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Abstract: An effective interionic potential calculation with long range Coulomb, charge transfer 
interaction, covalency effect, short range overlap repulsion extended, van der Waals interaction, and 
zero point energy effect is implemented to investigate the pressure dependent structural phase 
transition (ZnS-type (B3) to NaCl-type (B1) structure), and mechanical, elastic, and thermodynamic 
properties of silicon carbide (SiC). Both charge transfer interaction and covalency effect are important 
in revealing the pressure induced structural stability, Cauchy discrepancy, anisotropy factor, melting 
temperature, shear modulus, Young’s modulus, and Grüneisen parameter. We also present the results 
for the temperature dependent behaviors of normalized volume, hardness, heat capacity, and thermal 
expansion coefficient. SiC is mechanically stiffened and thermally softened as inferred from pressure 
(temperature) dependent elastic constant’s behavior. The Pugh’s ratio T H/B G  , the Poisson’s ratio 
, and the Cauchy’s pressure C12–C44 for SiC ceramic confirm its brittle nature.   
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1    Introduction 

The IV–IV silicon carbide (SiC) possesses tetrahedral 
C and Si atoms with strong bonds in the lattice. The 
wide variety of its polytypes possesses unique 
structural and optical properties [1,2]. SiC usually 
referred as carborundum material is important due to 
its wide energy band gap, low dielectric constant, low 
thermal expansion, and excellent and superior 
properties of strength, thermal conductivity, hardness, 

melting point, elastic modulus, thermal shock 
resistance, and chemical inertness. 

Previous high pressure experimental [3,4] and 
theoretical [5–15] research of SiC infers cubic (3C), 
hexagonal (6H), and rhombohedral (15R) structures. 
Energy-dispersive X-ray diffraction with a diamond 
anvil cell shows a structural transition from zinc 
blende (ZB, B3) to rock salt (RS, B1) at 100 GPa with 
a volume collapse of about 20.3% [3]. Transition is 
reversible and zinc blende phase is recovered below 35 
GPa upon decompression. Furthermore, 6H polytype 
SiC is found to be stable up to about 90.0 GPa. Shock 
compression experiment on 6H SiC shows a first-order 
phase transition into a six-fold coordinated rock salt 
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structure at about 105±4 GPa with a volume reduction 
of 15%±3% [4].  

Structural and thermal stability as well as high 
pressure behavior of 3C SiC has been described by ab 
initio [5–12] and molecular dynamics simulations 
[1316]. The ab initio density functional calculation 
with the local density approximation (LDA) retraces 
the transition from zinc blende to rock salt at around 
60 GPa [4–7]. Following the Perdew–Wang 
generalized gradient approximation (GGA) for the 
exchange correlation potential and the 
Troullier–Martins pseudopotentials, the transition 
pressure of about 63 GPa is predicted [810]. Using 
the Troullier–Martins pseudopotentials and the LDA, 
the phase transition pressure of 100 GPa is also 
documented [11,12]. It is noted that first-principles 
LDA calculations underestimate the critical pressure 
for structural phase transition. 

The constant pressure molecular dynamics (MD) 
simulation for SiC shows the reversible phase 
transformation from 3C to rock salt [13]. This 
demonstrates the structural transformation from a 
four-fold coordinated structure to a six-fold 
coordinated structure under pressure. The mechanical 
properties of SiC from B3 to B1 under pressure are 
investigated by the first-principles plane-wave 
pseudopotential density functional theory method [14]. 
The result on the high pressure elastic constant 
illustrates that the ZB structure SiC is unstable when 
the applied pressure is larger than 126.6 GPa, 
consistent with the earlier experimental data [3,4] and 
the molecular dynamics simulation results [13].  

The molecular dynamics with effective interatomic 
interaction potential for SiC incorporating two-body 
and three-body covalent interactions is also proposed 
[15,16]. The covalent characteristic SiC is described by 
the three-body potential using modified 
Stillinger–Weber form. The molecular dynamics 
method with the developed interaction potential is 
employed to investigate the structural, elastic, and 
dynamical properties of crystalline 3C, amorphous, 
and liquid states of SiC for several densities and 
temperatures [15,16]. The quantum mechanical 
calculations are powerful probes to generate reference 
data for the experimentalists and to tailor new 
structures of materials [17]. The analytical model 
calculations with nonlocal and long range interactions 
are substantial for dense molecules and materials, soft 
matter, van der Waals complexes, and biomolecules 
[18]. 

The structure of silicon carbide (SiC) is viewed as 
stacking sequence of silicon carbon pair layers arrayed 
in the cubic (C), hexagonal (H), or rhombohedral (R) 
structure. The cubic (3C) structure has the lowest 
energy, followed by the wurtzite (2H) and rock salt 
(RS) structures as noted by the experimental 
observations [3,4]. The cubic phase of SiC with zinc 
blende and wurtzite structures with four-fold 
coordination transforms into six-fold coordinated ionic 
RS structure at 105 and 95 GPa, respectively. The 
ground state properties of SiC in the zinc blende (ZB) 
(P or 3C type) and wurtzite (2H) structures are shown 
to be in good agreement with experiment. The 
difference in energy per particle between these two 
structures is only E = 0.022 eV, zinc blende structure 
being more stable than wurtzite structure [15,16]. 

As compared to quantum calculations, the lattice 
model calculations [19–21] are equally productive in 
yielding qualitative and quantitative results with proper 
parameterization of input parameters. For SiC, 
although structural transitions are known to some 
extent, but to the best of our knowledge, no systematic 
efforts have been made to explore the high pressure 
and high temperature dependence of the aggregate 
elastic constant, anisotropy, melting temperature, 
Poisson’s ratio, elastic wave velocity, Grüneisen 
parameter, isothermal (adiabatic) compressibility, shear 
(Young’s) modulus, brittle/ductile nature, hardness, 
Lamé’s constant, Kleinman parameter, and 
thermodynamic properties as Debye temperature, heat 
capacity, and thermal expansion coefficient in either 
ZnS or NaCl structure.  

The quantum mechanical computational methods 
based on the density functional theory (DFT) provide 
reference data for the experimentalists and complete 
existing theoretical and experimental works on solids 
and large molecules. For large molecules and large 
homogeneous systems such as simple metals and 
semiconductors, the DFT with approximate local and 
semilocal density functional is appropriate. 
Furthermore, semilocal density approximations and 
generalized gradient approximations (GGA) are 
effective for inhomogeneous systems, such as 
transition metals, ionic crystals, compound metals, 
surfaces, interfaces, and some chemical systems.  

It is suggested that for dense molecules and 
materials and sparse systems, including soft matter, 
van der Waals complexes, and biomolecules, nonlocal 
long range interactions are influential. In DFT, it 
introduces only atomic position, space group, and 
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value of volume around the experimental volume of 
the system, and executes the codes to obtain the total 
energy corresponding to this volume. Later on, 
equation of state is used to obtain the fundamental 
(equilibrium) structural properties such as lattice 
constant of the system, the bulk modulus, and its 
pressure derivatives. A set of pressure–volume (P–V) 
values for both phases estimates the transition pressure 
by the common tangent between the two curves. 

The modelling of lattice models in SiC compound is 
a complicated task, and in many instances, must be 
guided by experimental evidence of the low degree of 
freedom in order to obtain a correct minimal model, 
which will capture the observed effect and make useful 
predictions. In comparison to the other quantum 
mechanical models, phenomenological lattice models 
are successful as they are predictive and perform the 
computaion within less frame of time as well as 
without sophisticated computers and programming 
tools but with proper parameterisation of the input 
parameters. We do not claim that the proposed model 
is the most appropriate and it still needs modifications 
to have consistency with several properties of SiC 
ceramic.  

In Section 2, we provide the details of pairwise 
potential between a pair of ions (Si and C), and Section 
3 discerns the results and the comparison with the 
experimental and other theoretical studies. We end up 
with conclusions in Section 4. 

2    Details of calculations 

The understanding of pressure dependent structural 
properties such as first-order structural phase transition 
and associated volume collapse, elastic properties such 
as ductility, mechanical stiffening, thermal softening, 
anisotropy in elastic constants, shear (Young’s) 
modulus, hardness, Lamé’s constant, Kleinman’s 
parameter, shear and longitudinal elastic wave velocity, 
as well as thermodynamics properties such as Debye 
temperature, melting temperature, heat capacity, and 
thermal expansion coefficient of 3C SiC, needs the 
formulation of an effective interatomic potential. The 
idea we have in mind follows: the change in force 
constants is small, the short range interactions are 
effective up to the second neighbor ions, and the atoms 
are held together with harmonic elastic forces without 
any internal strains within the crystal. Usually, the 
applications of pressure cause an increase in the 

overlap of adjacent ions in a crystal, and hence charge 
transfer takes place between the overlapping electron 
shells. The transferred charges interact with all others 
of the lattice via Coulomb’s law and give rise to charge 
transfer interactions under pressure. We have also 
incorporated zero point energy effect, although it has a 
small effect in Gibbs free energy. 

