**Research Article** 

# Physical and mechanical properties of hot-press sintering ternary $CM_2A_8$ (CaMg<sub>2</sub>Al<sub>16</sub>O<sub>27</sub>) and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> (Ca<sub>2</sub>Mg<sub>2</sub>Al<sub>28</sub>O<sub>46</sub>) ceramics

Bin LI<sup>*a,b*</sup>, Guangqi LI<sup>*c*</sup>, Haiyang CHEN<sup>*d*</sup>, Junhong CHEN<sup>*a*,\*</sup>, Xinmei HOU<sup>*b*,\*</sup>, Yong LI<sup>*a*</sup>

 <sup>a</sup>School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
 <sup>b</sup>Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
 <sup>c</sup>Shandong Shengchuan Ceramics Co., Ltd., Shandong 255100, China
 <sup>d</sup>School of Architecture and Construction, Hebei University of Architecture, Zhangjiakou 075000, China

> Received: February 24, 2018; Revised: March 23, 2018; Accepted: March 28, 2018 © The Author(s) 2018. This article is published with open access at Springerlink.com

**Abstract:** The new ternary  $CM_2A_8$  ( $CaMg_2Al_{16}O_{27}$ ) and  $C_2M_2A_{14}$  ( $Ca_2Mg_2Al_{28}O_{46}$ ) pure and dense ceramics were first prepared by a hot-press sintering technique, and their physical and mechanical properties were investigated. The purity of obtained  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics reaches 98.1 wt% and 97.5 wt%, respectively. Their microstructure is dense with few observable pores, and their grain size is about a few dozen microns. For their physical properties, the average apparent porosity of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics is 0.18% and 0.13%, and their average bulk density is 3.66 g/cm<sup>3</sup> and 3.71 g/cm<sup>3</sup>, respectively. The relative density of  $CM_2A_8$  ceramic is 98.12% and that of  $C_2M_2A_{14}$  ceramics is 9.24×10<sup>-6</sup> K<sup>-1</sup> and 8.92×10<sup>-6</sup> K<sup>-1</sup>, respectively. The thermal conductivity of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics is 9.24×10<sup>-6</sup> K<sup>-1</sup> and 8.92×10<sup>-6</sup> K<sup>-1</sup>, respectively. The thermal conductivity of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics is 21.32 W/(m·K) and 23.25 W/(m·K) at 25 °C and 18.76 W/(m·K) and 19.42 W/(m·K) as temperature rises to 350 °C, respectively. In addition, the mechanical properties are also achieved. For  $CM_2A_8$  ceramic, the flexural strength is 248 MPa, the fracture toughness is 2.17 MPa·m<sup>1/2</sup>, and the Vickers hardness is 12.26 GPa. For  $C_2M_2A_{14}$  ceramic, the flexural strength is 248 MPa, the fracture toughness is 2.17 MPa·m<sup>1/2</sup>, and the Vickers hardness is 12.95 GPa.

Keywords: hot-press sintering; CM<sub>2</sub>A<sub>8</sub>; C<sub>2</sub>M<sub>2</sub>A<sub>14</sub>; physical properties; mechanical properties

## 1 Introduction

 $CaAl_{12}O_{19}$  (CA<sub>6</sub>) is a stable calcium aluminate phase with highest  $Al_2O_3$  content in the CaO-Al<sub>2</sub>O<sub>3</sub> binary system [1–3]. Its theoretical density is  $3.79 \text{ g/cm}^3$  and melting point is  $1875 \,^{\circ}\text{C}$  [4–6]. CA<sub>6</sub> has similar thermal expansivity with corundum, low wettability against melting metal and slag, and it is chemically stable in reduction atmosphere (CO) and alkali conditions [7–11]. In recent years, CA<sub>6</sub> has attracted wide attention and been widely applied in steel, petrochemical, and aluminum industry refractories

<sup>\*</sup> Corresponding authors.

E-mail: J. Chen, cjh2666@126.com;

X. Hou, houxinmeiustb@ustb.edu.cn

[12–14]. MgAl<sub>2</sub>O<sub>4</sub> (MA) is the only stable compound in the MgO–Al<sub>2</sub>O<sub>3</sub> system with the melting point of 2135 °C. It is featured with low thermal expansivity, better thermal conductivity, and outstanding mechanical properties, etc. [15–22], and widely used in ladle, cement rotary kiln, and RH refining furnace refractories.

