameters 
were determined by fitting the impedance curve using 
the Z-View software (version 3.1, Scribner Associates, 
Inc.). Figure 2 shows the computing frame of material 
constants and electromechanical coupling parameters 
of piezoceramics from the impedance measurement in 
the radial mode. 

 
 

Fig. 2  Computing frame of material constants and 
electromechanical coupling parameters of pizeoceramics 
based on the impedance measurement in the radial mode. 

4  Results and discussion 

The determination of the resonance frequencies for the 
circular disk specimen is shown in Fig. 3. Around the 
resonance frequency, the electrical admittance Y is a 
complex function of ω (Fig. 3(a)), whose real and 
imaginary parts are conductance G (Fig. 3(b)) and 
susceptance B (Fig. 3(c)), respectively (i.e., Y = G + 
iB). An ascending order of fm (228.72 kHz) < fs 
(228.843 kHz) < fr (228.956 kHz) can be observed 
from the locus (Fig. 3(d)) that plots the relative 
variation between G and B. The mean power supplied  

 
 

 
 

Fig. 3  Determination of the resonance frequencies for the circular disk specimen: (a) maximum admittance modulus, 
(b) maximum electric conductance, (c) zero susceptance, and (d) polar representation. 
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by the voltage source and consumed by the impedance 
is proportional to conductance G. For that reason, the 
maximum of G is associated to the series resonance 
frequency (fs), even in the case of coupling modes. For 
the disk vibrator, the planar radial frequency constant 
Np is the product of the series resonance frequency and 
the disk diameter (Np = fs · D). This factor is calculated 
to be 2105 Hz·m for PZT–NC piezoceramics. 

Figure 4 shows the determination of the antiresonance 
frequencies for the circular disk specimen. As can be 
seen, Z is also a complex number (Fig. 4(a)), and its 
real and imaginary parts are resistance R (Fig. 4(b)) 
and reactance X (Fig. 4(c)), respectively (i.e., Z = R + 
jX). A descending order of fn (270.02 kHz) > fp 
(269.584 kHz) > fa (269.076 kHz) is revealed by the 
R–X locus (Fig. 4(d)). The maximum of R is associated 
to the parallel resonance frequency (fp). Here, both 
three possible resonance frequencies and three possible 
antiresonance frequencies are presented in the G–B 
locus and the R–X locus, respectively. For lossless 
resonators, these frequencies are close, but the difference 
is very important for lossy and/or weak resonators. 

According to the electroelastic theory of dielectrics, 
the imaginary parts of the elastic compliance and 
dielectric permittivity represent the mechanical and 
electrical losses, respectively. Thus the dielectric loss 
factor (tanδ) can be computed as the ratio between the 
real and the imaginary parts of the admittance or 
impedance. 

 tan
| | | |
G R
B X

    (17) 

The frequency dependence of the dielectric loss factor 
of the circular disk specimen is shown in Fig. 5. Such 
two tandem loss peaks can be related to the resonance 
and antiresonance responses of the sample, respectively. 
However, the antiresonance response excited a weaker 
loss peak. As we knew, both electrical and mechanical 
magnitudes are involved with the resonance response 
in a piezoceramic vibrator. In the frequency range of 
impedance measurement, the increases in motional 
reactance and stiffness are fundamentally dependent on 
the mean stress <T> [32]. In comparison to resonance, 
the increased reactance at antiresonance may be 
responsible for the decreased loss in this case. On the 
other hand, due to the multidomain structure of 
piezoceramics, both domain wall motion and 
interaction between ferroelectric domains and lattice 
defects could cause internal friction, which has been 
considered as the origin of the elastic (mechanical) 
losses of ferroelectric ceramics. During resonance/ 
antiresonance, both the domain wall oscillation caused 
by the alternating field and the domain wall motion 
caused by the mechanical deformation can be 
connected with the conductivity, which is a major 
contributor for the dielectric losses of ferroelectric 
ceramics [33]. For the PZT–NC piezoceramics used in 
the impedance measurement, tanδ is evaluated to be 
3.10% at 100 kHz. As expected in this donor doped 

 
 

 
 

Fig. 4  Determination of the antiresonance frequencies for the circular disk specimen: (a) maximum impedance modulus, 
(b) maximum electric resistance, (c) zero reactance, and (d) polar representation. 
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Fig. 5  Frequency dependence of the dielectric loss 
factor of for the circular disk specimen. 