An isolated phase is stable only when its free energy 
is minimized for the specified thermodynamic 
conditions. As the temperature or pressure or any other 
variable acting on the systems is altered, the free 
energy changes smoothly and continuously. A phase 
transition is said to occur when the changes in 
structural details of the phase are caused by such 
variations of free energy. The SiC ceramic transforms 
from its initial B3 to B1 structure under pressure. The 
stability of a particular structure is decided by the 
minima of Gibbs free energy G = U + PV – TS, where U 
is the internal energy which at 0 K corresponds to the 
cohesive energy, and S is the vibrational entropy at 
absolute temperature T, pressure P, and volume V. 

We must mention that the calculations presented 
here assume zero temperature, i.e., the frozen ionic 
degree of freedom. Although the experimental results 
are obtained at ambient temperature inferring a certain 
small temperature dependence of the transition 
pressure in the range of low temperatures on 
polycrystalline or bulk samples. It is worth considering 
the lattice calculation result as a representative of the 
results that would be obtained under the actual 
experimental conditions. At zero temperature, the 
thermodynamically stable phase at a given pressure P 
is the one with the lowest entropy, and the 
thermodynamical potential is the Helmholtz free 
energy H.  

The Gibbs free energies for ZnS (B3) phase and 
NaCl (B1) phase given by Born equation B3( )G r   

3
B3( ) 3.08U r Pr  and 3

B1 B1( ) ( ) 2G r U r Pr     
respectively become equal at the phase transition 
pressure P and zero temperature, i.e., B1 B3G G   [22]. 
Here, B3V  (= 33.08r ) and B1V  (= 32r ) as the unit cell 
volumes are the nearest neighbor distances for B3 
(ZnS) phase and B1 (NaCl) phase respectively; the 
abbreviation B3( )U r  stands for the ZnS (B3) phase 
and B1( )U r  for the rock salt (B1) phase, and their 
relevant expressions are 
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It is known that under compression, the outer most 
electronic shells of the adjacent ions/atoms overlap. 
The first term in potential energy is the long rang (LR) 
Coulomb attraction. The overlapping leads to charge 
transfer and is the second term in Eqs. (1) and (2). As 
the ionic charge for each atom cannot be determined 
uniquely, the calculation of the Madelung energy is 
modified by incorporating the covalency effect 
[1517]. We thus need to incorporate the effective 
charge arisen due to the polarization of a spherical 
shaped dielectric in displacing the constituent positive 
ions [23,24]. 

The IV–IV SiC semiconducting compound contains 
covalent bonds, so some electrons are distributed over 
the region between neighboring atoms. In such 
situation, energies due to dipoledipole and dipole     
quadrupole interactions are of vital importance. The 
third and fourth terms are the short range (SR) van der 
Waals attraction. C and D are the overall van der Waals 
coefficients successfully evaluated from the variational 
approach [25]. The van der Waals coefficients due to 
dipoledipole and dipolequadrupole interactions are 
calculated from the Slater and Kirkwood variational 
approach and the details are given elsewhere [19].  

The fifth and sixth terms are short range (SR) 
repulsive energies due to the overlap repulsion 
between ij, ii, and jj ions. M ( M ) is the Madelung 
constant for B3 (B1) phase. ij  is the Pauling 
coefficient defined as 1 / /ij i i j jZ n Z n     with 

iZ  ( jZ ) and in ( jn ) as the valence and the number of 
electrons in the outermost orbit respectively. The 
symbols n (= 4) and n (= 6) are the numbers of the 
nearest unlike and like neighbors, respectively, for B3 
(ZnS), and m (= 6) and m (= 6) for B1 (NaCl) 
structure. Ze is the ionic charge, k ( k  ) is the structure 
factor for B3 (B1) structure, and b (  ) is the hardness 
(range) parameter. The nearest neighbor ion separation 
for B3 (B1) structure is r ( r ).  

The last term is the lowest possible energy of the 

system and is due to the zero point energy. Here, 
2 1/2á ñ  (= B D /k   ) is the mean square frequency 

related to the Debye temperature D . The Debye 
temperature can be known either from heat capacity 
measurements or from the bulk modulus value using 

D B 0 T( / ) 5 /k r B   . Herein, 0r , TB , and µ are 
the equilibrium distance, bulk modulus, and reduced 
mass of the compound, respectively. Henceforth, 
model potential for ground state incorporates the 
attractive, repulsive, and zero point energy. 
Furthermore, the second term in Eqs. (1) and (2) is an 
algebraic sum of central force part of the charge 
transfer force parameter, and the force parameter arisen 
due to covalent nature, i.e., cti cov( )f r f f  . The 
charge transfer force parameter ctif  is expressed as 

cti 0 exp( / )f f r    [20,26,27]. Here, ir  ( jr ) is the 
ionic radius of ion i (j).  

Keep in mind that IV–IV SiC semiconducting 
compound is covalent in bonding, and attractive force 
due to covalency is important that modifes the 
effective charge. The polarizing effects originate from 
changes in covalency due to Si–Si, Si–C, and C–C 
interacting electric fields. The covalency term is 
expressed as 2 2 3 1

cov spσ 0 g( ) 4 ( )f r e V r E   [19]. Herein, 

spσV  is the transfer matrix element between the 
outermost p orbital and the lowest excited s state, gE  
is the transfer energy of electron from p to s orbital. 
The effective charge *

Se  of the host crystal is related 
to the number of electrons transferred to the 
unoccupied orbitals from its surrounding nearest 
neighbour, and *

c S1 /n e e  . Henceforth, for overlap 
distortion effect, *

S .e e  Furthermore, c / 12n      
2 2

spσ g/V E , and the transfer matrix element spσV  and the 
transfer energy gE  are related to effective charge *

Se  
following 2 2 1 *

spσ g S( ) (1 ) /12.V E e    The transfer 
energy gE  is 2

g (2 1) /E E I e r    . Here, E is 
the electron affinity for non metal atom and I is the 
ionisation potential of constituent metal atom. 

The static dielectric constant 0  and the high 
frequency dielectric constant   are intimately 
related to Szigeti effective charge *

Se (= *Ze ) [19] as 
follows: *2 2 2 1

S TO 09 ( )[4π ( 2) ]ke N    
     and 

*2
S /e 2 2 2 2 1

TO 0[9 ( )][4π ( 2) ]e V e    
    . Here,  is 

the reduced mass, kN  is the number of atoms per unit 
cell volume, i.e., 1/ ,kN V TO is the long wavelength 
transverse optical phonon frequency. Thus, for SiC, *

Se  
deviates from e and is attributed to covalent nature of 
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Si–Si, Si–C, and C–C bonds. In SiC, “d” like state of 
Si hybridizes with “p” like state of C. 

We need to study the higher order elastic constants, 
their pressure derivatives, and anisotropy, and their 
relevant expressions are reported elsewhere [19]. The 
effective interatomic potential as discussed above for 
B3 phase contains four material parameters, namely, 
modified ionic charge, hardness, range, and charge 
transfer and covalency parameter ( mZ , b, , ( )f r ). 
We can then obtain these values from the equilibrium 
conditions for SiC [28].  

3    Results and discussion 

Pressure and temperature as external variables witness 
new crystal phases appearing in materials and the 
relative stability of two crystal structures required, and 
careful computation for stable phase in IV–IV SiC 
semiconductor is thus challenging. The high pressure 
experiment results in huge pressure that causes a 
reduction of the material volume, and the temperature 
variation will normally produce much smaller changes 
in the relative stability of different phases.  

The phase transition pressure is determined by 
calculating the Gibbs free energy G = U + PV − TS for 
the two phases. The Gibbs free energy is the enthalpy 
H = U + PV at T = 0 K. It is thus physically meaningful 
to concern with the Gibbs free energy at zero 
temperature, which is the enthalpy H. At T = 0 K, the 
thermodynamically stable phase at pressure P is the 
one with the lowest enthalpy, and the zero temperature 
theory results in consistent agreement with experiment. 
However, the effects of finite temperature may be 
significant. The values of thermodynamical potential G 
or H have been computed using the values of the four 
material dependent parameters, namely, modified ionic 
charge, hardness, range, and charge transfer parameter 
( mZ , b, , ( )f r ) [28]. 