Göbbels et al. [23-26] found two ternary compounds in the Al-rich part of CaO-Al<sub>2</sub>O<sub>3</sub>-MgO system: CaMg<sub>2</sub>Al<sub>16</sub>O<sub>27</sub> and Ca<sub>2</sub>Mg<sub>2</sub>Al<sub>28</sub>O<sub>46</sub> (abbreviated as  $CM_2A_8$  and  $C_2M_2A_{14}$  in the following), which have magnetoplumbite related structures composed of two kinds of structure units, namely M (CaAl<sub>12</sub>O<sub>19</sub>, magnetoplumbite unit) and S (MgAl<sub>2</sub>O<sub>4</sub>, spinel unit). They also confirmed that the stacking sequences are  $(MS)_n$  and  $(M_2S)_n$  for  $CM_2A_8$  and  $C_2M_2A_{14}$ , respectively. In both cases,  $Mg^{2+}$  enters  $CA_6$  lattice, rather than causing the structural alteration, but it is stored in CA<sub>6</sub> lattice in the form of magnesium aluminate spinel [25,26]. During the synthesis of  $CM_2A_8$  and  $C_2M_2A_{14}$ , CA<sub>6</sub> and MA formed initially and then the solid solution reaction occurred between CA<sub>6</sub> and MA to form  $CM_2A_8$  or  $C_2M_2A_{14}$  [27]. From the aspect of stacking structure and preparation process, it can be concluded that CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> are the composite reaction products of CA<sub>6</sub> and MA at high temperatures. Both CA<sub>6</sub> and MA are excellent refractories which play important roles in many high temperature applications, so it can be deduced that CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> are also remarkable refractories which integrate the merits of MA and CA<sub>6</sub>. In addition to the higher melting points of CM<sub>2</sub>A<sub>8</sub> (1820±10 °C) and  $C_2M_2A_{14}$  (1830±10 °C) [26], outstanding corrosion resistance was proved by the slag resistance test in our previous work [27]. Besides that, CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> can also remove the inclusions in molten steel and purify molten steel, which is due to the M units in their stacking structure. Therefore, CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> are promising refractories and expected to be a potential substitute for ladle refining lining in steel industry.

For the preparation and industrial application of refractories, a comprehensive understanding of the physical and mechanical properties of the raw materials is necessary, so as to control the various technique indicators of the refractory product [28–31]. Up to now,  $CM_2A_8$  and  $C_2M_2A_{14}$  are only mentioned occasionally in the study of other refractories [32,33], and no specific report on their physical and mechanical properties was carried out. In order to prepare  $CM_2A_8$  and  $C_2M_2A_{14}$  series refractories with excellent

performance on different application occasions, in this work, the dense  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics were prepared by hot-press sintering and their physical and mechanical properties were investigated, to provide a theoretical basis for the preparation of  $CM_2A_8$  and  $C_2M_2A_{14}$  refractories.

## 2 Experiment process

## 2.1 Preparation of CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> powders

Analytically pure Al<sub>2</sub>O<sub>3</sub>, CaO, and MgO (Sinopharm Chemical Reagent Co., Ltd.,  $\omega$  (Al<sub>2</sub>O<sub>3</sub>) > 98%,  $\omega$  (CaO) > 99%,  $\omega$  (MgO) > 98%, average particle size  $\leq$  74 µm) were adopted as raw materials in this experiment. In order to accurately quantify, the raw materials were calcinated at 900 °C for 1 h to remove the absorbed water and combined water. The batching was conducted with the mass ratio of  $m(CaO):m(Al_2O_3):m(MgO) =$ 5.89:85.65:8.46 according to the stoichiometric ratio of  $CM_2A_8$ . For  $C_2M_2A_{14}$ , due to the substitution of  $Al^{3+}$ for  $Mg^{2+}$  in spinel units of  $C_2M_2A_{14}$ , the mass ratio of  $m(CaO):m(Al_2O_3):m(MgO) = 6.94:89.57:3.49$  was adopted in accordance with  $Ca_2Mg_{2-3x}Al_{28+2x}O_{46}$  as substitution formula and the solid soluble amount x = 0.2 [23,24]. After batching, the raw materials were mixed and wet ball-milled for 48 h (raw materials:balls:water = 1:1.5:2 by mass) and dried at 110 °C for 24 h. The mixtures were pressed into bricks and fired at 1750 °C for 6 h in air. After free cooling, the  $CM_2A_8$  and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> bricks were taken out, broken, and vibratorymilled, and the as-synthesized powders of CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> were obtained.

#### 2.2 Hot-press sintering process

The as-synthesized powders with an average particle size of less than 74  $\mu$ m were screened out as raw materials for hot-press sintering. The hot-press sintering was carried out in a cylindrical graphite mould with an inner diameter of 60 mm, in which graphite paper was inserted between powder compacts and the inner wall of graphite mould. The CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> powders were pressed into the graphite mould and hot-press sintered. The hot-press sintering procedure is detailed in Fig. 1. The pressure started at 1400 °C and increased linearly as the temperature rising; when the temperature was 1750 °C, the pressure reached the maximum value of 15 MPa. The pressure of 15 MPa remained for

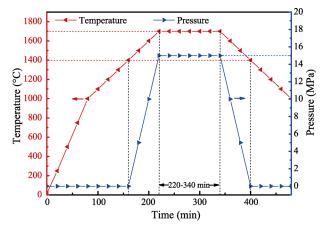



Fig. 1 Diagram of hot-press sintering procedure.

120 min (from 220 to 340 min) at 1750 °C, and then reduced linearly as the temperature decreased. When the temperature was 1400 °C, the pressure dropped to 0 MPa. After cooling, the  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics were obtained.

