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Abstract

Purpose of Review This review summarises recent advances in the field of epigenetics in order to understand the aetiology of
type 2 diabetes (T2D).

Recent Findings DNA methylation at a number of loci has been shown to be robustly associated with T2D, including TXNIP,
ABCGI, CPTIA, and SREBF1. However, due to the cross-sectional nature of many epidemiological studies and predominant
analysis in samples derived from blood rather than disease relevant tissues, inferring causality is difficult. We therefore outline the
use of Mendelian randomisation (MR) as one method able to assess causality in epigenetic studies of T2D.

Summary Epidemiological studies have been fruitful in identifying epigenetic markers of T2D. Triangulation of evidence
including utilisation of MR is essential to delineate causal from non-causal biomarkers of disease. Understanding the causality
of epigenetic markers in T2D more fully will aid prioritisation of CpG sites as early biomarkers to detect disease or in drug

development to target epigenetic mechanisms in order to treat patients.
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Introduction

Type 2 diabetes (T2D) is a metabolic disorder characterised by
hyperglycemia due to 3 cell dysfunction and insulin resistance
[1, 2]. T2D affects 8.3% of the adult population worldwide
and is one of the most common non-communicable diseases
of current times [3, 4]. Aectiologically, T2D arises in response
to a combination of genetic predisposition and environmental
or lifestyle factors. The genetic origins of T2D have long been
supported by family and twin studies [5]. The most recent
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GWAS meta-analysis in T2D identified > 400 genetic risk
variants explaining 15—18% of the heritability of the disease
[6, 7]. Most of the T2D-risk variants identified to date act
through effects on 3 cell function [5, 8] and to a lesser extent
through effects on insulin resistance and obesity [1].

Epigenetic modifications include DNA methylation
(DNAm), post-translational modification of histone proteins,
and non-coding RNAs (ncRNAs) [9—11]. More rarely studied
modifications include 5-hydroxymethylcytosine (ShmC), 5-
formylcytosine (5fC), and 5-carboxylcytosine (ScaC) which
are sequentially produced by oxidation during enzymatic de-
methylation [12]. Epigenetic modifications act at the interface
between the environment and coordinated transcriptional con-
trol and may also contribute to T2D disease risk. This may be
partly via genetic influences on epigenetic modifications, but
epigenetic response to the influence of environmental and
lifestyle exposures is likely to be predominant. Evidence
supporting this comes from greater epigenetic variation ob-
served in population studies compared with that in discordant
monozygotic twins [13].

The most common epigenetic modification analysed in ep-
idemiological studies of complex diseases is DNAm [10, 11,
14], mainly found at CpG dinucleotides [9-11]. Growing ev-
idence supports an association between T2D and DNA
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methylation variation measured before [15] and after disease
onset [16°]. However, it is unknown whether epigenetic
markers (particularly those identified in non-target tissues)
play a causal role in the development of T2D, if they are a
consequence of disease status, or are due to residual con-
founding [9]. Moreover, the epigenetic signature observed in
collected samples that include mixed cell types can influence
associations that may or may not be completely considered in
all observational studies despite currently available biostatis-
tical tools [17-20].

This review presents an overview of current evidence
around T2D and epigenetics, with a primary focus on DNA
methylation and epidemiological studies in humans. It de-
scribes inherent limitations of epigenetic studies in ascertain-
ing causality and provides examples of studies that have
attempted to address these limitations by implementing causal
inference methods such as Mendelian randomisation.

General Considerations in the Design of DNA
Methylation Studies

The use of DNAm in epidemiological studies imposes some
constraints, particularly when the aim is to identify evidence
for a causal role of DNAm on disease. Common challenges
include tissue specificity, confounding, effect modification,
and statistical power to identify methylation variable sites with
enough interindividual variation to be informative between
comparison groups [21, 22]. Additionally, technological ad-
vances have moved the field of epigenetics from the study ofa
few CpG sites within specific genes, towards the genome-
wide assessment of variation in DNAm at single-base resolu-
tion [23¢]. Genome-wide studies of DNAm allow ascertain-
ment of disease-relevant variation more comprehensively than
candidate gene studies. However, they also increase the mul-
tiple testing burden (~ 400-800 K sites analysed), requiring
larger samples to robustly identify small effect sizes [10, 24].
In addition, current array-based methods for genome-wide
assessment only cover < 2% of the total methylation sites
available in the genome [11]. Prediction of DNAm at unmea-
sured sites is more difficult to achieve than for common ge-
netic variants (SNPs) measured using arrays due to the more
complex correlation structure of DNAm over specific geno-
mic regions and CpG site densities, and due to the temporal
and tissue-specific variation of DNAm [25].