 
PZT, its loss value is higher than those of the pure 
(undoped) PZT ceramics (tanδ  1.1%) [34]. With 
respect to the undoped PZT, which behaves as weakly 
hard, donors like high-valence Nb5+ and Ce4+ did not 
only make the domain wall motion easier but also 
introduced defects like Pb vacancies in the PZT lattice 
[35]. As a result, an increased dielectric loss was 
observed in the Nb/Ce co-doped PZT piezoceramics.  

The complex impedance of piezoelectric resonator 
is given by the following equation set Eqs. (18)–(21) 
[24]: 
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As mentioned above, resonance fr and antiresonance fa 
frequencies are the solution of equation B = 0 and X = 
0, respectively. Frequency fm at minimum and fn at 
maximum impedance (fm < fr < fa < fn) are the solution 
of equation ∂Z/∂f = 0, while the last equation for the 
minimum and maximum impedance could not be 
analytically solved, there are some estimates for these 
characteristic frequencies [36]): 
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Figure 6 shows the fundamental resonance and 
antiresonance frequencies of the circular disk specimen 
in the radial mode. It can be seen that the estimated 
error of all these characteristic frequencies are limited 
within 0.2%, in the case of using the approximate 
equations above. Further, based on the form of Eqs. 
(22)–(25), a uniform expression as follows is proposed 
here for them:  
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If we defined a = –1, +1, while b = 0, –1, and +1 here, 
the position relations between these characteristic 
frequencies can be depicted by a Nyquist diagram 
according to the equation above. For a low loss 
material f1 ≈ fm ≈ fs ≈ .fr and f2 ≈ fa ≈ fp ≈ fn, 
but for a lossy material these values differ from each 
other as follows: 

 m s r a p nf f f f f f      (28) 

 n m p s a r( ) ( ) ( )f f f f f f      (29) 

For piezoceramics with high coupling factor (keff) and 
reasonably high mechanical (Qm), the value of 4r2/Qm 
shifts towards to zero, and then the differences between  
 

 
 

Fig. 6  Fundamental resonance and antiresonance 
frequencies of the circular disk specimen (the insert is a 
new-form Nyquist diagram depicted by the approximate 
equation). 
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those three frequencies in the same side are nearly equal. 

 r s s mf f f f    (30) 

 n p p af f f f    (31) 

which can be understood by the slope of the two secant 
lines (fm—fs—fr and fa—fp—fn) in the Nyquist circle. 
After knowing the difference between fs and fp, the 
values of kp and keff can be calculated to be 60% and 
53% from Eqs. (13) and (14), respectively. In fact, the 
most complicated relationship is between the effective 
coupling factor keff and the planar coupling factor kp 
due to both transcendental equations for the resonance 
and antiresonance. However, using the (fm, fn) frequency 
pair leads to significant errors in the coupling (k) and 
piezoelectric coefficient (d). While using the (fs, fp) 
frequency pair gives reasonable agreement with PRAP 
for the coupling (k) [37]. 

Further, the complete resonance spectra of the 
circular disk specimen are presented in Fig. 7. For a thin 
circular disk, its fundamental radial resonance mode 
should produce a pair of resonance–antiresonance peaks 
in this frequency range. In Fig. 7(a), the impedance 
(top curve) drops to a minimum at the resonant frequency 
and rises to a maximum at the antiresonant frequency. 
The phase (bottom curve) rises to a maximum value of 
83.6° roughly at the center of the resonance. A high 
angle indicates the fully poled state of the specimen. For 
modes where the mechanical movement is perpendicular 
to the direction of the electrical excitation, e.g., length 
expansion of thin bars thickness poled or radial modes 
of thickness poled thin discs, the mechanical resonance  