#### 2.3 Phase and morphology characterization

The phases and morphology were investigated by X-ray diffraction with Cu K $\alpha$  radiation and a scanning speed of 10 (°)/min (XRD, D8 Advance, Bruker, America) and a scanning electron microscope (SEM, nova<sup>TM</sup> nano SEM 450, FEI, America) equipped with an energy dispersive spectrometer (EDS, TEAM<sup>TM</sup>, EDAX, America). The obtained ceramics were characterized by transmission electron microscopy (TEM) and selected area electron diffraction (SAED, JEM-1400, JEOL, Japan). The relative contents of the identified phases were obtained by standard less quantitative phase analysis using the TOPAS 5.0 software (Bruker AXS, America) implementing the Rietveld method.

#### 2.4 Physical and mechanical property tests

The apparent porosity and bulk density of the obtained samples were measured by Archimedes method. The true density was measured by using a pyknometer method. The obtained sample was prepared into the cylinders with diameter of 4 mm and length of 10 mm, and the thermal expansivity tests were conducted by thermal dilatometer (DIL805A, BÄHR-Thermoanalyse GmbH, Germany) with the heating rate of  $5\pm1$  °C/min from 50 to 1400 °C. The thermal conductivity tests at 25 and 300 °C were conducted by laser-flash method (LFA 457 MicroFlash, NETZSCH, Germany) in which

10 mm  $\times$  10 mm  $\times$  5 mm test pieces were applied. The flexural strength was determined by the three-point bending method, in which 3 mm  $\times$  4 mm  $\times$  36 mm test pieces were applied with a span of 30 mm and a cross head speed of 0.05 mm/min. The fracture toughness was obtained by the single-edge notched beam (SENB) method, in which 2 mm  $\times$  4 mm  $\times$  30 mm test pieces were applied with a cross head speed of 0.05 mm/min. The hardness was measured by Vickers indentation with a load of 200 N. The physical and mechanical property measurements were measured 5 times to calculate an average value and standard deviation.

## 3 Results and discussion

#### 3.1 Phases and morphology

XRD patterns of  $CM_2A_8$  and  $C_2M_2A_{14}$  bricks and ceramics are shown in Fig. 2. As shown in Fig. 2(a), the main phase of  $CM_2A_8$  brick is  $CM_2A_8$ , with trace

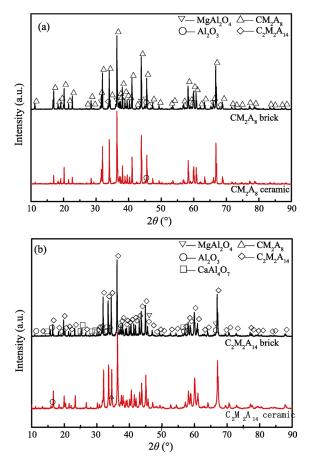



Fig. 2 XRD patterns of  $CM_2A_8$  and  $C_2M_2A_{14}$  bricks and ceramics: (a)  $CM_2A_8$  brick and ceramic, (b)  $C_2M_2A_{14}$  brick and ceramic.

www.springer.com/journal/40145

detectable  $C_2M_2A_{14}$ ,  $Al_2O_3$ , and  $MgAl_2O_4$ . After the hot-press sintering, the main phase of  $CM_2A_8$  ceramic is still  $CM_2A_8$ . Those traces  $C_2M_2A_{14}$  and  $MgAl_2O_4$ disappear, whereas with only  $Al_2O_3$  is remained. However, the peak intensity of  $Al_2O_3$  decreases. As shown in Fig. 2(b), the main phase of  $C_2M_2A_{14}$  brick is  $C_2M_2A_{14}$ , a small amount of  $CM_2A_8$ ,  $Al_2O_3$ ,  $MgAl_2O_4$ , and  $CaAl_4O_7$  exist in  $C_2M_2A_{14}$  brick. After the hotpress sintering, the main phase of  $C_2M_2A_{14}$  ceramic has not changed, and the characteristic peaks of  $CaAl_4O_7$  and  $MgAl_2O_4$  can no longer be observed. Meanwhile the characteristic peaks of  $CM_2A_8$  and  $Al_2O_3$  can still be observed, but the intensity is reduced.

Rietveld refinement using the XRD data by TOPAS 5.0 software allows to carefully determine the content of each phase. Figure 3 shows an example of Rieveld refined pattern of  $CM_2A_8$  ceramic where well-fitting between the computed pattern (red cross) and the experimental pattern (black line) could be achieved; the blue line is the difference between the experimental data and computed data. The weighted residual factor ( $R_{wp}$ , %) and sigma value (S) for  $CM_2A_8$  ceramic were 14.33% and 1.87, respectively. For all the Rietveld refinements in this work, the two important refinement parameters of the TOPAS 5.0 program, weighted residual factor ( $R_{wp}$ , %) and sigma value (S), were in the range of 8.35%–14.96% and 1.22–1.92, respectively, indicating reliable Rietveld refinements.

The quantitative analysis results of  $CM_2A_8$  and  $C_2M_2A_{14}$  bricks and ceramics by the Rietveld refinement method are shown in Table 1. After the hot-press sintering, the contents of impurities decrease and the purity of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics is improved.