In principle, when the aim is to study actiology, DNAm
markers should be studied in disease-relevant tissues (i.e.
insulin-responsive tissues or insulin-producing {3 cells) to val-
idate their role in the causal pathway to disease [26]. For T2D,
such tissues might include pancreatic islets, liver, adipose tis-
sue, or skeletal muscle. However, internal tissues are more
difficult to access than peripheral blood, especially at scale
[23e, 27¢]. In addition, tissue contamination due to ongoing
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inflammatory processes in obese patients with T2D (i.e. infil-
tration of blood cells into adipose tissue) or due to sample
derivation should be considered. Cellular heterogeneity can
influence the comparison of DNAm across tissues.
Currently, cell-type deconvolution methods are being devel-
oped to estimate the proportion of cells in tissues different
from peripheral blood [28]. These methods could aid in dis-
criminating the inflammatory proportion in internal target tis-
sues. Conversely, when the aim is primarily for prediction
(irrespective of mechanistic role), it may be appropriate to
study more accessible tissues like blood, saliva, buccal cells,
cells in urine, skin cells, and faeces, which are commonly
collected in large-scale epidemiological studies [11, 14].
Replication of signals detected in accessible tissues within
internal target tissues may provide further evidence of their
biological role in T2D pathophysiology and their potential use
in diagnostics or therapeutics.

Methylation may be influenced by environmental factors
related to the disease being studied, by the disease itself or
disease treatment, and this possibility of reverse causation
means that it can be difficult to discern causality in cross-
sectional studies [11, 14, 22]. Studies that measure DNAm
before clinical detection of T2D can be valuable in this regard
[14, 23e, 26], as they reduce the likelihood of confounding by
reverse causation (i.e. disease influencing DNAm variation).
However, longitudinal studies are expensive and uncommon
when compared with cross-sectional studies [11, 14, 23] and
do not completely eliminate risk of reverse causation due to
subclinical manifestations of the disease [10]. In T2D, several
studies have replicated markers of predisposition detected lon-
gitudinally, in cross-sectional case-control studies [27¢, 29¢].
This suggests that variation in methylation detected prior to
disease onset is not necessarily indicative of causality since
the observed associations can still be influenced by unmea-
sured environmental or genetic confounders [10].
Alternatively, the analysis of glycemic and other T2D-
related traits has been useful to identify markers of predispo-
sition and potential prediction of T2D in disease-free partici-
pants [15, 30-32].

Another challenge that can hamper the identification of
epigenetic mechanisms in T2D is sample size. Adequate sam-
ple sizes required to detect associations in epigenetic epidemi-
ology studies have been estimated to be in the region of ~
1000 samples, whereas the vast majority of published litera-
ture in this field falls well below this threshold [24]. Studies of
the epigenetic epidemiology of T2D have tended to be small-
scale (< 100 participants) and therefore suffer from low statis-
tical power. More recently, replication and meta-analysis of
associations across studies have become more common [11,
22]. Replication and meta-analysis are facilitated by the emer-
gence of large consortia of cohorts that use similar profiling
methods for DNAm and standardised protocols for data pre-
processing and analysis [10, 11, 22].
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Summary of Current Knowledge from Human
DNA Methylation Studies in T2D

Candidate Gene Analyses

Epigenetic studies based on candidate loci rely on previous
knowledge in order to select the genomic region(s) to study
[33]. Several candidate gene studies have been conducted to
date that use T2D relevant tissues such as human pancreatic
islets [34-37] or skeletal muscle biopsies [38] from T2D do-
nors and appropriately selected controls. These studies have
identified differential methylation at genes related to insulin
activity (INS and GLPIR) [35, 37], 3 cell function (PDX1)
[36], and energy balance (PPARGCIA) [34]. In addition, there
have been several candidate gene studies aimed at identifying
methylation variable loci using peripheral blood DNA
[39—43] (Table 1), and they have been reviewed in detail else-
where [23, 33, 44]. One recent example is the study conduct-
ed by Seman et al. [45] looking at differential methylation at
the promoter of SLC30A8, a pancreas-specific zinc efflux
transporter [23¢]. The authors identified hypermethylation of
five CpG sites in SLC30A8 in T2D cases (n = 509) versus
controls (n = 441) in a large Malay study [45].

Overall, results of the candidate gene approach have shown
that differential methylation at the promoter regions of well-
established genetic loci for T2D is associated with T2D risk.
Two hypotheses arise from this observation (i) that genetic or
epigenetic perturbation at the locus of interest may both con-
tribute to disease risk (an additive effect), or (ii) that DNAm
might be important in mediating the effect of known genetic
variants and T2D (a mediating effect). However, recent genet-
ic studies of DNAm using peripheral blood have provided less
evidence that DNAm is mediating the effect between known
T2D-SNPs and T2D risk [46, 47¢], with the exception of
methylation at the T2D candidate loci KCNJ11, WFSI [47¢],
and KCNQI [46].

