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Abstract: Hollow silica–alumina composite spheres were prepared by a polystyrene (PS) template method 
using various amounts of PS suspension. Homogeneous hollow spheres prepared using 40 g were found to 
be with a diameter of about 300 nm in scanning electron microscopy, and transmission electron 
microscopy demonstrated their hollow sphere morphology. From the nitrogen adsorption isotherm results, 
the homogeneous hollow spheres prepared using 40 g of the PS suspension were found to be an ordered 
pore structure. The activities of the hollow spheres prepared using various amounts of the PS suspension 
for hydrolytic dehydrogenation of ammonia borane were compared. The results showed that 10, 7, and 6 
mL of hydrogen were evolved from the aqueous ammonia borane solution in about 40 min in the presence 
of the hollow spheres prepared using 40, 80, and 120 g of PS suspension, respectively. The homogeneous 
hollow spheres with an ordered pore structure showed the highest activity among all the hollow spheres. 
The amount of acid sites and the coordination number of aluminum active species were characterized using 
neutralization titration and solid-state 27Al magic angle spinning nuclear magnetic resonance spectroscopy. 
The homogeneous hollow spheres with an ordered pore structure had high amount of acid sites and 
4-coordinated aluminum species. The relative proportion of 4-coordinated aluminum species was related to 
the dispersion of aluminum species. These results indicate that the homogeneous hollow spheres with an 
ordered pore structure showed the high activity because of high amount of acid sites induced by the 
highly dispersed aluminum species.  
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1  Introduction 

Hydrogen has been considered for use as a clean energy 
carrier [1,2]. The search for effective and safe hydrogen 
storage materials is one of the most difficult challenges 
for the development of a hydrogen society in the future 

[3–5]. Boron–nitrogen containing compounds are 
expected to find applications in hydrogen storage 
materials because of their high hydrogen density [6,7]. 
In particular, ammonia borane (NH3BH3) has attracted a 
great deal of attention due to its high hydrogen content 
(19.6 wt%), low molecular weight (30.9 g/mol), and 
high stability [8–12]. Additionally, NH3BH3 releases 
hydrogen via a hydrolysis reaction in the presence of 
suitable acids and catalysts at room temperature (Eq. (1)) 
[13–27]: 

 
*Corresponding author. 
E-mail: umegaki.tetsuo@nihon-u.ac.jp 



J Adv Ceram 2017, 6(4): 368–375  

www.springer.com/journal/40145 

369

NH3BH3 + 2H2O → NH4
+ + BO2

 + 3H2     (1) 
It has been reported that solid acids such as H-type 
zeolites (H-BEA and H-MOR) show high activity for 
the hydrolytic dehydrogenation of NH3BH3 [13]. We 
have reported that hollow silica–alumina composite 
spheres show higher activity compared with fine 
particles [14]. 

Hollow spheres have intrinsic features such as easily 
controllable structure, high specific surface area, low 
density, and high adsorption capacity. Hollow spheres 
have been applied in many applications such        
as catalysis, energy storage, biosensors, and 
environmental remediation [28–32]. We have expected 
that the hollow spheres reveal the relationship between 
the catalytic activity and geometrical structure because 
their geometrical structure can be controlled such as 
shell thickness, particle size, and the size of pores in the 
shell. Hollow spheres have been prepared using many 
templates such as silica particles, carbon particles, 
bacteria, and polymer particles [3337]. In particular, 
polystyrene (PS) particles have attracted a great deal of 
attention as templates because they are easily removed 
using either heat treatment or solvent dissolution, and 
they produce well-defined and monodispersed hollow 
spheres [38,39].  

In a previous study, the Brønsted acid sites of 
silica–alumina composites were found to promote the 
hydrolysis reaction of NH3BH3. The Brønsted acid sites 
of silica–alumina composites derive from the 
substitution of silicon for aluminum in silica network 
[40,41]. We believe that the dispersion of aluminum 
species plays an important role in their activity for the 
hydrolytic dehydrogenation of NH3BH3. In this study, 
we investigate the influence of the morphology of the 
hollow spheres on the dispersion of the aluminum 
species, and their activity for the hydrolytic 
dehydrogenation of NH3BH3. 