To estimate the 3C SiC ceramic material parameters, 
we begin by deducing the van der Waals coefficients C 
and D involved in Eqs. (1) and (2) from the Slater–    
Kirkwood variational method [25]. The estimated 
crystal parameters are as follows: van der Waals 
coefficients for SiC cii =

 28.761060 erg·cm6, cij = 
0.711060 erg·cm6, cjj =

 0.0471060 erg·cm6, C = 
14.071060 erg·cm6, dii =

 14.2841076 erg·cm8, dij = 
0.2971076 erg·cm8, djj

 = 0.0027181076 erg·cm8, 

and D = 3.0191076 erg·cm8. The van der Waals 
coefficients are influenced by electronic polarizability 
and have been directly taken from least-squares fit of 
experimental refraction data [29,30] using additive rule 
and a Lorentz factor of 4π/3. 

For the computation purpose, we have used the 
experimental information on lattice constant a [31], the 
bulk modulus TB  [32], ionic Ze, effective charge *

Se , 
Debye temperature D  [32], and the second-order 
aggregate elastic constant 12C ( 44C ) [33]. While 
estimating the effective charge *

S,e  the values of 
optical dielectric constant s ,  high frequency 
dielectric constant ,  and the long wavelength 
transverse optical phonon frequency TO  are taken 
from Ref. [34] to have covalency effect. 

To reveal the structural phase transition, we minimize 
the Gibbs free energies B3( )G r  and B1( )G r  for the 
equilibrium interatomic spacing r and r , respectively. 
Figure 1 illustrates Gibbs free energies B3( )G r  and 

B1( )G r  as a function of pressure P for SiC. It is 
noticed that at zero pressure, the Gibbs free energy in 
B3 crystal phase is more negative; therefore it is 
thermodynamically and mechanically stable, while B1 
is not. As pressure increases, beyond the phase 
transition pressure tP , the Gibbs free energy for B1 
system becomes more negative than that of B3 phase, 
so B1 will be more stable.  

Deduced optimized values for SiC are: ionic radii 
ri = 0.42 Å, rj =

 1.162 Å, hardness b = 7.5121012 erg, 
range  = 3.29109 cm, charge transfer parameter 

( )f r  = 5.267103, equilibrium distance r0 =
 2.18 Å, 

and equilibrium interatomic spacing in B3 and B1 
phases r0(B3) = 1.89 Å, r0(B1) = 2.11 Å, respectively. 
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Fig. 1  Variation of Gibbs free energies for B3 and B1 
phases with pressure. 
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With the above deduced material parameters, we have 
computed cohesive energy per particle as 6.301 eV for 
SiC which is consistent with earlier experimental value 
of 6.34 eV [35], ab initio density functional 
calculations (7.41 eV) [36], and molecular dynamics 
(6.34 eV) for SiC [15,16]. The structural parameters 
allow to deduce material parameters such as hardness b, 
range , and central force as charge transfer force 

( )f r  for the phase stability. We note that ( )f r  is 
positive and is attributed to the fact that the charge 
transfer parameter is computed from the difference of 
second-order elastic constants 12C  and 44C . For SiC, 
Cauchy energy 12 44C C  is negative.  

In SiC, a crystallographic transition from B3 to B1 
occurs in certain pressure range. The phase transition 
pressure tP  thus obtained is listed in Table 1 and 
compared with available experimental data [3,4] and 
theoretical results [516]. The transition pressure for 
SiC is consistent with the experimental and other 
reported values. The consistency between the 
experimentally available data and lattice model 
calculation is attributed to proper formulation of 
effective interatomic interaction potential, which 
considers the various interactions explicitly such as the 
central force as charge transfer interaction, covalency 
effect, and zero point energy effect, as well as use of 
material parameters from the experimental data. We 
must mention that the known computational methods 
have their own limitations related to the chosen 
material basic parameter, basic sets, as well as the 
accuracy and precision used apart from the 
approximations laid in the methods. Thus, there is a 
variation in the calculated parameters by each 
computational method. 

As a next step, we have estimated the values of 
relative volume associated with various compressions 
following Murnaghan equation of state [37]. To 
estimate the value of pressure dependent radius for 
both structures, the curve of volume collapse with 
pressure to depict the phase diagram is illustrated in 
Fig. 2 for SiC. The magnitude of the discontinuity in 
volume at the transition pressure is obtained from the 
phase diagram and illustrated in Table 1 and is also 
compared with various experimental [3,4] and other 
theoretical works [514]. It is noticed from Fig. 2 that 
the present model has predicted correctly the relative 
stability of competitive crystal structures, as the values 
of G are positive. Thus, SiC with ZnS-type structure 

is the stable ground state and the NaCl-type structure is 
not stable at zero pressure. A phase transition from 
NaCl (B1)-type phase (high pressure) to ZnS (B3)-type 
phase (ground state) would occur after the pressure 
quenches to ambient condition. 

The calculated aggregate elastic constants at zero 
pressure are listed in Table 1. The second-order 
aggregate elastic constants ijC  under hydrostatic 
pressure are obtained with respect to finite strain using 
the stress–strain coefficients and proper consideration 
of long range Coulomb and central force as charge 
transfer interaction and covalency effect, short range 
overlap repulsion extended up to the second neighbor 
ions and van der Waals interaction. Figure 3 illustrates 
the variation of three independent second-order 
aggregate elastic constants (SOECs) referred as C11, 
C12, and C44 with external pressure for SiC in B3 and 
B1 phases. Details of method of calculations are earlier 
reported [19]. 

Fig. 2  Equation of state of SiC. 
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Table 1  Calculated transition pressure Pt, volume collapse, aggregate second-order elastic constants C11, C12, and C44, 
aggregate bulk modulus BT, pressure derivatives of SOECs dBT/dP, dC44/dP, and dCs/dP, second-order elastic constant 
anisotropy parameter γ2

1, isotropic shear modulus GH, Voigt’s shear modulus GV, Reuss’s shear modulus GR, Young’s 
modulus E, Poisson’s ratio , compressibility , Grüneisen parameter γG, Debye temperature θD, and melting temperature 
Tm for SiC in B3 phase at zero pressure 

Property Present Expt. FP LMTO LDF LDA MD DFT 

Transition pressure Pt (GPa) 90.0 
100 [3] 

105±4 [4] 
  

66±5 [5,6] 
63 [8,9,10] 

100 [13] 
90 [15] 

66.6 [7] 
100 [11] 
75.4 [14] 

Volume collapse (%) 13.8 
20.3 [3] 
15±3 [4] 

  18.5 [5,6] 21 [13] 
18.5 [7] 
12 [11] 
18 [14] 

C11 (1010N∙m2) 37.11 
39.0 [33] 
36.3 [42] 

42.0 [36] 
35.23 [40] 

 
44.9 [46] 
43.6 [47] 

39.0 [13] 
39.0 [15] 

41.51 [14] 
37.1 [42] 

C12 (1010N∙m2) 22.34 
14.2 [33] 
15.4 [42] 

12.6 [36] 
14.04 [40] 

 
14.6 [46] 
12.0 [47] 

14.4 [13] 
14.26 [15] 

13.19 [14] 
16.9 [42] 

C44 (1010N∙m2) 27.93 
25.6 [33] 
14.9 [42] 

28.7 [36] 
23.29 [40] 

 
25.6 [46] 
25.5[47] 

17.9 [13] 
19.11 [15] 

26.54 [14] 
17.6 [42] 

BT (1010N∙m2) 27.30 
22.7 [32] 
22.4 [43] 
22.5 [44] 

22.3 [36] 
21.1 [40] 

24.9 [27] 
22.5 [45] 

21.2 [5,6] 
22.5 [46,47] 

22.5 [13] 
22.52 [15] 

23.5 [11] 
22.71 [14] 
20.0 [39] 
22.5 [42] 

Cs (1010N∙m2) 7.38       

dBT/dP 5.188 3.57 [32] 3.8 [36] 3.2 [45] 3.7 [5,6] 5.5 [15,16] 
3.79 [14] 
7.3 [39] 

dC44/dP 5.198       
dCs/dP 0.0716       

γ2
1 0.736 2.0 [33] 

1.95 [36] 
2.20 [40] 

    

GH (1010N∙m2) 16.47 19.2 [44] 
21.9 [36] 
16.9 [40] 

  12.37 [15] 14.1 [42] 

GV (1010N∙m2) 19.71  
23.1 [36] 
18.2 [40] 

   14.6 [42] 

GR (1010N∙m2) 13.22  
20.8 [36] 
15.7 [40] 

   13.6 [42] 

E (1010N∙m2) 41.22 44.8 [44] 
49.60 [36] 
40.1 [40] 

 
56.7 [46] 
55.0 [46] 

31.36 [15] 35.2 [42] 

 0.249 
0.267 [33] 
0.168 [44] 

0.146 [36] 
0.201 [40] 

  0.268 [15] 
1.0 [5,6] 

0.259 [42] 
 (1011Pa1) 0.024      0.1518 [4] 

γG 1.015   1.01 [45] 1.12 [5]   
θD (K) 611.75       
Tm (K) 2746 310040 [1]      

 
The second-order elastic constant C11 is a measure 

of resistance to deformation by a stress applied on (100) 
plane with polarization in the direction 〈100〉, and C44 
refers to the measurement of resistance to deformation 
with respect to a shearing stress applied across the  
(100) plane with polarization in the〈010〉direction. 
Henceforth, the elastic constant C11 represents 
elasticity in length, and a longitudinal strain produces a 
change in C11. There is no doubt that the elastic 
constants C12 and C44 are intimately related to the 
elasticity in shape, which is a shear constant. However, 
a transverse strain causes a change in shape without a 
change in volume. Thus, the second-order aggregate 
elastic constants C12 and C44 are less sensitive of 
pressure as compared to C11 in B3 phase.   