Epigenome-Wide Approaches

Epigenome-wide association studies (EWAS) of T2D have
been conducted to identify novel markers of disease incidence
or prevalence (Table 1) using longitudinal and cross-sectional
studies, respectively.

Blood DNA Methylation as a Marker of Incident T2D

One of the earliest genome-wide studies of T2D was conduct-
ed by Toperoff et al. using a microarray-based technology
[48]. This study identified several differentially methylated
regions (DMRs) associated with T2D that were enriched in
genetic loci previously reported for T2D. In a second prospec-
tive cohort, the authors identified that hypomethylation of one
of the associated regions (in F70) was observed in young

individuals who later progressed to T2D, relative to the indi-
viduals who stayed healthy [48].

More recently, Chambers et al. conducted the largest study
to date looking at differential DNAm in association with fu-
ture T2D. This multiethnic longitudinal study included sam-
ples of Indian Asian (discovery) and European (replication)
origin [16¢]. Hypomethylation at CpG sites in TXNIP
(cg19693031), PHOSPHO1 (cg02650017), and SOCS3
(cgl8181703), and hypermethylation at SREBFI
(cg11024682) and ABCGI (cg06500161) were associated
with greater risk of developing T2D over the ~ 8.5-year
follow-up [16°] (Table 1). In addition, these five CpG sites
were combined into a methylation risk score that predicted a
3.51 (95% CI = 2.79-4.42) increased risk of future T2D
among Indian Asians. This association was independent of
adiposity and the homeostasis model assessment for insulin
resistance (HOMA-IR) [16¢]. Due to the short time elapsed
between sample recruitment and disease detection (mean = 8.5
years), it is possible that some individuals with subclinical
disease could have been misclassified as disease-free at base-
line in this study. However, an independent study by Daych
et al. [54] replicated associations at ABCGI and PHOSPHO1
using samples from the Botnia prospective family-based
study. In this study, unaffected participants were on average
followed-up during 8.1 years until clinical detection of T2D.
Dayeh et al. also demonstrated that methylation of ABCGI
and PHOSPHO! was associated with other metabolic risk
factors [54]. To further support a mechanistic role of methyl-
ation at ABCGI and PHOSPHO! on T2D, Dayeh et al. com-
pared the association at these sites using target tissues for
T2D, identifying consistency in the direction of effect between
blood and adipose tissue for ABCG1, and between blood and
skeletal muscle for PHOSPHO! [54]. Lastly, gene expression
of ABCGI was inversely correlated with methylation of
ABCGI in muscle but not in peripheral blood, whilst no cor-
relation between these traits was identified for PHOSPHO! in
any of the tissues interrogated [54].

Blood DNA Methylation as a Marker of Prevalent T2D

The vast majority of T2D EWAS have used a cross-sectional
case-control design to compare DNAm in diagnosed T2D
cases and controls who are presumed to be disease-free [15,
27,29, 48,49, 52, 55, 56]. Some of the CpG sites identified
in studies of prevalent T2D (TXNIP, ABCGI, and SREBFI)
have also been reported in studies of incident T2D [16¢]. This
might be explained by misclassification of subclinical T2D as
disease-free (as discussed above), or it might also reflect a
causal effect of DNAm at these sites on T2D, which persists
once the disease is established. It could also reflect persistent
confounding factors, including underlying genetic effects on
T2D and DNAm.
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In EWAS of T2D using peripheral blood, the CpG site that
has most commonly been associated with T2D, independently
of body mass index (BMI), is TXNIP (cg19693031) [15, 27,
29e, 55, 56¢]. For example, in a case-control study of ~ 1500
adults, Florath et al. [29¢] identified 39 T2D-associated CpG
sites in a discovery cohort, with replication of methylation
differences in a second subset of the cohort for a signal map-
ping to TXNIP. At this site, T2D cases are consistently
hypomethylated compared with controls according to studies
in Europeans [16e, 29+, 55], Indian Asians [16¢], Mexican
Americans [15], Arabs [49], and Ghanaians [56¢]. The
generalisability of the association at 7XNIP across populations
supports the potential clinical use of this site as a biomarker of
T2D risk. In addition, methylation of TZXNIP appears to be
inversely associated with HbAlc [29+, 55, 56¢] and fasting
glucose [29¢], leading to the hypothesis that sustained hyper-
glycemia may be one of the factors driving hypomethylation
of TXNIP [57]. TXNIP is the thioredoxin interacting protein,
which is responsive to glucose concentrations in the cell. The
protein is overexpressed in humans and animals with T2D
[23¢], and its function has been linked to vascular complica-
tions by modulating angiogenesis and inhibiting the vascular
endothelial growth factor (VEGF) [23°].

