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Abstract: Polycarbosilane (PCS) has been widely used to fabricate silicon carbide (SiC) fibers via 
pyrolysis. In this paper, for improving the morphology of SiC fibers, tetraethyl orthosilicate (TEOS, 
m = 1 g, 3 g and 5 g, respectively) was added into the PCS precursor solution (containing 1.5 g PCS). 
The continuous fibers have been prepared by electrospinning, and then the SiC fibers were 
synthesized by calcination at 1300 ℃, 1400 ℃ and 1600 ℃ for 4 h respectively with a heating rate of 

10 ℃/min in flowing nitrogen (N2). The morphologies of the fibers were investigated by the scanning 
electron microscope (SEM) and it could be seen that the crystallinity of the SiC fibers was lower, the 
length of the SiC fibers was increased, and the diameter was uniform with the increase of the addition 
amount of TEOS. 
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1  Introduction 

In the past decade, one-dimensional (1D) nanosized 
semiconducting materials have attracted attention with 
their fascinating optical, electronic and chemical 
properties. The size and morphology can affect their 
applications as catalysts, solar cells, light-emitting 
diodes and biological labeling [1–3]. As a 
semiconducting material, silicon carbide (SiC) 
possesses excellent physical and electronic properties 
such as high mechanical strength, high thermal 
stability and high thermal conductivity [4]. It also has 
wide applications including field emission displays, 
nano-sensors and other nanoscale devices [5,6].  

Recently, much more effort has been devoted to the 
synthesis process of SiC fibers with nanostructures, 

including carbothermal reduction of silica [7–9], 
chemical vapor deposition [6,10–12], carbon 
nanotube-templated growth [13], etc. It has been 
demonstrated that polycarbosilane (PCS) is used to 
synthesize SiC fibers by melt-spinning, curing and 
pyrolysis. In this paper, SiC fibers could be 
synthesized by a high-temperature carbothermal 
reduction progress using electrospun PVP (polyvinyl 
pyrrolidone)/PCS composite fibers as precursor. In 
addition, tetraethyl orthosilicate (TEOS) was added to 
improve the morphology of SiC fibers. Compared with 
the reported synthetic methods, the technique used in 
this work possesses the virtues including simplicity, 
low cost and absence of template and catalyst.  

2  Experiment 

As a starting material, PCS polymer was used to 
fabricate SiC fibers due to its rich content of silicon. 
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For achieving PVP/PCS/TEOS composite, 1.5 g PCS 
and TEOS (1 g, 3 g and 5 g, respectively, Tianjin 
Kermel Chemical Reagent Ltd.) were dissolved into 
11 ml solvent including 8 ml tetrahydrofuran (THF, 
Tianjin Kermel Chemical Reagent Ltd.) and 3 ml 
absolute alcohol (≥ 99.7%, Shenyang Xinxing 
Chemical Reagent Ltd.). Then 0.8 g PVP (K90, Tianjin 
Bodi Chemical Co. Ltd.) was added in the solution to 
increase viscidity. Subsequently, the mixture viscous 
solution was magnetically stirred for 1 h at room 
temperature until the floccules were completely 
dissolved. The solution was transferred into a plastic 
syringe with conductive stainless steel needle and 
ejected with an appropriate voltage of 30 kV. The 
dense net of fibers was formed on the collector which 
was coated with an aluminium foil. The distance 
between the needle and the collector was about 16 cm. 
Whereafter, the fiber mat was immediately dried in air 
oven at 80 ℃ for 0.5 h, and then was heated at 190 ℃ 
for 6 h. The Si–H bonds in PCS were oxidized and the 
Si–O–Si crosslinked structure was formed. The 
melting of PCS was prevented and the morphology of 
precursor fibers was remained during the process of 
high-temperature pyrolysis [14,15]. Subsequently, the 
PCS precursor fibers were calcined respectively at 
1300 ℃, 1400 ℃ and 1600 ℃ for 4 h with a heating 

rate of 10 ℃/min in flowing nitrogen (N2) followed by 

calcination at 600 ℃ for 4 h in air to remove the 
remaining carbon. 