As inferred from Fig. 3, C11 and C12 increase with 
increase in pressure in both phases. However, C44 
decreases with the increase of pressure away from zero 
till the phase transition pressure and then increases in 
B1 phase. Similar observations have earlier been 
reported in SiC [1416]. A crossover of C12 and C44 in 
CaS has also been reported [38]. At phase transition 
pressure, all the compounds have shown a 
discontinuity in SOECs, which is in accordance with 
the first-order character of the phase transition. Thus, 
we can say that, the developed model potential with 
emphasis on charge transfer mechanism, covalency, 
and zero point energy effect consistently explains the 
high pressure elastic behavior. 

According to Born criterion for a lattice to be 
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mechanically stable state, the elastic energy density 
must be a positive definite quadratic function of strain. 
The principal minors (alternatively the eigen values) of 
the elastic constant matrix should be all positive at 
ambient condition. Further, the mechanical stability 
conditions on the elastic constants in cubic crystals are 

T 11 12( 2 )/3 0B C C   , 11 44, 0C C  , and 11(Cs C   

12 ) / 2 0C   [22]. Here, Cij are the conventional 
aggregate elastic constants and TB  is the bulk 
modulus. The quantities C44 and Cs are the shear 
moduli of a cubic crystal. Estimated values of bulk 
modulus TB , shear modulus C44, and tetragonal 
modulus Cs well satisfy the above elastic stability 
criterion for SiC in B3 phase and are listed in Table 1.  

It should be noted that the second-order elastic 
constants must depend upon pressure leading to C12  
C44 

 0. Henceforth, mechanically stable phases for 
cubic crystal should satisfy the Born criterion C12 

 C44 
> 0. Referring to equations for C12 and C44, with 
emphasis on charge transfer interaction as well as 
covalency effect, the equilibrium condition leads to 

2
1 2 m1.261B B Z   . Thus, the second-order elastic 

constants obtained for optimized values of ri (rj) leads 
to Cauchy discrepancy C12

  C44 
 0 at zero pressure 

and zero temperature. The calculated values of 
pressure derivatives of aggregate second-order elastic 
constants Td / dB P , 44d / dC P , and d / dCs P  are 
given in Table 1, and are also compared with available 
experimental [32,33,42] and theoretical [13−16,32,    
39−47] studies. The stable phase of the crystal is the 
one in which the shear elastic constant C44 is nonzero 
and which has the lowest potential energy among the 
mechanically stable lattices [48].  

We note that the calculated values of C12 as listed in 
Table 1 have significant difference with that from 
experimental values [33,42]. The above difference 
suggests that the proposed interatomic potetial model 
needs modification. The hybridised sp3 tetrahedral 
bonding structure of SiC in the potential is one of the 
possibility and can be made successfully sophisticated 
computational techniques. The present model 
calculation has a limitation and is the root cause of the 
above difference in calculated elastic properties when 
compared with experimental data. 

We have studied the elasticity by means of model 
which assumes that the interatomic forces have a 
certain shape and directionality. The resulting forces 
(long range and short range) are only in the direction 

of the nearest neighbors (central force model). Usually, 
the Cauchy discrepancy 2

1
 = C12 

 C44
  2P is a 

measure of the contribution from the non-central 
many-body force. However, for pure central 
interatomic potentials, the Cauchy relation C12 =

 C44 + 
2P should be satisfied. At zero pressure, the Cauchy 
discrepancy for SiC is about –5.5881010 N∙m2 which 
further enhances on increasing the pressure in both 
phases as evident from Fig. 4. This might be due to the 
fact that for SiC, non-central charge transfer interaction 
becomes significant at higher pressures. The 
significant deviation of 2

1  at different pressures is 
the strength of non-central many-body forces as charge 
transfer interaction and covalency effect as we dealt 
with.  

The anisotropy in second-order elastic constants is 
of geophysical interest. It is known that anisotropic 
parameter γ is a unity for isotropic elasticity but still 
the cubic crystal which is isotropic in structure, has 
elastic anisotropy other than a unity as a result of a 
fourth rank tensor property of elasticity. The elastic 
anisotropic parameter 2

1  of a cubic crystal is defined 
as 

2
1 11 12 44 44( 2 ) / 2C C C C    [49]. Once the second-       

order elastic constants are known, it can obtain the 
elastic anisotropic parameter 2

1  at various pressures 
for SiC. Figure 5 illustrates the pressure dependence of 
the elastic anisotropic parameter 2

1 . It is clear from 
the plot that below transition pressure as well as at low 
pressures, anisotropy parameter is insensitive to 
applied pressures. However, in the vicinity of transition 
pressure, jump has been noted. Also, for B1 phase, the 
anisotropy is constant under pressure. We have plotted 
the elastic anisotropy for both phases. The values of 
anisotropic parameter 2

1  for this compound is given 
in Table 1 at zero temperature and pressure and 

Fig. 4  Variation of Cauchy discrepancy in 
second-order elastic constant with pressure. 

0 30 60 90 120 150

0

10

20

30

40

50

60

C
a

u
ch

y
 d

is
cr

ip
a

n
cy

 
2 1 (

10
11

N
·m

-2
)

B1B3

SiC

P (GPa)



J Adv Ceram 2016, 5(1): 13–34 

www.springer.com/journal/40145 

21

compared with the available experimental and 
theoretical results [33,36,40,41].  

Melting ranges are very important during the 
fabrication and application as the success of the 
melting and casting operations depends on the correct 
selection of temperature. Once solidified and primary 
processed (rolling or forging), the melting temperature 
has little significance to designers, engineers, and users. 
Although melting temperature does influence elevated 
temperature properties such as creep strength,     
this is only of interest to researchers. The pressure 
dependence of the melting temperature m 553KT     

115.91 K/GPaC  for SiC in B3 and B1 phases is 
discerned in Fig. 6. It is noticed that mT  enhances 
with increased pressure, or in other words, the 
resistance to deformation by stress increases. An 
increase in mT  infers the hardening or stiffening of 
the lattice. SiC is the only compound in the silicon–    
carbon binary system. It is noticed that at zero pressure, 
the melting temperature of SiC is about 3100±40 K [1]. 
Higher melting temperature symbolizes higher shear 

modulus G and Young’s modulus E. The data on its 
melting under high pressure are very limited and 
extremely contradictory, which do not allow to make 
any conclusions about melting behavior (congruent or 
incongruent) and the slope of the melting curve of SiC. 

The temperature dependence of the third-order 
elastic constant is noteworthy in revealing the 
microstructure. The pressure dependence of higher 
order elastic constants is used to determine the 
generalized Grüneisen parameter and the elastic waves 
propagating in different directions. The details of 
evaluating Cijk are given elsewhere [19]. We thus find 
that aggregate elastic constants C111, C112, C166, C144, 
and C456 are negative and only C123 at zero pressure is 
positive for SiC ceramic compound in B3 phase. To the 
best of our knowledge, no experimental or theoretical 
data for the third-order elastic constants of SiC are 
available. Therefore, the present results are a 
prediction study. Figure 7 shows the variation of 
aggregate third-order elastic constants (TOECs) with 
pressure for SiC in B3 and B1 phases.  

It is noticed that (a) the values of C144 and C166 
increase with enhancing pressure while C456, C112, C111, 
and C123 show a decreasing trend for SiC; (b) C144 is 
remarkably larger as compared to other TOECs; and (c) 
values of all aggregate elastic constants Cijk are 
influenced by pressure dependence. These observations 
imply that the aggregate elastic constants Cijk are 
affected by the inclusion of second nearest neighbour 
interaction, and these are sensitive to the short range 
interactions. Henceforth, the long range forces as 
Coulomb, charge transfer interaction, and covalency 
are effective in SiC ceramic. Thus, pressure 
dependence of third-order elastic constants can have a 
direct means to understand the interatomic forces at 
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high pressure explicitly, and a balance between long 
range and short range forces.  