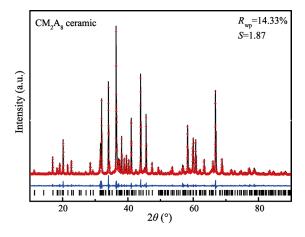



Fig. 3 Rietveld refinement of  $CM_2A_8$  ceramic. The red cross: computed pattern; black line: experimental data.

Table 1Quantitative analysis results of CM2A8 andC2M2A14 bricks and ceramics(Unit: wt%)

| 2 2 14                                                |                   |              |                                  | (         | ,           |
|-------------------------------------------------------|-------------------|--------------|----------------------------------|-----------|-------------|
| Phase                                                 | $C_2M_2Al_{14}\\$ | $CM_2A_8 \\$ | CaAl <sub>4</sub> O <sub>7</sub> | $Al_2O_3$ | $MgAl_2O_4$ |
| CM <sub>2</sub> A <sub>8</sub> brick                  | 1.5               | 94.2         | —                                | 2.6       | 1.7         |
| CM <sub>2</sub> A <sub>8</sub> ceramic                | —                 | 98.1         | —                                | 1.9       | —           |
| $C_2M_2A_{14}$ brick                                  | 94.3              | 1.2          | 1.1                              | 2.3       | 1.1         |
| C <sub>2</sub> M <sub>2</sub> A <sub>14</sub> ceramic | 97.5              | 0.9          |                                  | 1.6       | —           |

The purity of  $CM_2A_8$  ceramic reaches 98.1 wt%, and the only 1.9 wt% of  $Al_2O_3$  is found. The purity of  $C_2M_2A_{14}$  ceramic is 97.5 wt% with 0.9 wt% of  $CM_2A_8$ and 1.6 wt% of  $Al_2O_3$  as impurities.

SEM images of CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> bricks and ceramics, and TEM images and SAED results of CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramics are shown in Fig. 4. Table 2 lists the EDS results of CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramics. Figures 4(a) and 4(b) exhibit the SEM images of the fracture of CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> bricks, respectively. The granular crystal morphology belongs to  $CM_2A_8$  (Fig. 4(a)) and the thick flake crystals are  $C_2M_2A_{14}$  (Fig. 4(b)). Many pores can be observed among the grains, and the whole microstructure of synthesized  $CM_2A_8$  and  $C_2M_2A_{14}$  bricks is loose. The particle size of crystals in CM2A8 and C2M2A14 bricks is mostly below 10 µm, and large grains and small grains distribute uniformly, gathering together to form the basic microstructure. The SEM images of the fracture of CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramics are shown in Figs. 4(c) and 4(d), respectively. After the hot-press sintering, the whole microstructure of CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramics is very dense and few pores exist. The particle size of crystals in CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramics is about a few dozen microns, and the grains are tightly sintered together. The characteristic morphology of granular crystal for CM<sub>2</sub>A<sub>8</sub> and thick flake crystal for C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> has not been detected in both CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramics. The EDS results (Table 2) of point A in Fig. 4(c) and point B in Fig. 4(d) demonstrate that the atomic ratio of Ca:Mg:Al is about 1:2:16 in CM<sub>2</sub>A<sub>8</sub> ceramic and the atomic ratio of Ca:Mg:Al is about 1:1:14 in C2M2A14 ceramic. The

Table 2 EDS results of the points in Fig. 4

| Atomic percent of chemical elements (at%) |      |      |       |       |
|-------------------------------------------|------|------|-------|-------|
| Point                                     | Ca   | Mg   | Al    | 0     |
| А                                         | 3.05 | 5.44 | 40.61 | 50.90 |
| В                                         | 3.59 | 3.32 | 40.54 | 52.55 |

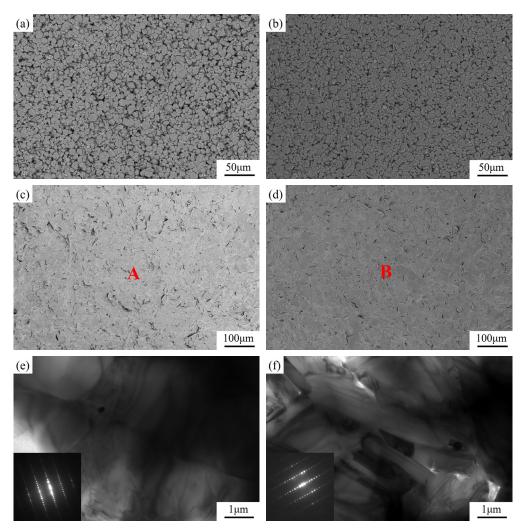



Fig. 4 SEM images of  $CM_2A_8$  and  $C_2M_2A_{14}$  bricks and ceramics, and TEM images and SAED results of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics. (a) SEM image of  $CM_2A_8$  brick; (b) SEM image of  $C_2M_2A_{14}$  brick; (c) SEM image of  $CM_2A_8$  ceramic; (d) SEM image of  $C_2M_2A_{14}$  ceramic; (e) TEM image and SAED result of  $CM_2A_8$  ceramic; (f) TEM image and SAED result of  $C_2M_2A_{14}$  ceramic.