 

corresponds to the minimum of the electrical impedance, 
i.e., the electrical resonance. This is due to the fact that 
the electric open/short circuit conditions are interchanged 
with the mechanical ones [38]. Full impedance spectrum 
for the piezoelectric resonator at resonance reflects 
also the resonator mechanical quality defined by the 
mechanical quality factor Qm. It could be calculated 
from the impedance spectroscopy at resonance as  

 r
m

fQ
f




 (32) 

where Δf = f2 – f1 and fr, f1, and f2 are the frequencies at 
the resonance and at 3 dB value of the impedance at 
resonance (i.e., at the values of frequency where the 
impedance is equal to / 2Z ). From Fig. 7(b) the 
resolution for the impedance resonance peak gives Qm 

the value of 69.  
As shown in Fig. 7(c), the variations of both 

admittance and phase with frequency are quite opposite 
to that of impedance/phase. In addition to the equation 
above, there is another computational formula proposed 
for Qm in terms of  

 r
m  

fQ
f f 




 (33) 

Here, f+ and f– are the upper and lower half power 
frequencies, respectively. For high Qm resonators Eq. 
(33) becomes equal. In practice, for Qm higher than 10, 
it differs in less than 0.1%. These values can be used in 
the optimization algorithm as the initial shot. Figure 
7(d) shows the determination of f+ and f– from the 
admittance resonance curve. The value of Qm is 

 
 

Fig. 7  Complete resonance frequency spectra of the circular disk specimen: (a) impedance and phase curves, (b) impedance 
resonance peak, (c) admittance and phase curves, and (d) conductance resonance peak. 
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calculated to be 68. In the case of keff = 0.53, the value 
of M can be determined as 27 according to Eq. (15). 
Here, 5 < M < 50, which demonstrates that the use of fp 
and fs in this experiment is better to calculate the 
electromechanical coupling coefficient for the PZT–NC 
piezoceramics than fm and fn.  

Figure 8 shows the complex impedance spectrum of 
the circular disk specimen at 80–560 kHz. The complex 
impedance plots Z′ versus Z″ (arc), where Z' and Z″ are 
the real and the imaginary parts of the complex 
impedance (Z). Usually, three distinct arcs may be 
observed in polycrystalline ceramics. With increasing 
frequency from right to left side of the Z′ axis, arcs 1, 2, 
and 3 in succession can be attributed to the electrode 
effect, the grain-boundary effect, and the grain or bulk 
effect, respectively [39]. From Fig. 8, the center of the 
experimental arc seems to be located at the real axis, 
and there is only a semicircular arc presented. Therefore, 
the electrical contribution of specimen is from only 
grains (bulk materials). The AC bulk conductivity is 
evaluated from the following equation [40]: 

 ac 2 2
Z t

AZ Z





 
 (34) 

where σac is the AC conductivity, t is the thickness, and 
A is the area, Z′ and Z″ are the real and imaginary parts 
of the impedance, respectively, Z′ = R(ω), Z″ = X(ω), 
and Z′2 + Z″2 = |Z(ω)|2. By combing Eqs. (10)–(12) and 
Eqs. (19)–(21), the AC conductivity can be expressed 
as a function of the frequency by the following equation: 

 
2 2

s
ac 2 2 2 2 2 2

1 s m s( )
t
AR Q

 


   


   
 (35) 

As can be seen from the equation above, for the 
piezoceramic resonator with a certain dimension at 
resonance (ω = ωs), σac depends only on R1. While at  
 

 
 

Fig. 8  Complex impedance spectrum of the circular disk 
specimen between 80 and 560 kHz. 

antiresonance (ω = ωp), by using the expression of Qm 
with equivalent circuit parameters (Eq. (12)), Eq. (35) 
can be further simplified to be as follows: 

 
2 2

1 0 p 2 2
ac 1 0 p2 2 2

1 0 p 1

R C t tR C
A AR C


 


 


 (36) 

With the help of the complex impedance measurement, 
the frequency dependence of the AC conductivity of the 
circular disk specimen is depicted in Fig. 9. As marked 
by the green rectangular box, the measured σac shows 
the maximum value of 3.47×10–3 S/cm at resonance and 
the minimum value of 6.46×10–3 S/cm at antiresonance. 
According to the equivalent circuit parameters (R1 = 
19.65 Ω and C0 = 1.365 nF) obtained subsequently, the 
values of σac at resonance and antiresonance are 
calculated to be 3.24×10–3 and 6.7×10–6 S/cm. Such a 
very small deviation between measured values and 
calculated values demonstrates the usability of Eq. (35) 
for predicting the AC conductivity of the piezoceramics 
at resonance/antiresonance in terms of their equivalent 
circuit parameters.  