In view of equilibrium condition 1 2B B    
2
m1.261Z , it is interesting to validate the Cauchy 

discrepancy  among third-order elastic constants. 
These are 3

1 = C112 
 C166

  2P, 3
2 = C123 

 C456 
 2P, 

3
3 = C144 

 C456 
 2P, and 3

4 = C123 
 C144 

 2P. It 
should be noted that all aggregate elastic constants Cijk 
in B3 phase contain both long range and short range 
interactions; hence 3

i  are the indicators for the 
contribution from the non-central many-body force. 
These Cauchy discrepancies are plotted in Fig. 8 as a 
function of pressure. The significant deviation in 3

i  
is a natural consequence of the non-central many-body 
force as charge transfer mechanism that we have 
emphasized. We note that Cauchy discrepancy 3

i  
among all third-order aggregate elastic constants are 
positive ( 3

2  and 3
3 ) as well as negative ( 3

1  and 
3
4 ) at zero pressure and become negative at higher 

pressures in B1 phase indicating the importance of 
non-central force and anharmonic effect in SiC 
ceramic. 

For the aggregate third-order elastic constants, there 
are three anisotropy coefficients and three isotropic 
coefficients [49]. Figure 9 illustrates the pressure 
dependence of the elastic anisotropic parameter 3

i . It 
is clear from the plot that elastic anisotropies ( 3

2  and 
3
3 ) in B3 phase are less sensitive while 3

1
 shows 

variation with increase in pressure. We have plotted the 
elastic anisotropy for both phases. The anisotropy 
factor 3

1  shows a decreasing trend with pressure in 
B1 phase at higher pressures. 

Elasticity describes the response of a crystal under 
external strain as characterized by isotropic shear 

modulus HG  and Young’s modulus E. These are often 
measured for polycrystalline materials when 
investigating their hardness. On the basis of the 
Voigt–Reuss–Hill approximation, we have calculated 
the isotropic shear modulus HG  and Young’s modulus 
E [5052]. It is known that isotropic shear modulus 
and bulk modulus are the measure of the hardness for a 
compound. The bulk modulus is a measure of 
resistance to volume change by applied pressure, 
whereas the shear modulus is a measure of resistance 
to reversible deformation upon shear stress. Therefore, 
isotropic shear modulus is a better predictor of 
hardness than the bulk modulus. The calculated 
isotropic shear modulus HG , Voigt’s shear modulus 

VG , and Reuss’s shear modulus RG  are given in 
Table 1 for SiC ceramic at zero temperature and 
pressure and compared with the available theoretical 
results [15,16,36,40–42,44].  

Figure 10 shows that the isotropic shear modulus 

HG  of SiC identifies decreasing and increasing trend 
in B3 phase and then increases with increase in 
pressure in B1 phase at higher pressures. We note that 
Voigt’s shear modulus VG  is influenced by aggregate 
elastic constant C44; hence VG  decreases as C44 

decreases with enhanced pressure in ZnS phase. The 
Reuss’s shear modulus RG ’s pressure dependent 
behavior is influenced by (a) combination of C11 – C12 
and (b) C44. It is noticed that RG  initially decreases 
and then starts increasing at about 30 GPa. Later on, 
decreasing trend is attributed to steep decrease in C44. 

From Reuss’s shear modulus and bulk modulus, we 
define the tensile modulus as Young’s modulus E, and 
illustrate it for SiC in Table 1 for ZnS (B3) phase. The 
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result is comparable with the available experimental 
and theoretical results at zero temperature and pressure 
[15,16,36,40–42,44,46]. The material is stiffer if    
its Young’s modulus is high (E of steel, grapheme, and 
diamond is about 200, 1000, and 1220 GPa, 
respectively). Compared to graphene and diamond, 
SiC compound is less stiff. The pressure dependence of 
the Young’s modulus E of SiC is illustrated in Fig. 11. 
A decreasing trend in B3 phase and an increasing trend 
in B1 phase of E are inferred. 

Furthermore, the mechanical properties as ductility 
and brittleness of carbon based compounds are 
important in technology and can be easily known from 
second-order elastic constants. We refer to Pugh [53], 
who suggested an empirical relation relating the 
plasticity and elastic moduli of materials. Accordingly, 
the shear modulus HG  of the material refers to the 
resistance to plastic deformation, and the bulk modulus 

TB  represents the resistance to fracture. The higher 
value of ratio T H/ 1.75B G    reflects the brittle 

nature of the material; otherwise the material is ductile. 
The critical value that distinguishes the ductile and 
brittle nature is about 1.75. From Fig. 12, the Pugh’s 
ratio   shows that (a) at zero pressure (  = 1.656) 
SiC ceramic is ductile but it becomes brittle with an 
increase in pressure both in zinc blende (ZB) (B3) and 
rock salt (RS) (B1) phases. As the value of   = 1.656 
at zero pressure is close to the limiting value of 1.75, it 
can classify SiC to be a brittle material. Perovskite 
materials usually document ductile behavior and the 
ductility of a material is a measure of the extent to 
which a material will deform before fracture. It is 
argued that ductility is also used as a quality control 
measure to assess the level of impurities and proper 
processing of material. 

Frantsevich et al. [54] further elaborated the 
ductility and brittleness of materials in terms of 
Poisson’s ratio. According to Frantsevich’s rule, the 
critical value of Poisson’s ratio of a material that 
separates ductile and brittle nature is about 0.33. For 
ductile material, the Poisson’s ratio is larger than 0.33; 
otherwise the material behaves in a brittle manner (  
< 1/3). Usually, the Poisson’s ratio lies in between 1.0 
and 0.5 which are the lower and upper bounds 
respectively. The lower bound is where the material 
does not change its shape and the upper bound is 
where the volume remains unchanged. Thus, it is 

defined the Poisson’s ratio   in terms of bulk modulus 

TB  and the shear modulus 
HG  as 

T H0.5(3 / 2)B G   ·     
1

T H(3 / 1)B G   [5052]. 
From Fig. 12 the Poisson’s ratio   shows that (a) 

at zero pressure 3C SiC compound is brittle ( = 0.249) 
in nature and (b) with an increase in pressure, 3C SiC  

0 30 60 90 120 150
0

3

6

9

12

15

B1B3

Y
o

u
n

g
 m

o
d

u
lu

s 
(1

0
11

N
·m

-2
)

SiC

P (GPa)

Fig. 11  Variation of Young’s modulus E with pressure. 

0 30 60 90 120 150

5

10

15

20

25





 

 

B1B3

SiC

P
u

g
h

's
 r

a
ti

o



0.0

0.1

0.2

0.3

0.4

0.5

P (GPa)

P
o

is
s

o
n

's
 r

a
ti

o
 

Fig. 12  Variation of Poisson’s ratio ν and Pugh’s ratio 

 with pressure. 

0 30 60 90 120 150

0.0

1.5

3.0

4.5

6.0

GH

SiC

GR

Gv

Is
o

tr
o

p
ic

 s
h

e
a

r 
m

o
d

u
lu

s
 (

1
0

1
1

N
·m

-2
)

P (GPa)

B3 B1

Fig. 10  Variation of isotropic shear moduli HG , VG , 

and RG  with pressure. 



J Adv Ceram 2016, 5(1): 13–34 

www.springer.com/journal/40145 

24 

further illustrates the brittle nature in ZB and RS 
phases. Thus, both Pugh’s and Frantsevich’s rules 
confirm the brittle nature of 3C SiC ceramic. 
Furthermore, at zero pressure, the value of   is about 
0.249 for SiC and it is in good agreement with 
available experimental and theoretical results [5,6,15, 
16,33,36,40–42,44]. It is noted that the values of 
Poisson’s ratio   for covalent materials are small 
(  ≈ 0.1), whereas for metallic materials   is 
typically 0.33.  

The brittle behavior of SiC ceramic can also be 
checked by Cauchy pressure. Based on the calculated 
C12–C44 for SiC as shown in Table 1 and Table 2, it can 
be seen that the Cauchy pressures are negative. These 
results again indicate that SiC is brittle in nature. 
Furthermore, Poisson’s ratio   is used as a probe to 
identify the bonding characteristic of the forces other 
than any other elastic constants. Estimated Poisson’s 
ratio is close to 0.25, which means that SiC is with 
predominantly central interatomic forces. The larger 
Poisson’s ratio is, the better the plasticity is henceforth. 
SiC is the one which shows a better plasticity.  