X-ray diffraction (XRD) patterns were collected on 
a Shimadzu/XRD-6000 diffractometer with Cu Kα 
radiation. The morphologies of SiC fibers were 
characterized by JSM-5600LV scanning electron 
microscope (SEM, JEOL).  

3  Results and discussion 

The XRD patterns of the SiC fibers after calcination at 
1600 ℃ for 4 h which are derived from different 
precursor fibers are shown in Fig. 1. The main peaks in 
the patterns match well with the cubic β-SiC phase 
(JCPDS 74-2307), and their peak positions at 2θ = 36°, 
60° and 72° are respectively attributed to the (111), 
(220) and (311) planes of β-SiC. The SiC crystal is 
successfully synthesized at this temperature. The 
diffraction peaks of products become weak and broad 
which indicates that the crystallinity is lower and the 
grain size in SiC fibers is decreased with the increase 

of TEOS content. There are no other obvious 
diffraction peaks, which imply that the main product is 
cubic SiC phase and no impurity content is obtained in 
the fibers. 

The SEM images of the PCS/TEOS precursor fibers 
are shown in Fig. 2. It could be observed that the 
surface of the precursor fibers is very smooth, which is 
attributed to the fine particles and the amorphous 
nature of the fibers. Moreover, with the increase of 
addition amount of TEOS, the length of the fibers is 
longer and the diameter is more uniform, which can 
also be seen in Fig. 3.  

The SEM images of the SiC fibers calcined at 
1300 ℃ and the corresponding columnar section of the 
diameter uniformity with different amounts of TEOS 
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Fig. 1  XRD patterns of SiC fibers after calcination 
at 1600 ℃ for 4 h derived from precursor fibers with 
different TEOS contents: (a) 0 g, (b) 1 g, (c) 3 g,  
(d) 5 g. 
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Fig. 2  SEM images of the PCS precursor fibers 
with different TEOS contents. 
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are shown in Fig. 3. We observe that the fibers with 
diameters in the range of 1–9 μm are brittle and easy to 
fracture when there is no or 1 g TEOS addition. 
However, the fibers become longer and their diameters 
concentrate in the range of 4–6 μm when the addition 
amounts of TEOS reach 3 g and 5 g.  

The SEM images of SiC fibers derived from 
different precursor fibers are shown in Fig. 4. After 
calcinations at 1600 ℃ for 4 h, the SiC grains as 
shown on the fiber surface are averagely smaller than 
500 nm, and the grains are closely connected to each 
other with clear grain boundaries. With the addition of 
TEOS, the surface of SiC fibers becomes smoother and 
the SiC grain sizes in the fibers are decreased, which 
also have been confirmed by the XRD patterns.  

The SEM images of the PCS/TEOS precursor fibers 
and SiC fibers calcined at different temperatures with 
5 g TEOS addition are shown in Fig. 5. The average 
diameter of the fibers is about 3 μm, and the length 
could reach several millimeters. The surface of SiC 

fibers after calcined for 4 h becomes rough due to the 
removal of organic components and the crystallization 
of the SiC phase, while the surface of the precursor 
fibers (Fig. 5(a)) is very smooth. The fibers show a 
slightly decrease in diameter due to the burning-off of 
PVP, whereas the continuous microstructure of the 
fibers is still maintained.  

3  Conclusions 

In summary, direct electrospinning was used in this 
work to prepare the PCS/TEOS precursor fibers, and 
the SiC fibers were obtained successfully after 
carbonization. The addition of TEOS improved the 
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Fig. 3  SEM images of the SiC fibers calcined at 
1300 ℃ and the corresponding columnar section of 
the diameter uniformity with different amounts of 
TEOS. 
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Fig. 4  SEM images of SiC fibers calcined at 
1600 ℃ derived from different precursor fibers with 
different TEOS contents. 
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Fig. 5  SEM images of the precursor fibers and 
SiC fibers calcined at different temperatures. 
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morphology of SiC fibers effectively. With the increase 
of addition amount of TEOS, the crystallinity was 
lower and the grain size in SiC fibers was decreased. 
The length of the fibers was longer and the diameter 
was more uniform.  
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