Above the antiresonance frequency, the frequency 
dependence of the conductivity follows the double power 
law instead of simple Jonscher’s power law [41]. 

 1 2( ) (0) s sA B        (37) 

where σ(ω) is the AC conductivity, ω is the angular 
frequency (ω = 2πf), σ(0) is the frequency independent 
conductivity. As shown in the inserted figure, fitting of 
the experimental data yields values of s1 and s2 as 0.39 
and 0.65, respectively. For the PZT–NC piezoceramic 
resonator measured in a frequency range of 88–560 kHz, 
hence, its AC conduction mechanism in the region 
above the antiresonance frequency could be attributed 
 

 
 

Fig. 9  Frequency dependence of the AC conductivity of 
the circular disk specimen. 
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to the mixture of the translational hopping motion and 
the localized orientation hopping [42]. 

For transducer applications, it is sometimes more 
convenient to fit the impedance plots to lumped circuit 
models in order to predict the electrical behavior of the 
resonator. The response curves of the electrical 
impedance and phase angle of the circular disk 
specimen are shown in Fig. 10. Both these two curves 
were fitted by the Van Dyke circuit model with 
consideration of energy dissipation. However, it can be 
observed from Fig. 10(a) that the error of fitting for the 
antiresonance impedance amplitude is larger than that 
for the resonance impedance amplitude. Under the 1D 
model, resonance amplitudes depend on elastic losses 
only while antiresonance amplitude depends on elastic 
losses mainly, as well as the participation of both 
dielectric and piezoelectric losses [43]. However, under 
3D model, the piezoelectric constants and dielectric 
permittivity are lossless, and both resonances and 
antiresonances are govern by elastic losses [44,45]. 

Here, the classical Van Dyke circuit model uses four 
real circuit parameters, C0, C1, L1, and R1 to represent 
the impedance of a free standing piezoelectric resonator 
around resonance. In this experiment, one-dimensional 
(1D) approximation for the simple vibration modes 
(fundamental resonance and its overtones) is used for 
the derivation of equivalent circuit parameters. The 
equivalent circuit parameters derived from the 1D 
mode are inserted in Fig. 10(a). The value of C1/C0 is 
evaluated to be 0.39, such a high value corresponding 
to the broadening frequency bandwidth of the resonance 
peak. And the loss component R1 is related to the speed 
that the resonance peak decays. A smaller value of ~20 Ω 
indicates a slower decaying speed of the resonance peak.  

It can be seen from Fig. 10(b) that, the phase angle 
is much close to –90° but not fully equal to –90° before 
resonating. Such a result indicates that the piezoceramic 
resonator behaves in a property of a capacitor in the case 
of no resonance. And there is a little energy dissipation 
existing in the specimen subjected to the electric 
loading. In the resonance region (220–280 kHz), the 
decreased phase angle (~80°) can be related to the 
energy dissipation caused by resonance. In fact, the 
physical meanings of these four components modeled 
for the equivalent circuit can be understood by the 
equivalent structure of a piezoelectric element. As 
shown in Fig. 11, the component C0 represents its 
dominant capacitance; while the components L1, R1, 
and C1 are relevant to its equivalent mass me, damping  

 
 

 
 

Fig. 10  Fitting of the resonance frequency spectra of the 
circular disk specimen according to the Van Dyke circuit 
model: (a) impedance curve; (b) phase curve. 

 

 
 

Fig. 11  Correlations between the equivalent circuit and 
the equivalent structure of a piezoceramic resonator. 

 
coefficient ce, and spring constant ke, respectively. 