 $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics are further characterized by TEM and SAED, as shown in Figs. 4(e) and 4(f). The dense microstructure can be observed from the TEM image, and the SAED results confirm the component of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics are  $CM_2A_8$  and  $C_2M_2A_{14}$ , respectively, which are consistent with the results of XRD.

### 3.2 Physical properties

Table 3 demonstrates the average apparent porosity, bulk density, and true density of  $CM_2A_8$  and  $C_2M_2A_{14}$  bricks and ceramics. The average apparent porosity, bulk density of  $CM_2A_8$  brick are 36.54% and 2.57 g/cm<sup>3</sup> respectively with standard deviation of 2.51% and 0.24 g/cm<sup>3</sup>, and that of  $C_2M_2A_{14}$  brick are 27.32% and 2.63 g/cm<sup>3</sup> with standard deviation of 3.46% and 0.18 g/cm<sup>3</sup>. After the hot-press sintering, the average

Table 3 Average apparent porosity, bulk density, and true density of  $CM_2A_8$  and  $C_2M_2A_{14}$  bricks and ceramics

|                                                          | Apparent<br>porosity (%) |           | True density<br>(g/cm <sup>3</sup> ) | Theoretical<br>density<br>(g/cm <sup>3</sup> ) | Relative<br>density<br>(%) |
|----------------------------------------------------------|--------------------------|-----------|--------------------------------------|------------------------------------------------|----------------------------|
| CM <sub>2</sub> A <sub>8</sub><br>brick                  | 36.54±2.51               | 2.57±0.24 | _                                    | _                                              | _                          |
| C <sub>2</sub> M <sub>2</sub> A <sub>14</sub><br>brick   | 27.32±3.46               | 2.63±0.18 | _                                    | _                                              | _                          |
| CM <sub>2</sub> A <sub>8</sub><br>ceramic                | 0.18±0.02                | 3.66±0.02 | 3.69±0.01                            | 3.73                                           | 98.12                      |
| C <sub>2</sub> M <sub>2</sub> A <sub>14</sub><br>ceramic | 0.13±0.02                | 3.71±0.01 | 3.74±0.01                            | 3.76                                           | 98.67                      |

apparent porosity  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics is greatly reduced to 0.18% and 0.13% with the same standard deviation of 0.02%; meanwhile the bulk density of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics is increased to 3.66 g/cm<sup>3</sup> with standard deviation of 0.02 g/cm<sup>3</sup> and 3.71 g/cm<sup>3</sup> with standard deviation of 0.01 g/cm<sup>3</sup>, respectively. By using the pyknometer method, the true density of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics is 3.69 g/cm<sup>3</sup> and 3.74 g/cm<sup>3</sup> with the same standard deviation of  $0.01 \text{ g/cm}^3$ . Theoretical density is derived from crystal structure referring to the PDF card database (PDF Card No. 01-086-0383 for CM<sub>2</sub>A<sub>8</sub> and PDF Card No. 01-086-0382 for  $C_2M_2A_{14}$ ) [23,24]. The theoretical density of CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramics is 3.73 g/cm<sup>3</sup> and  $3.76 \text{ g/cm}^3$ , respectively. The ratio of bulk density to theoretical density is defined as the relative density which is used to describe the degree of densification of ceramics. The  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics both achieve higher relative density. The relative density of CM<sub>2</sub>A<sub>8</sub> ceramic is 98.12% and that of C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramic is 98.67%. Combined with the quantitative results of XRD (Table 1), the CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramics have high purity and relative density, so their physical and mechanical properties are close to the theoretical value.

Thermal expansivity (50-1400 °C) and thermal conductivity (at 25 °C and 350 °C) of CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramics are shown in Table 4. The thermal expansivity (50-1400 °C) of CM<sub>2</sub>A<sub>8</sub> ceramic is about  $9.24 \times 10^{-6}$  K<sup>-1</sup> with standard deviation of  $0.11 \times 10^{-6}$  K<sup>-1</sup>, and that of  $C_2M_2A_{14}$  ceramic is  $8.92 \times 10^{-6}$  K<sup>-1</sup> with standard deviation of  $0.14 \times 10^{-6} \text{ K}^{-1}$ , both are close to the thermal expansivity of corundum [34] and calcium hexaluminate [35,36]. The thermal expansivity of C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramic is slightly less than that of CM<sub>2</sub>A<sub>8</sub> ceramic. The thermal conductivity of CM<sub>2</sub>A<sub>8</sub> ceramic is 21.32 W/( $m \cdot K$ ) with standard deviation of 0.21  $W/(m \cdot K)$  at 25 °C and 18.76 W (m \cdot K) with standard deviation of 0.32 W/(m·K) at 350 °C. The thermal conductivity of C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramic is 23.25 W/(m·K) with standard deviation of 0.18 W/( $m \cdot K$ ) at 25 °C and 19.42 W/(m·K) with standard deviation of 0.36 W/  $(m \cdot K)$  at 350 °C. Both at 25 °C and 350 °C, the thermal conductivity of CM<sub>2</sub>A<sub>8</sub> ceramic is slightly lower than