2  Experiments 

2. 1  Preparation of the hollow spheres  

Hollow silica–alumina composite spheres were 
prepared using the PS template method, as shown in Fig. 
1. The monodisperse PS particles were prepared by 
emulsifier-free emulsion polymerization as follows: 54 
mL of styrene (Kanto Chem. Co., > 99.0%), 9.00 g of 
poly(vinyl pyrrolidone) K30 (Fluka, MW ≈ 40000), 
1.56 g of cationic initiator 2,2’-azodiisobutyramidine 

dihydrochloride (Kanto Chem. Co., > 95.0%), and 600 
mL of ion-exchanged water were added to a 1000 mL 
three-neck flask equipped with a mechanical stirrer, a 
thermometer with a temperature controller, a nitrogen 
(N2) inlet, and a Graham condenser, and the flask was 
placed in an oil bath. The reaction solution was 
deoxygenated by bubbling nitrogen gas through the 
solution at room temperature for 1 h. The solution was 
stirred at 343 K for 24 h at a rate of 250 rpm. The 
obtained PS suspension was centrifuged at 6000 rpm for 
5 min and washed three times with ethanol (Kanto 
Chem. Co., > 99.5%), and the content of the PS 
suspension could be tailored through the addition of 
ethanol. The hollow silica–alumina composite spheres 
were prepared using a sol–gel method as follows: 
0.0228 g of aluminum isopropoxide (Kanto Chem. Co., 
> 99.0%), 27 mL of ion exchanged water, 0.4650 g of 
L(+)-arginine (Wako Pure Chemical, >98.0%), 160 mL 
of ethanol, and 0.6204 mL of tetraethoxysilane (TEOS, 
Kanto Chem. Co., > 99.9%) were added to 40–120 g of 
the PS suspension. The sol–gel reaction was carried out 
at 323 K for 17 h, and the as-prepared composites were 
obtained. After drying in a desiccator overnight, the 
hollow spheres were obtained by calcination in air by 
raising the temperature to 873 K at a rate of 0.5 K/min, 
followed by cool down immediately after the 
designated temperature was reached. 

2. 2  Characterization 

The morphology of the hollow silica–alumina 
composite spheres was observed using a scanning 
electron microscope (SEM, Hitachi S-4500) operating 
at an acceleration voltage of 15 kV and a transmission 
electron microscope (TEM, JEOL JEM-2000EX) 
operating at an acceleration voltage of 200 kV. The 
specific surface area and porosity of the hollow spheres 
were measured by N2 sorption at 77 K (BELSORP-max, 
microtracBEL). The adsorption isotherm and pore size 
distribution of the hollow spheres were calculated 
using Barrett–Joyner–Halenda (BJH) and Saito–Foley 

: Polystyrene particles
: Aluminum isoporopoxide and tetraethoxysilane
: Silica-alumina primary particles

Sol-gel reaction Calcination

Fig. 1  Schematic illustration of the formation process of 
the hollow silica–alumina composite spheres.  
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(SF) methods. The BJH method calculated the pore 
size distribution to be in the range of 2–50 nm based 
on the Kelvin equation, while the SF method 
calculated the pore size distribution to be in the range 
of 0.4–2.0 nm based on the Horvath–Kawazoe method 
[42,43]. The solid-state 27Al magic angle spinning 
nuclear magnetic resonance (MAS NMR, JEOL 
ECA-800) spectra were recorded using an 18.8 tesla 
NMR spectrometer. The relaxation delay time was 2 s, 
and the hollow spheres were spun at 20 kHz using a 
3.2 mm ZrO2 rotor. The chemical shift was referenced 
to 1.0 M aqueous aluminum chloride (Wako Pure 
Chemical, > 98.0%) solution. The amount of acid sites 
for the hollow spheres was measured by neutralization 
titration with n-butyl amine (Kanto Chem. Co.). The 
hollow spheres (0.2 g) were dispersed in 20 mL of 
ethanol under sonication. The suspension was titrated 
with 0.1 M n-butylamine using methyl red (Kanto 
Chem. Co.) as an indicator. The amount of acid sites of 
the hollow spheres was calculated as follows: the 
amount of 0.1 M n-butylamine was divided by the 
amount of hollow spheres. 