Table 2  Calculated aggregate second-order elastic 
constants C11, C12, and C44, aggregate bulk modulus BT, 
second-order elastic constant anisotropy parameter γ2

1, 
isotropic shear modulus GH, Voigt’s shear modulus GV, 
Reuss’s shear modulus GR, Young’s modulus E, 
Poisson’s ratio  , first and second Lamé’s constants  
and , longitudinal ν1, shear vs and average elastic 
wave velocity vm, Kleinman parameter ξ, and 
thermodynamical properties: Debye temperature θD 
and melting temperature Tm of SiC in B3 phase at 
about 300 K 

Property Present 

C11 (1010N∙m2) 67.65, 29.0 [68] 

C12 (1010N∙m2) 8.31, 23.5 [68] 

C44 (1010N∙m2) 19.99, 55.0 [68] 

BT (1010N∙m2) 28.1, 25.0 [68] 

Cs (1010N∙m2) 29.7, 2.75 [68] 
γ2

1 0.484 
GH (1010N∙m2) 23.43 

GV (1010N∙m2) 23.86 

GR (1010N∙m2) 22.99 

E (1010N∙m2) 54.9, 43.7 [69] 
ν 0.174, 0.167 [69] 

 (1010N∙m2) 12.47 

 (1010N∙m2) 23.43 
ν1 (m/s) 12440, 12182 [69] 
νs (m/s) 7819, 7701 [69] 
νm (m/s) 1824 

ξ 0.274 
θD (K) 708.60 
Tm (K) 4551 

We further add that atomistic aspects of ductile 
responses of extremely hard and brittle SiC ceramic 
during nanometric cutting operations have been 
studied using molecular dynamics simulation [55]. It is 
suggested that SiC can be machined in ductile regime 
at nanoscale through single-point diamond turning 
process; the root cause of the ductile response of SiC 
has not been understood. It is earlier known that slow 
feed rate helps to achieve high pressure phase 
transformations which cause ductile responses [56]. It 
is suggested that the size scale for the ductile-to-brittle 
transition occurs in the range associated with 
nanotechnology applications (10–100 nm). The ductile 
regime machining of single crystal SiC occurs at 
penetration depth or chip thickness less than 500 nm. 
The ductile behavior of SiC is further confirmed by 
production of smooth surfaces and chips indicative of 
ductile machining similar to metals. 

The response of the elasticity is further investigated 
through Lamé’s constants (, ) which in turn yield the 
compressional velocity and shear wave velocity. The 
compressional wave propagates back and forth in a 
crystal, while shear wave goes up and down. The 
velocities of the longitudinal and shear waves, 
designated l  and s  respectively, are known once 

Lamé’s constants µ and λ are determined.  

The Lamé’s constants /[(1 )(1 2 )]E      ,    
/ 2[(1 )]E   are derived from Young’s modulus and 

Poisson’s ratio. Physically, the first Lamé’s constant  
is a measure of the compressibility of the material, 
whereas the second Lamé’s constant  reflects its shear 
stiffness [5052], Usually, the shear modulus μ is 
positive. The Lamé’s first parameter λ can be negative, 
in principle; however, for most materials it is also 
positive. The two parameters together constitute a 
parameterization of the elastic moduli for homogeneous 
isotropic media. The calculated Lamé’s constants are 
 = 16.29×1010 N∙m2 ,  = 16.47×1010 N∙m2 for SiC. 
Systematic trend in values of Lamé’s constants (, ) 
is noticed on increasing pressure for SiC. The pressure 
dependence of the first and second Lamé’s constants (, 
) are shown in Fig. 13. It is noticed that (a) both 
Lamé’s constants (, ) are positive, and (b) increasing 
trend of  is in both phases, while  first decreases in 
B3 phase and then increases in B1 phase.  

We can obtain the longitudinal (shear) wave velocity 
1/2

l [( 2 )/ ]v     , 1/2
s ( / )v   , and 3

m l[(2 /v v     
3 1/3
s1 / ) / 3]v  from Lamé’s constants (, ). The 
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pressure dependence of the longitudinal (shear) 
velocity is shown in Fig. 14. It is noticed that lv  
increases while sv  decreases with increased pressure 
in B3 phase. Both lv  and sv  increase with enhanced 
pressure in B1 phase. Deduced values of longitudinal 
( lv = 12400 m/s), shear ( sv = 7172 m/s), and average 
elastic wave velocity ( mv = 1688 m/s) are propagating 
in SiC at zero temperature and pressure. 

We may add that the longitudinal and shear wave 
velocities are also obtained in terms of Reuss’s shear 
modulus RG  and bulk modulus TB  from Navier’s 
equation [57]. We admit that Lamé’s constants (, ) 
are perhaps of substantial interest in materials that are 
plastic in origin. As Poisson’s ratio increases, Lamé’s 
constants will numerically approach the bulk modulus. 
The Reuss’s shear modulus RG  essentially disappears 
as the viscosity of the fluid approaches zero. The above 
can also be cross-checked from the relation between 
bulk modulus and Reuss’s shear modulus TB        

R2 / 3G .   

RG  approaches zero for fluids and hence the 

Poisson’s ratio is ~0.5. We thus argue that the studies 
of Lamé’s constants in fluids are of substantial interest 
as the compressional (shear) velocity lv  ( sv ) is 
proportional to the Lamé’s constants or the bulk 
modulus. Usually, the elastic constants relate the 
properties of material that undergo stress, deform, and 
then recover after return to its original shape after 
stress ceases. The elastic constants are emphasized in 
solids because they are closely intimated to various 
fundamental solid state phenomena such as interatomic 
bonding, equations of state, and phonon spectra. As 
suggested by Bouhemadou and researchers [58,59], the 
above is applicable for SiC as well, and we have 
attempted to understand the Kleinman parameter   
which describes the relative positions of the cation and 
anion sub lattices under volume-conserving strain 
distortions for which positions are not fixed by 
symmetry. We use 11 12 11 128 / (7 2 )C C C C     [60]. 

The Kleinman parameter   = 0.709 is calculated 
for SiC at zero temperature and pressure for ZnS (B3) 
phase. A low value of   implies a large resistance 
against bond bending or bond-angle distortion and vice 
versa [61]. Because of unavailability of data, we could 
not compare them and it can be considered as a 
prediction of elastic properties. Henceforth, knowledge 
of elastic constants at variable pressure is substantial 
for practical applications related to the mechanical 
properties of a solid: load deflection, thermo elastic 
stress, internal strain, elastic wave velocities, and 
fracture toughness. 

It is worth to mention that the elastic properties are 
also linked with thermodynamical properties as heat 
capacity, thermal expansion, Debye temperature, and 
Grüneisen parameter. In order to describe the 
anharmonic properties of a crystal, we have calculated 
Grüneisen constant G  and isothermal compressibility 
. Details are given elsewhere [19]. The above 
thermodynamic parameters are listed in Table 1. The 
Grüneisen constant as a function of pressure is plotted 
in Fig. 15 for SiC for both phases. 

Usually the value of Grüneisen parameter for most 
of the solids is in between 1.5 and 2.5. The value of 

G  for 3C SiC compound is illustrated in Table 1 for 
ZnS (B3) phase and it is in good agreement with the 
available theoretical results [5,6,45]. It is evident from 
the figure that the Grüneisen parameter decreases 
linearly with increase in pressure. However, there is a 
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jump in B1 phase and is attributed to the fact that 
anharmonicity is significant in SiC ceramic. The 
Grüneisen parameter jump G (B3 B1)   at TP  is 
about 7% in SiC. Further investigations are required 
from knowledge of phonon frequencies as a function 
of crystal volume V.  

The variation of isothermal compressibility with 
pressure is shown in Fig. 16. At zero pressure, the 
value of  is about 0.024 for SiC and is compared with 
available theoretical result of 0.1518 [5,6]. It is noticed 
that in SiC compound, the lattice is stiffened with 
increased pressure in B3 phase, gets softened at   
phase transition pressure, and again becomes stiff at 
higher pressures, i.e., in B1 phase as reflected from 
isothermal compressibility  behavior. The mechanical 
stiffened bulk modulus in SiC is attributed to Si–Si, 
C–C, and Si–C bond compression and bond 
strengthening due to lattice vibration in both B3 and 
B1 phases. Especially, the compressibility at zero 
pressure is reduced by about 1% of that at transition 

pressure in B3 phase in SiC. However, the magnitude 
of  at transition pressure is about 0.3% of that at 
higher pressures (~150 GPa). Thus, giant lattice 
softening is noticed at the boundary of B3–B1 phase 
transition in SiC.  