Table 4 Thermal properties of CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramics

|                                                          | Thermal<br>expansivity<br>(10 <sup>-6</sup> K <sup>-1</sup> ,<br>50–1400 °C) | Thermal<br>conductivity<br>(W/(m⋅K),<br>25 ℃) | Thermal<br>conductivity<br>(W/(m⋅K),<br>350 ℃) |
|----------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|
| CM <sub>2</sub> A <sub>8</sub><br>ceramic                | 9.24±0.11                                                                    | 21.32±0.21                                    | 18.76±0.32                                     |
| C <sub>2</sub> M <sub>2</sub> A <sub>14</sub><br>ceramic | 8.92±0.14                                                                    | 23.25±0.18                                    | 19.42±0.36                                     |

that of  $C_2M_2A_{14}$  ceramic. The higher thermal conductivity of  $C_2M_2A_{14}$  ceramic may be due to its higher density and lower apparent porosity relative to  $CM_2A_8$ .

#### 3.3 Mechanical properties

Room-temperature mechanical properties of CM2A8 and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramics are shown in Table 5. The flexural strength of CM<sub>2</sub>A<sub>8</sub> ceramic is 248 MPa with standard deviation of 64 MPa and that of C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramic is 262 MPa with standard deviation of 18 MPa. The CM<sub>2</sub>A<sub>8</sub> and C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramics exhibit similar fracture toughness and Vickers hardness. For CM2A8 ceramic, the fracture toughness is 2.17 MPa $\cdot$ m<sup>1/2</sup> with standard deviation of 0.12 MPa $\cdot$ m<sup>1/2</sup> and the Vickers hardness is 12.26 GPa with standard deviation of 0.52 GPa. For C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramic, the fracture toughness is 2.23 MPa $\cdot$ m<sup>1/2</sup> with standard deviation of 0.13 MPa $\cdot$ m<sup>1/2</sup> and the Vickers hardness is 12.95 GPa with standard deviation of 0.73 GPa. In general, the mechanical performance of C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramic is slightly better than that of CM<sub>2</sub>A<sub>8</sub> ceramic. Higher relative density may be the reason for better mechanical properties of C<sub>2</sub>M<sub>2</sub>A<sub>14</sub> ceramic.

The mechanical properties of other commercial refractory materials are show in Table 6. From Tables 5 and 6, the mechanical properties of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics are similar to that of these commercial refractory materials; especially for the flexural strength, the difference is very small. Due to the good mechanical properties and the function of purifying molten steel,  $CM_2A_8$  and  $C_2M_2A_{14}$  are promising refractory materials

Table 5 Mechanical properties of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics

|                                                          | Flexural strength (MPa) | Fracture toughness<br>(MPa·m <sup>1/2</sup> ) | Vickers hardness<br>(GPa) |
|----------------------------------------------------------|-------------------------|-----------------------------------------------|---------------------------|
| CM <sub>2</sub> A <sub>8</sub><br>ceramic                | 248±64                  | 2.17±0.12                                     | 12.26±0.52                |
| C <sub>2</sub> M <sub>2</sub> A <sub>14</sub><br>ceramic | 262±18                  | 2.23±0.13                                     | 12.95±0.73                |

 Table 6
 Mechanical properties of other commercial refractory materials

|                                              | Flexural strength (MPa) | Fracture toughness $(MPa \cdot m^{1/2})$ | Vickers hardness<br>(GPa) |
|----------------------------------------------|-------------------------|------------------------------------------|---------------------------|
| Al <sub>2</sub> O <sub>3</sub><br>(corundum) | 135–210 [37]            | 3.46–4.21 [37]                           | 15 [38]                   |
| MgAl <sub>2</sub> O <sub>4</sub><br>(spinel) | 241 [39]                | 1.72±0.06 [39]                           | 9.36 [38]                 |
| MgO                                          | 250 [40]                | 2.79 [41]                                | 12.2 [40]                 |

www.springer.com/journal/40145

and expected to be applied in ladle refining lining in steel industry.

## 4 Conclusions

The new ternary  $CM_2A_8$  and  $C_2M_2A_{14}$  pure and dense ceramics in the Al-rich part of CaO–Al<sub>2</sub>O<sub>3</sub>–MgO system were first prepared by hot-press sintering. Their physical and mechanical properties were investigated. After the hot-press sintering, the purity of obtained  $CM_2A_8$  ceramic reaches 98.1 wt%, and that of  $C_2M_2A_{14}$ ceramic is 97.5 wt%. The microstructure of  $CM_2A_8$ and  $C_2M_2A_{14}$  ceramics are very dense and few pores exist. The grains of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics which exhibit a particle size of about a few dozen microns are tightly sintered together. The characteristic morphology of granular crystal for  $CM_2A_8$  and thick flake crystal for  $C_2M_2A_{14}$  ceramics.