2. 3  Activity for the hydrolytic dehydrogenation of 
NH3BH3 

The hollow spheres (0.4 g) were placed in a two-necked 
round-bottomed flask in air at room temperature; one 
neck was connected to a gas burette, and the other was 
connected to an addition funnel. The reaction was 
started by stirring the mixture of the hollow spheres, 
and aqueous NH3BH3 (Aldrich, 90%) solution 
(0.14 wt%, 3.5 mL) was added from the addition funnel. 
The evolution of gas was monitored using the gas 
burette, as shown in Fig. 2. 

3  Results and discussion 

The morphology of the hollow spheres was observed 
using SEM and TEM measurements. Figure 3 shows 
SEM and TEM images of the composites prepared 
using various amounts of PS suspension. All the 
spherical particles were observed to be a diameter of 
about 300 nm in the SEM images, and the inset TEM 
image demonstrates their hollow morphology (Fig. 
3(a)). When 40 g of PS suspension, homogeneous 
hollow spheres were obtained. In contrast, some of the 
hollow spheres prepared using 80 and 120 g of PS 
suspension were collapsed, as shown in Figs. 3(b) and 

3(c). The hollow spheres were prepared using a PS 
template method as described previous study 
[39,44–46]. In this method, silica–alumina composite 
primary particles were prepared using a sol–gel 
method, and the primary particles were deposited on 
the surface of PS template particles to form composite 
shells [44,47–49]. The result suggests that the primary 
particles determine the pore size and pore size 
distribution in the shells of the hollow spheres, as 
shown in Fig. 1. 

The porosity of the hollow spheres prepared using 
various amounts of the PS suspension were determined 
using N2 sorption. Figure 4 shows the N2 
adsorption–desorption isotherms of the hollow spheres 
prepared using various amounts of the PS suspension. 
All the hollow spheres showed hysteresis loops in the 
relative pressure range of 0.5–1.0. The isotherms of all 

Additional funnel

Gas burette

Two-necked round-
bottom flask

Magnetic stirrer

Stir bar

Fig. 2  Schematic illustration of the hydrolytic 
dehydrogenation of NH3BH3. 

(a)

250 nm

250 nm

250 nm

(b)

(c)

200 nm

Fig. 3  SEM and TEM images of the silica–alumina 
composites prepared using (a) 40, (b) 80, and (c) 120 g of 
the PS suspension.  
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the hollow spheres were classified as being type IV 
isotherms according to the IUPAC classification 
system for physisorption isotherms, suggesting that the 
hollow spheres had mesoporous shell. Many different 
shapes of hysteresis loops have been reported, and the 
type of hysteresis loop observed is closely related to 
the particular features of the pore structure and the 
underlying adsorption mechanism [50,51]. The hollow 
spheres prepared using 40 g of PS suspension 
demonstrated a type H1 loop, which is associated with 
an ordered pore structure. On the other hand, the 
hollow spheres prepared using 80 and 120 g of PS 
suspension exhibited type H2 loops, which are 
associated with a disordered pore structure. The pore 
size distribution was calculated by using the adsorption 
branch data of the isotherm. Figure 5 shows the pore 
size distribution calculated using the BJH method for 
the hollow spheres prepared using various amounts of 
the PS suspension. The pore size distributions of the 
hollow spheres prepared using 40, 80, and 120 g of PS 

suspension were centered at around 4.2, 7.1, and 
13.8 nm, respectively. Based on this result, the pore 
size of the hollow spheres increased with increasing 
amounts of the PS suspension. This was attributed to 
an increase in the interparticle distance between the 
primary particles in the shell of the hollow spheres 
with increasing the amounts of the PS suspension. 
Figure 6 shows the pore size distribution calculated 
using the SF method for the hollow spheres prepared 
using various amounts of the PS suspension. Based on 
this method, the pore size distributions of all the 
hollow spheres were centered at 0.43 nm. The result 
indicated that the primary particles probably showed 
similar pore size distributions. 