Some material constants and electromechanical 
coupling parameters were calculated for the specimen 
from the measured frequency data according to the 
corresponding equations shown in Section. 2. The 
calculated data are listed in Table 1 and compared with 
the measured data derived from the instrument. A very 
small deviation is observed from the comparison between  
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Table 1  Elastic, piezoelectric, and electromechanical coupling parameters of the PZT–NC piezoceramics 

sE
11 sE

12 σE Np d31 k31 kp keff Qm M C0 
Parameter 

(10–12m2/N) (—) (Hz·m) (pC/N) (%) (%) (%) (—) (—) (nF) 

Value 15.02 4.96 0.33 2106 161 35 60(59) 53(53) 69(68) 27(27) 1.37(1.53) 

Note: the contents included in the brackets represent the measured values, and others are the calculated values. 
 
the calculated and measured electromechanical properties 
(kp, keff, Qm, and M). Especially, the high kp of 0.60 is 
expected to be used for some piezoelectric devices 
requiring a high electromechanical transform ability. 
Also, it means that having perfect elastic or dielectric 
properties, piezoceramics have perfect electroelastic 
properties too.  

Figure 12 shows the resonance frequency spectrum 
of the annular disk specimen between 120 and 200 kHz. 
As marked by the yellow rectangular box, there are 
two pairs of resonance–antiresonance peaks whose 
frequencies are adjacent appearing in the impedance 
curve, and the corresponding phase angle at resonance 
reaches to only ~60°. This resonance spectrum 
significantly differs from that of the circular disk 
specimen, indicating that the resonant vibration may be 
not a single mode. 

According to Huang et al.’s theory [46], the radial 
extensional resonance and antiresonance frequencies 
for the piezoceramic annular disks with traction-free 
boundary conditions can be expressed as  

 E 2
0 11 p

1
2π (1 )

f
R s


 



 (38) 

where η is the frequency parameter of the radial 
(extensional) vibration, which is a function of the 
inner-to-outer radius ratios (α) of the annular disk. For 
the PZT–NC piezoceramic annular disk measured: α = 
0.4, fr,a(average) = 155.66 kHz. Therefore, η was  

 

 
 

Fig. 12  Resonance frequency spectrum of the annular 
disk specimen between 120 and 200 kHz    

evaluated to be 3.05 from the equation above, which is 
between 1.7 for the FEM (Finite Elements Method) 
mode 1 and 5.5 for the FEM mode 2. In addition of a 
lower phase angle, the resonant vibration of the annular 
disk specimen may be considered as a coupling between 
these two vibration modes. It is the coupling inside the 
material which modifies the resonance conditions and 
not the geometrical dimensions of the vibrating element.  

However, the 1D models considered for this work 
are not suitable to describe coupling existing between 
lateral and thickness modes as they occur in array 
elements or even in a single-element transducer [44]. 
In this experiment, the FEM mode 2 did not show neutral 
lines, which may be not a radial mode. Both the actual 
vibration modes and the detailed coupling relationship 
need a further investigation with the help of the exact 
equations of radial modes for annular disks. Even so 
frequency measurements are precise, the approximate 
1D model is not accurate enough. When sE

13 is introduced 
into modelling for 3D characterizing piezoelectric 
materials, the conclusions are very different [45]. 
Therefore, investigating the coupling relationships 
between lateral and thickness modes in arrays used in 
acoustical imaging is the next work for the PZT–NC 
piezoceramics before applications.  

5  Conclusions 

For the PZT–NC piezoceramics, its radial resonance 
frequency spectra were systematically investigated by 
both impedance measurement and theoretical analysis. 
Main conclusions can be drawn as follows. (1) A set of 
6-parameter resonance frequency spectra are used to 
perform the accurate calculation of some material 
constants and planar coupling factors for the circular 
disk specimen, and the position relations between 
fundamental resonance and antiresonance frequencies 
are depicted by a new-form Nyquist diagram. (2) The 
frequency dependence of the AC conductivity follows 
the double power law above the antiresonance frequency 
and the conductivity at resonance/antiresonance can be 
calculated from the equivalent circuit parameters. 
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(3) Both the impedance and phase response curves are 
well fitted by the Van Dyke circuit model and then the 
equivalent circuit parameters are successfully determined 
from the fitting result. (5) For the annular disk specimen, 
the resonant behavior may be involved as a coupling 
between two radial modes; however, a further 
investigation requires to be considered in the 3D models.  
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