In a true sense, compressibility is intimately related 
to the performance of a material, such as elasticity, 
extensibility, elastic wave velocity, Debye temperature, 
heat capacity, and thermal conductivity, and is a 
constant value at ambient atmosphere. Furthermore, 
compressibility becomes tunable with the applied 
temperature as well as pressure stimuli. We comment 
that, the computational details infer that the pressure 
dependent mechanical induced softening of the lattice 
at phase transition pressure in SiC is attributed to 
enhancement of the cohesive energy as well as increase 
in the bulk modulus in B3 phase as compared to B1 
phase. We have used the effective interatomic potential 
with emphasis on charge transfer mechanism, 
covalency effect, and zero point energy effect in SiC to 
predict successfully the elastic and anharmonic 
properties of the ceramic under consideration. Apart 
from phase transition and pressure dependence of 
SOECs, we also estimate Debye temperature D  from 

the present approach.  

The elastic constants determine the velocity of 
elastic waves through the lattice and hence one can 
relate the Debye temperature D  with the elastic 
constants, since D  may be estimated from the 
average sound velocity mv  using D m A( / )(3 /hv k nN   

0.338π) [6264]. Here, h is Planck’s constant, k is 
Boltzmann’s constant, AN  is Avogadro’s number, n is 
the number of atoms in the molecule, M is the 
molecular weight,  is the density, and mv  is average 
wave velocity. To explain the variation of D  with the 
pressure, we attempt to analyze our results in the 
framework of dynamics of lattice with pressure.  

The change in the force constants induced by 
pressure decreases D  in B3 phase, and after 
transition pressure it starts increasing which drives the 
system effectively towards the softening of lattice with 
increasing pressure. The variation seen in D  in B3 
phase is in accordance with the competitive behavior 
of pressure dependent aggregate elastic constants Cij. 
The Debye temperature from B3 to B1 phase jumps by 
655 K at TP  in SiC compound. Usually, the Debye 
temperature is also a function of temperature and 
varies from technique to technique as well as depends 
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on the sample quality with a standard deviation of 
about 15 K. The Debye temperature as a function of 
pressure is plotted in Fig. 17 for SiC compound. It is 
noticed from the figure that D  increases with 
increasing in pressure for SiC compound and the 
calculated value is listed in Table 1.  

Usually, the elastic moduli describe only reversible 
response of a material to small strain near equilibrium. 
The intrinsic strength of a material reflects permanent 
plastic deformation at large shear strain. Consequently, 
to further understand the behavior of SiC is in terms of 
Vickers hardness 2 0.585

V 2( ) 3H G  . Figure 18 
illustrates the theoretical Vickers hardness as a 
function of pressure. It is clear from the plot that the 
Vickers hardness VH  decreases in B3 phase and then 
increases in B1 phase with increase in pressure, which 
indicates that SiC becomes hard under pressure 
implying its good mechanical properties. 

The pressure dependence of Debye temperature is 
earlier discussed. The variations of heat capacity at 

constant volume, VC , with pressure P of SiC is 
illustrated in Fig. 19 at T = 600, 800, 1000, and 1200 K. 
We have plotted the normalized heat capacity 
( (0))/ (0)V V VC C C , where VC  and (0)VC  are the 
heat capacity at any pressure P and at zero pressure 
respectively. The heat capacity at different 
temperatures decreases nonlinearly with the applied 
pressures. It infers that that the frequency vibration of 
the particles in SiC compound changes with pressure 
as well as temperature. For higher temperatures 

DT  , the variation in heat capacity with pressure is 
weak and at TP , reduced jump in between B3 and B1 
phases can be seen as compared to low temperatures. 

The pressure dependent Grüneisen parameter and 
Bulk modulus are required apart from heat capacity at 
constant volume VC  to elucidate the thermal 
expansion coefficient. The thermal expansion 
coefficient th.exp  describes any alteration in 
frequency of the crystal lattice vibration depending on 
the lattice’s expansion or contraction in volume as a 
result of variation in temperature. We have determined 
the pressure dependence of α as shown in Fig. 20 for 
SiC. It can be seen that the thermal expansion 
coefficient th.exp decreases nonlinearly with the 
pressure for both ZnS and NaCl phases. However, the 
thermal expansion coefficient in higher temperature 
decreases rapidly with pressure than that in lower 
temperature. At TP , the thermal expansion coefficient 
is decreased by 26% to 22% in SiC, at temperatures 
600, 800, 1000, and 1200 K.  

While understanding the anharmonic effects on the 
elastic constants at higher temperatures, we follow the 
equation of state and the derivatives of energy are 
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required to estimate the elastic constants [19]. Figure 
21 discerns the variation of ( )/ (0)V T V  as a function 
of temperature in B3 phase. Here, ( )V T  symbolizes 
the volume at various temperatures and (0)V  at zero 
temperature and zero pressure. A steep increase in the 
ratio ( )/ (0)V T V  with increasing temperature 
indicates net expansion and SiC is susceptible to 
temperature. However, if we refer to Fig. 2, it is 
noticed that SiC is compressed at higher pressures. It 
implies that SiC is thermally softened and mechanical 
stiffened. The normalized volume ( )/ (0)V T V  
dependence on temperature is not known for SiC, but 
the present behavior is consistent with available 
experimental [65] and theoretical [66,67] data on Li2O. 

Figure 22 exhibits the aggregate elastic constants 
( )ijC T  with temperature T for SiC. The values are 

listed in Table 2 and compared with the available  
data [68] at room temperature. It can be seen that   
the aggregate elastic constants ( )ijC T  decrease 

linearly with temperature in ZnS phase. However, 
aggregate elastic constants ( )ijC T  increase with 
pressure as depicted earlier in Fig. 3. It is noticed that 
(a) the value of C11 decreases more steeply with 
enhancing temperature while C12 and C44 are less 
sensitive to temperature for SiC compound, (b) C11   
is remarkably larger than C12 and C44, and (c) values   
of all aggregate elastic constants Cij are influenced    
by temperature indicating that anharmonicity is 
substantial. 

The variations of adiabatic bulk modulus TB  and 
tetragonal modulus Cs with temperature T are plotted 
in Fig. 23. These are compared with the available data 
[68] at room temperature and are illustrated in Table 2. 
As expected, both bulk and tetragonal moduli decrease 
linearly with temperature in ZnS phase. It should be 
noted that the second-order elastic constants also 
depend upon temperature and pressure leading to C12

  
C44

  0. Henceforth, B3 phase of SiC is not only 
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mechanically stable but also thermally stable. It is 
inferred that the aggregate elastic constants ( )ijC T  
are influenced by the incorporation of second- 
nearest-neighbour interaction as well as sensitive to the 
short range interactions. Henceforth, the long range 
forces as Coulomb, charge transfer interaction, and 
covalency effect are effective. Thus, temperature 
dependence of aggregate second-order elastic constants 
can have a direct means to understand the anharmonic 
effects and coupling coefficients at high temperature 
explicitly and a balance between anharmonic effects 
and short range forces.  

Usually, the high temperature study of materials 
leads to an understanding of vibrational anharmonicity 
that is associated with the interatomic repulsive forces, 
thermal softening (hardening), and the performance of 
a material, such as elasticity, extensibility, acoustic 
transmission velocity, Debye temperature, specific heat, 
and thermal conductivity at ambient pressure. The high 
temperature investigations cause laboratory difficulties, 
and structural changes make the phenomenon more 
amenable to interpretation. We discuss in Fig. 24 the 
isotropic shear modulus HG , Voigt’s shear modulus 

VG , and Reuss’s shear modulus RG  for SiC as a 
function of temperature (at zero pressure). We note that 
the isotropic shear modulus of SiC is decreasing with 
increase in temperature. The steep decrease of HG , 

VG , and RG  is consistent with aggregate SOEC 
behavior with temperature.  

The temperature dependence of Young’s modulus E 
of SiC is illustrated in Fig. 25. A decreasing trend is 
inferred with increase in temperature. Matsumoto and 
researchers [69] have reported the Young’s modulus 

and Poisson’s ratio of SiC at temperatures > 1400 ℃ 
using laser ultrasonics coupled with Fabry-Pérot 
interferometery as well as ultrasonic pulse method.   
It is shown that at T = 273 K, E is about 438 GPa     
and shows a decreasing behavior with increasing 
temperature. The calculation presented here leads to a 
value of about 549 GPa which is comparable to the 
measured value of 437 GPa at room temperature [69]. 
Figure 26 illustrates the Poisson’s ratio  as a function 
of temperature. The Poisson’s ratio  is independent of 
temperature and is consistent with the earlier measured 
 by laser ultrasonics method [69]. We note that the 
deduced value of  ≈ 0.174 which is smaller than 0.33, 
again indicates that SiC is brittle in nature. The 
temperature dependent behavior of Lamé’s constants 
(, ), for SiC is illustrated in Fig. 27. It is noticed that 
both Lamé’s constants (, ) are decreasing with 
increasing temperature.  