Activities of the hollow spheres prepared using 
various amounts of the PS suspension for the 
hydrolytic dehydrogenation of NH3BH3 were 
compared. Figure 7 shows the time course of hydrogen 
evolution in the presence of the hollow spheres 

Fig. 5  Pore size distribution of the hollow 
silica–alumina composite spheres prepared using (a) 
40, (b) 80, and (c) 120 g of the PS suspension, 
calculated using the BJH method.  

  
Fig. 6  Pore size distribution of the hollow silica–alumina 
composite spheres prepared using (a) 40, (b) 80, and (c) 
120 g of the PS suspension, calculated using the SF 
method. 

Fig. 7  H2/NH3BH3 molar ratios of hydrogen generated 
from an aqueous NH3BH3 solution (0.14 wt%, 3.5 mL) in 
the presence of the hollow silicaalumina composite 
spheres prepared using (a) 40, (b) 80, and (c) 120 g of the 
PS suspension. 

Fig. 4  N2 sorption isotherms of the hollow 
silica–alumina composite spheres prepared using (a) 
40, (b) 80, and (c) 120 g of the PS suspension. 
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prepared using various amounts of the PS suspension. 
As shown, the hydrogen evolution of 10, 7, and 6 mL 
was completed in 45, 45, and 40 min in the presence of 
the hollow spheres prepared using 40, 80, and 120 g of 
the PS suspension, respectively. The molar ratios of 
the hydrolytically evolved hydrogen to the initial 
NH3BH3 in the presence of the hollow spheres 
prepared using 40, 80, and 120 g of the PS suspension 
were 2.6, 1.8, and 1.6, respectively. As the theoretical 
H2/NH3BH3 molar ratio was 3.0, the reaction is almost 
completed in the presence of the homogeneous hollow 
spheres prepared using 40 g of the PS suspension. 
Hollow silica–zirconia composite spheres [17], hollow 
silica–alumina composite spheres prepared using 
aluminum-sec-butoxide [18], and H-BEA zeolites [13] 
were evaluated for the hydrolytic dehydrogenation of 
NH3BH3 as previously reported. The volumes of 
hydrogen evolved per gram of the hollow spheres were 
measured for the homogenous hollow spheres prepared 
using 40 g of the PS suspension, the hollow 
silicazirconia composite spheres, the hollow 
silica–alumina composite spheres prepared using 
aluminum-sec-butoxide, and the H-BEA zeolites, and 
the evolved hydrogen volumes were found to be 6.5, 
2.7, 3.8, and 4.7 mL/g, respectively. Thus, the 
homogenous hollow spheres prepared using 40 g of the 
PS suspension showed high activity when compared 
with previously reported solid acids. The recyclability 
of the homogenous hollow spheres prepared using 40 g 
of the PS suspension in the activity for the hydrolytic 
dehydrogenation of NH3BH3 was tested. The recycled 
hollow spheres almost demonstrated no activity. A 
possible cause for this deactivation might be the 
adsorption of ammonium ions on the acid sites of the 
hollow spheres during the hydrolytic dehydrogenation 
of NH3BH3. Additionally, the rate of hydrogen 
evolution was calculated using the hydrogen evolution 
data from the start of the reaction until 50% of the final 
hydrogen volume had been evolved. The rates of 
hydrogen evolution of the hollow spheres prepared 
using 40, 80, and 120 g of the PS suspension were 0.9, 
1.0, and 1.0 mL/min, respectively. Thus, the rate of 
hydrogen evolution was very similar for all the hollow 
spheres. This result is in agreement with the pore size 
distribution calculated using the SF method, as shown 
in Fig. 6. 

The coordination numbers of the hollow spheres 
prepared using various amount of PS suspension were 
measured using solid-state 27Al MAS NMR, as shown 
in Fig. 8. Three peaks were observed at around 62, 35, 