Their physical properties were measured. The average apparent porosity of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramics is 0.18% and 0.13%, and their average bulk density is 3.66 g/cm<sup>3</sup> and 3.71 g/cm<sup>3</sup>, respectively. The relative density of  $CM_2A_8$  ceramic is 98.12% and that of  $C_2M_2A_{14}$  ceramic is 98.67%. The thermal expansivity (50–1400 °C) of  $CM_2A_8$  ceramic is  $9.24 \times 10^{-6} \text{ K}^{-1}$ , and that of  $C_2M_2A_{14}$  ceramic is  $8.92 \times 10^{-6} \text{ K}^{-1}$ . The thermal conductivity of  $CM_2A_8$  and  $C_2M_2A_{14}$  ceramic is 21.32 W/(m·K) and 23.25 W/(m·K) at 25 °C and 18.76 W/(m·K) and 19.42 W/(m·K) as temperature rises to 350 °C, respectively.

For the mechanical properties, the flexural strength of  $CM_2A_8$  ceramic is 248 MPa and that of  $C_2M_2A_{14}$  ceramic is 262 MPa. For  $CM_2A_8$  ceramic, the fracture toughness is 2.17 MPa·m<sup>1/2</sup> and the Vickers hardness is 12.26 GPa. For  $C_2M_2A_{14}$  ceramic, the fracture toughness is 2.23 MPa·m<sup>1/2</sup> and the Vickers hardness is 12.95 GPa.

#### Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51572019) and the National Science Fund for Excellent Young Scholars of China (No. 51522402).

## References

[1] Chen J, Chen H, Mi W, et al. Substitution of Ba for Ca in

the structure of  $CaAl_{12}O_{19}$ . J Am Ceram Soc 2017, 100: 413–418.

- [2] Chen J, Chen H, Yan M, et al. Formation mechanism of calcium hexaluminate. Int J Miner Metall Mater 2016, 23: 1225–1230.
- [3] Iglesia PGDL, García-Moreno O, Torrecillas R, et al. Influence of different parameters on calcium hexaluminate reaction sintering by spark plasma. *Ceram Int* 2012, 38: 5325–5332.
- [4] Yi S, Huang Z, Huang J, et al. Novel calcium hexaluminate/spinel-alumina composites with graded microstructures and mechanical properties. Sci Rep 2014, 4: 4333.
- [5] Utsunomiya A, Tanaka K, Morikawa H, et al. Structure refinement of CaO·6Al<sub>2</sub>O<sub>3</sub>. J Solid State Chem 1988, 75: 197–200.
- [6] Park J-G, Cormack AN. Potential models for multicomponent oxides: Hexa-aluminates. *Philos Mag B* 1996, 73: 21–31.
- [7] Domínguez C, Chevalier J, Torrecillas R, et al. Thermomechanical properties and fracture mechanisms of calcium hexaluminate. J Eur Ceram Soc 2001, 21: 907–917.
- [8] Lister DH, Glasser FP. Phase relations in the system CaO–Al<sub>2</sub>O<sub>3</sub>–iron oxide. *Brit Ceram Soc Trans* 1967, 66: 293–305.
- [9] Tak JB, Young DJ. Sulphur corrosion of calcium aluminate-bonded castables. Am Ceram Soc Bull 1982, 61: 725.
- [10] Domínguez C, Chevalier J, Torrecillas R, et al. Microstructure development in calcium hexaluminate. J Eur Ceram Soc 2001, 21: 381–387.
- [11] Lee WE, Vieira W, Zhang S, et al. Castable refractory concretes. Int Mater Rev 2001, 46: 145–167.
- [12] Fuhrer M, Hey A, Lee WE. Microstructural evolution in self-forming spinel/calcium aluminate-bonded castable refractories. *J Eur Ceram Soc* 1998, **18**: 813–820.
- [13] Chan C-F, Ko Y-C. Effect of CaO content on the hot strength of alumina-spinel castables in the temperature range of 1000° to 1500 °C. J Am Ceram Soc 1998, 81: 2957–2960.
- [14] Tulliani JM, Pagès G, Fantozzi G, et al. Dilatometry as a tool to study a new synthesis for calcium hexaluminate. J Therm Anal Calorim 2003, 72: 1135–1140.
- [15] Ganesh I, Bhattacharjee S, Saha BP, *et al.* An efficient MgAl<sub>2</sub>O<sub>4</sub> spinel additive for improved slag erosion and penetration resistance of high-Al<sub>2</sub>O<sub>3</sub> and MgO–C refractories. *Ceram Int* 2002, 28: 245–253.
- [16] Baudín C, Martínez R, Pena P. High-temperature mechanical behavior of stoichiometric magnesium spinel. J Am Ceram Soc 1995, 78: 1857–1862.
- [17] Braulio MAL, Rigaud M, Buhr A, et al. Spinel-containing alumina-based refractory castables. Ceram Int 2011, 37: 1705–1724.
- [18] Ko Y-C. Influence of the characteristics of spinels on the slag resistance of Al<sub>2</sub>O<sub>3</sub>–MgO and Al<sub>2</sub>O<sub>3</sub>–spinel castables.