Figure 28 represents the temperature dependence of 
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the longitudinal (shear) velocity. We note that both lv  
and sv  decrease with enhanced temperature in B3 
phase. However, lv  increases and sv  decreases with 
enhanced pressure in B3 phase. Also, both lv  and sv  
increase with enhanced pressure in B1 phase of SiC as 
inferred in Fig. 14. The values of the longitudinal, 
shear, and average elastic wave velocities propagating 
in SiC compound are documented in Table 2 at room 
temperature. Deduced values of wave velocities are in 
good agreement with the measured values by laser 
ultrasonics method [69]. The high temperature 
behavior of aggregate elastic constants and others for 
SiC can be considered as a predictive study as they 
cannot be compared due to unavailability of high 
temperature data. However, deduced Poisson’s ratio 
and its temperature dependence are consistent with the 
measured Poisson’s ratio by laser ultrasonics assisted 
with Fabry-Pérot interferometery, validating the results 
obtained by model calculations. The temperature 

dependent stress studies of ceramics and composites 
are of vital interest and the results deduced may be 
useful for future experiments.  

Figure 29 represents the variation of Debye 
temperature as a function of temperature (at zero 
pressure). Knowledge of Debye temperature of a 
material not only provides essential features of the 
vibrational spectrum but is also mandatory for 
technological and engineering applications, and those 
results are predictions and seem likely to be useful as a 
reference for future experimental work. We note that 

D  decreases rapidly with increasing temperature. 
Earlier, we have noticed that D  increases with 
enhanced pressure at zero temperature. The high 
pressure and high temperature Debye temperature 
characteristics lead us to comment that the pressure 
dependent Debye temperature in B3 phase infers the 
mechanical stiffened bulk modulus due to Si–Si, C–C, 
and Si–C bond compression and bond strengthening 
due to lattice vibration and also the thermal softening 
of bulk modulus results from bond expansion and bond 
weakening due to thermal stress in SiC.  

Silicon carbide is obtained by electromelting high 
purity silica sand with petroleum coke, also of good 
quality. This melting takes place at high temperature 
about 2200 ℃ and requires a large quantity of energy 
to produce. It also requires energy for it to dissociate 
into about 2/3 Si and 1/3 C in the induction furnace [1]. 
The better quality raw materials produce better quality 
SiC, which is lower in nitrogen, sulphur, hydrogen,   
and other trace elements. Figure 30 shows the 
temperature dependence of the melting temperature for 
SiC estimated from C11 elastic constant as discussed 
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previously. It is noticed that mT  is suppressed with 
increased temperature, indicating that there is a 
decrease in the resistance to deformation by a stress 
induced due to temperature.  

The suppressed mT  infers the weakening of the 
lattice resulting in thermal softening. Usually, SiC does 
not melt; it actually dissolves since its melting point is 
about 2700 ℃. Its behavior in the molten metal is 
similar to sugar dissolving in coffee. This aspect is 
very important for the use of SiC. Figure 31 shows 
Vickers hardness as a function of temperature for SiC. 
It is clear from the plot that the Vickers hardness VH  

decreases in B1 phase, which indicates that SiC gets 
softened with enhanced temperature. Apart from the 
elastic anisotropy of crystals, the hardness is important 
to discuss their properties because it is highly 
correlated with the possibility of inducing microcracks 
in materials.  

Within the framework of quasi-harmonic Debye 

model, the heat capacity at constant volume VC  
behavior as a function of temperature for various 
pressures (0, 50, 100, and 150 GPa) is documented in 
Fig. 32 for SiC. It is inferred from the plots that below 
room temperature (300 K), VC  increases very rapidly 
with temperature at all pressures. Above 300 K, VC  
increases slowly with temperature and it almost 
approaches a constant ideal gas limit—the 
Dulong–Petit limit ( )VC T = 6R (49.86 J/(mol·K)) at 
higher temperatures as well as at all pressures for all 
compounds. These are consistent with earler results on 
thermodynamical properties using LDA [70,71]. 
Further, we have sketched the variations of the thermal 
expansion th.exp  with temperature at various 
pressures illustrated in Fig. 33 for SiC. Furthermore, at 
low temperatures, th.exp  enhances rapidly with 
temperature at zero pressure. The slope of th.exp  
gradually decreases at higher temperatures at all 
pressures except at P = 0. It should be noted that the 
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thermal expansion coefficient th.exp  decreases with 
the increase of pressure. 

4    Conclusions 

The present study thus addresses for the first time, the 
high pressure and high temperature dependent 
aggregate second-order elastic constants, Cauchy 
discrepancy, anisotropy in higher order elastic 
constants, ductile nature, propagation of compression 
and shear wave, Grüneisen parameter, Debye 
temperature, melting temperature, hardness, heat 
capacity, and thermal expansion coefficient of SiC by 
formulating an effective interatomic interaction 
potential with emphasis on long range Coulomb, 
charge transfer, covalency, and zero point energy effect 
as well as short range overlap repulsion extended up to 
the second neighbor ions and van der Waals interaction 
effect. Deduced values of free parameters allow us to 
predict phase transition pressure and associated 
volume collapse. We have found volume discontinuity 
in pressure volume phase diagram, identifying 
structural phase transition from ZnS (B3) to NaCl (B1) 
structure for SiC.  

From the computed values of pressure dependent 
Pugh’s ratio T H/B G  , Poisson’s ratio , and the 
Cauchy pressure C12–C44, we suggest that SiC ceramic 
shows brittle nature at low and high pressures. High 
temperature Poisson’s ratio  of about 0.174 of SiC 
ceramic infers its brittle nature, and temperature 
dependent behavior infers a decreasing trend consistent 
with the earlier measured value by laser ultrasonics 
method. Furthermore, compression and shear wave 
velocities are in good agreement with the measured 
values using laser ultrasonics method.  

The pressure dependent isothermal compressibility 
in SiC infers that the lattice is stiffened with increase in 
pressure in B3 phase, gets softened at phase transition 
pressure and again becomes stiff at higher pressures, 
i.e., in B1 phase. The mechanical stiffened bulk 
modulus in SiC is attributed to Si–Si, C–C, and Si–C 
bond compression and bond strengthening due to 
lattice vibration in both B3 and B1 phases. The 
compressibility at zero pressure is reduced by about 
1% of that at transition pressure in B3 phase and the 
magnitude of  at transition pressure is about 0.3% of 
that at higher pressures (~150 GPa) leading to giant 
lattice softening noticed at the boundary of B3–B1 

phase transition in SiC. The temperature dependent 
adiabatic bulk modulus in SiC ceramic documents a 
decreasing trend with enhanced temperature in ZnS 
phase. The outcome is the thermal softening of 
adiabatic bulk modulus resulting from Si–Si, C–C, and 
Si–C bond expansion and bond weakening due to 
thermal stress in SiC.  

The aggregate elastic constants Cij(T) decrease 
linearly with temperature in ZnS phase implying the 
importance of the long range forces as Coulomb and 
charge transfer interaction in SiC ceramic. The 
pressure dependent thermal expansion coefficient 

th.exp  decreases nonlinearly with pressure for both 
ZnS and NaCl phases. The discontinuity at TP  in 

th.exp  confirms the mechanical softening in 3C SiC 
ceramic. However, the temperature dependent thermal 
expansion coefficient th.exp  increases rapidly 
(nonlinearly) at low temperatures and remains 
independent of temperature away from room 
temperature at all pressures. Also, th.exp  suppresses 
with enhanced pressures at higher temperatures.  

Within the framework of quasi-harmonic Debye 
model, the heat capacity at different temperatures 
decreases nonlinearly with the applied pressures. It 
infers that the vibration frequency of the particles in 
3C SiC ceramic changes with pressure as well as 
temperature. For higher temperatures DT  , the 
variation in heat capacity with pressure is weak and at 

TP . The temperature dependent heat capacity VC  
increases very rapidly with increase in temperature at 
all pressures for T < 300 K. Furthermore, ( )VC T  is 
consistent with ideal Dulong–Petit limit of 3R, at 
higher temperatures as well as at all pressures for SiC 
ceramic which cannot be compared due to 
unavailability of data. To our knowledge, these are the 
first quantitative theoretical prediction of the high 
pressure and high temperature dependent mechanical, 
elastic, thermal, and thermodynamical properties of 
SiC ceramic addressing mechanical stiffening, thermal 
softening, and ductile nature and still await 
experimental confirmations. 
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