and 5 ppm in the spectra of all the hollow spheres, 
corresponding to 4-, 5-, and 6-coordinated aluminum 
species, respectively [52,53]. The 4-coordinated 
aluminum species were assigned to aluminum species 
in the silica matrix, while the 5- and 6-coordinated 
aluminum species were assigned to aluminum species 
outside the silica matrix [54,55]. It has been reported 
that 4-coordinated aluminum species were ascribed to 
Brønsted acid sites, while 5- and 6-coordinated 
aluminum species were ascribed to Lewis acid sites 
[52,55]. The ratios of the peak area of the 
4-coordinated aluminum species to the sum of the peak 
areas of the 4-, 5-, and 6-coordinated aluminum 
species (I4/Iall) in the spectra of the hollow spheres 
prepared using 40, 80, and 120 g of the PS suspension 
were found to be 0.32, 0.26, and 0.24, respectively. 
The I4/Iall ratio of the homogeneous hollow spheres 
prepared using 40 g of the PS suspension was the 
highest among all the hollow spheres. It has been 
reported that 4-coordinated aluminum species are 
related to the dispersion of aluminum species [53]. 
These results indicated that the homogeneous hollow 
spheres prepared using 40 g of the PS suspension 
exhibited high dispersion of the aluminum species in 
the silica matrix. 

The amounts of acid sites of the hollow spheres 
prepared using various amounts of the PS suspension 
were measured by neutralization titration with n-butyl 
amine using methyl red as an indicator. The amounts 
of acid sites of the hollow spheres prepared using 40, 
80, and 120 g of PS suspension were found to be 1.50, 
1.18, and 0.91 mmol/g, respectively. The amount of 
acid sites of the homogeneous hollow spheres prepared 
using 40 g of the PS suspension was the highest among 
all the hollow spheres. This result was attributed to the 

200 150 100 50 0 -50 -100 -150 -200

(a)

(b)

(c)

δ (ppm) 

Fig. 8  Solid-state 27Al MAS NMR spectra of the hollow 
silica–alumina composite spheres prepared using (a) 40, (b) 
80, and (c) 120 g of the PS suspension.  
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amount of acid sites decreasing as the amount of 
collapsed hollow spheres increased, due to aggregation 
between some of the collapsed hollow spheres during 
the calcination process. 

Table 1 shows the physicochemical properties of the 
hollow spheres prepared using various amounts of the 
PS suspension. The specific surface area of the hollow 
spheres increased as the amount of the PS suspension 
used was increased. The surface concentrations of acid 
sites in the hollow spheres prepared using 40, 80, and 
120 g of the PS suspension were found to be 3.2, 2.1, 
and 1.6 μmol/m2, respectively. This result suggested 
that the aluminum species of the homogeneous hollow 
spheres prepared using 40 g of PS suspension were 
highly dispersed in the silica matrix. This result 
refracted the dispersion of aluminum species, as shown 
in Fig. 8. The morphology of the hollow spheres 
played an important role in the dispersion of the 
aluminum species. The results indicated that the 
homogeneous hollow spheres had large amount of acid 
sites because of the highly dispersed aluminum 
species. 

4  Conclusions 

In this study, we investigated the influence of the 
morphology of hollow silica–alumina composite 
spheres on their activity for the hydrolytic 
dehydrogenation of NH3BH3. The morphology of the 
hollow spheres was influenced by the amount of the PS 
suspension used in their preparation. Homogeneous 
hollow spheres were obtained when 40 g of the PS 
suspension was used to prepare the hollow spheres, as 
shown in their SEM images. The amount of collapsed 
hollow spheres increased as the amount of the PS 
suspension used increased. From the N2 adsorption 
isotherms, the hollow spheres prepared using 40 g of 
the PS suspension were found to be an ordered pore 
structure, while hollow spheres with a disordered pore 
structure were obtained when 80 and 120 g of the PS 
suspension were used. The activities of the hollow 

spheres prepared using various amounts of PS 
suspension for the hydrolytic dehydrogenation of 
NH3BH3 were compared. The homogeneous hollow 
spheres prepared using 40 g of PS suspension 
demonstrated the highest activity among all the hollow 
spheres. The solid-state 27Al MAS NMR spectra 
indicated that hydrogen evolution volume increased as 
the ratio of 4-coordinated aluminum species increased. 
The 4-coordinated aluminum species were related to 
dispersion of aluminum species. The amount of 
hydrogen evolution increased as the amount of acid 
sites increased from the neutralization titration 
measurement. These results indicated that the 
homogeneous hollow spheres with ordered pore 
structure showed high activity because of the high 
amount of acid sites induced by the highly dispersed 
aluminum species. 
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