J Am Ceram Soc 2000, 83: 2333–2335.

- [19] Sarpoolaky H, Ahari KG, Lee WE. Influence of *in situ* phase formation on microstructural evolution and properties of castable refractories. *Ceram Int* 2002, **28**: 487–493.
- [20] Sako EY, Braulio MAL, Brant PO, *et al.* The impact of pre-formed and *in situ* spinel formation on the physical properties of cement-bonded high alumina refractory castables. *Ceram Int* 2010, **36**: 2079–2085.
- [21] Ko Y-C. Role of spinel composition in the slag resistance of Al<sub>2</sub>O<sub>3</sub>-spinel and Al<sub>2</sub>O<sub>3</sub>-MgO castables. *Ceram Int* 2002, 28: 805-810.
- [22] Aza AHD, Pena P, Rodriguez MA. New spinel-containing refractory cements. J Eur Ceram Soc 2003, 23: 737–744.
- [23] Göbbels M, Woermann E, Jung J. The Al-rich part of the system CaO–Al<sub>2</sub>O<sub>3</sub>–MgO: Part I. Phase relationships. J Solid State Chem 1995, **120**: 358–363.
- [24] Iyi N, Göbbels M, Matsui Y. The Al-rich part of the system CaO–Al<sub>2</sub>O<sub>3</sub>–MgO: Part II. Structure refinement of two new magnetoplumbite-related phases. *J Solid State Chem* 1995, 120: 364–371.
- [25] Aza AHD, Pena P, Aza SD. Ternary system Al<sub>2</sub>O<sub>3</sub>--MgO-CaO: I, primary phase field of crystallization of spinel in the subsystem MgAl<sub>2</sub>O<sub>4</sub>--CaAl<sub>4</sub>O<sub>7</sub>--CaO-MgO. J Am Ceram Soc 1999, 82: 2193-2203.
- [26] Aza AHD, Iglesias JE, Pena P, et al. Ternary system Al<sub>2</sub>O<sub>3</sub>-MgO-CaO: Part II, phase relationships in the subsystem Al<sub>2</sub>O<sub>3</sub>-MgAl<sub>2</sub>O<sub>4</sub>-CaAl<sub>4</sub>O<sub>7</sub>. J Am Ceram Soc 2000, 83: 919-927.
- [27] Chen J, Chen H, Mi W, et al. Synthesis of CaO·2MgO·8Al<sub>2</sub>O<sub>3</sub> (CM<sub>2</sub>A<sub>8</sub>) and its slag resistance mechanism. J Eur Ceram Soc 2017, **37**: 1799–1804.
- [28] Mukhopadhyay S, Poddar PKD. Effect of preformed and *in situ* spinels on microstructure and properties of a low cement refractory castable. *Ceram Int* 2004, **30**: 369–380.
- [29] Santos WND. Effect of moisture and porosity on the thermal properties of a conventional refractory concrete. J Eur Ceram Soc 2003, 23: 745–755.
- [30] Fahrenholtz WG, Hilmas GE, Talmy IG, et al. Refractory diborides of zirconium and hafnium. J Am Ceram Soc 2007,

**90**: 1347–1364.

- [31] Koksal F, Gencel O, Brostow W, et al. Effect of high temperature on mechanical and physical properties of lightweight cement based refractory including expanded vermiculite. *Mater Res Innov* 2012, 16: 7–13.
- [32] Sako EY, Braulio MAL, Zinngrebe E, *et al.* In-depth microstructural evolution analyses of cement-bonded spinel refractory castables: Novel insights regarding spinel and CA<sub>6</sub> formation. *J Am Ceram Soc* 2012, **95**: 1732–1740.
- [33] Sarpoolaky H, Zhang S, Lee WE. Corrosion of high alumina and near stoichiometric spinels in iron-containing silicate slags. *J Eur Ceram Soc* 2003, 23: 293–300.
- [34] Austin JB. The thermal expansion of some refractory oxides. *J Am Ceram Soc* 1931, **14**: 795–810.
- [35] Brooksbank D. Thermal expansion of calcium aluminate inclusions and relation to tessellated stresses. *J Iron Steel Inst* 1970, **208**: 495–499.
- [36] Criado E, Aza SD. Calcium hexaluminate as refractory material. In Proceedings of the Unified International Technical Conference on Refractories, 1991.
- [37] Zhang QC. Fracture toughness and thermal shock behavior of high alumina ceramics. *J Chin Ceram Soc China* 1980, 8: 223–231.
- [38] Zhang SY. Sintering of magnesium aluminate. M.S. Thesis. Xi'an University of Architecture and Technology, 2004.
- [39] Yu HX. Infrared Optical Material. Beijing, China: National Defend Industry Press, 2007.
- [40] Xiao HN, Gao PZ. High Performance Ceramic and Application. Beijing, China: Chemical Industry Press, 2006.
- [41] Chen Y, Cao LY. *Mechanical Engineering Materials*. Shenyang, China: Northeastern University Press, 2008.

**Open Access** The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/ 4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.