In addition to TXNIP, reproducible CpG sites in T2D have
been reported at ABCGI (cg06500161), C70rf50 (cg04816311),
and CPTIA (cg00574958) [56¢], and more population-specific
sites have been discovered at DOXI (cg06721411), TPM4
(cg07988171), and MSI2 (cg23586172) in samples of Qatari
[49], Ghanaian [56¢], and Korean origin [58], respectively.

Considering the growing evidence of DNAm as a marker of
T2D predisposition and state, Walaszczyk and colleagues evalu-
ated the replicability of the CpG sites most recently reported in
the literature in association with T2D, HbAlc, and fasting glu-
cose [27¢]. Associations considered for replication were CpG
sites that had been previously reported across ethnic groups
and tissues [27¢]. The target sample for replication was a case-
control subsample (n = 200, cases = 100, controls = 100) of the
LIFELINES prospective population-based study from the
Netherlands with availability of whole blood DNAm [27¢].
Replication was achieved for T2D-associated CpG sites in
ABCGI, LOXL2, TXNIP, SLCIAS, and SREBF1, and for fasting
glucose-associated CpG sites in ABCGI and CCDCS57 (Table 1).
Additionally, the authors reported poor cross-tissue consistency
in T2D-associated CpG sites, as none of the associations previ-
ously reported in the liver, pancreas, and adipose tissue were
replicated in blood.

EWAS of prevalent and incident T2D using peripheral
blood DNA have also demonstrated that methylation variable
loci in T2D do not overlap with previous GWAS loci for the
disease. Thus, DNAm may influence biological mechanisms
of tissue response to hyperglycemia different from those im-
plicated by genetic studies, which appear to be primarily as-
sociated with 3 cell function and insulin activity.

EWAS of T2D in Disease-Relevant Tissues

EWAS of T2D have also been conducted in disease-relevant
tissues and have recently been reviewed by Davegardh et al.
[57+]. Sample sizes used in these studies tend to be smaller due
to tissue or cell availability. However, replicated associations
between DNAm and T2D, or T2D-related traits (i.e. obesity,
BMI, fat distribution, diet, exercise), have been identified in
adipose tissue [50, 51, 59-64], islets [53, 65—67], skeletal
muscle [59, 68, 69], and liver tissue [70, 71] (Table 1).
However, there has been little overlap between CpG sites
identified in EWAS of these tissues and EWAS of blood, ex-
cept for at ABCG1, which was hypermethylated in blood and
in adipose tissue of T2D cases [54], and MSI2, which was
hypomethylated in blood and in pancreatic islets of T2D do-
nors [58]. Conversely, unlike in EWAS of T2D in blood, some
of the methylation loci identified in EWAS of disease-relevant
tissues overlap with GWAS loci for T2D [60-62, 67].

The genetics of epigenetics and using Mendelian
randomisation as a method to infer the causal role
of methylation variation in T2D

The genetics of epigenetics and using Mendelian randomisation
as a method to infer the causal role of methylation variation in
T2DDisease-associated methylation variation may be causal or
consequential [10, 72]. Several mechanisms explain how vari-
ation in methylation arises prior to disease onset, for example
via stochastic changes during development, or in response to
environmental exposures at any stage of the life course [12].
However, variation in methylation detected prior to disease on-
set is not always an indicator of causality [12]. Because obser-
vational studies do not allow us to distinguish between causal
and consequential epigenetic variation, following robust repli-
cation of findings, triangulation of methods for assessing cau-
sality is increasingly informative [73, 74]. Methods include
parental negative control studies [75], cross-cohort comparisons
[73], matched within sibship designs [76], and Mendelian
randomisation (MR) [9, 11, 74, 77-79]. MR is increasingly
widely applied in epigenetic studies and is reviewed here.

MR uses germline genetic variations as instrumental vari-
ables to establish the causal relationship between a modifiable
exposure (in this case, DNAm) and a related outcome (in this
case, T2D) in observational epidemiology [9, 80—-82].
Because genetic variants are randomly transmitted from par-
ents to offspring, they are fixed at conception and not influ-
enced by behavioural, socioeconomic, or physiological fac-
tors commonly affecting observational associations, or by
the disease itself through reverse causation [9, 80, 81]. MR
can be applied to epigenetic studies in a number of different
ways (Fig. 1); (a) to seek causal evidence of an exposure (e.g.
smoking, alcohol intake, obesity) on methylation variation
[78]; (b) to seek causal evidence of a mediating role of
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Fig. 1 Example of how Mendelian randomisation can be applied to
ascertain causality in epigenetic studies of T2D. a Investigate the causal
role of known risk factors for T2D on variation in DNA methylation using
EWAS evidence. Genetic proxies for the risk factor are extracted from the
largest GWAS meta-analyses. These genetic variants should be
independent of known confounders of the main association. b Use of
MR to interrogate the mediating role of DNA methylation variation in
the association between established risk factors and T2D. This design is
known as a two-step epigenetic MR. The first step of the analysis
calculates the causal effect of a risk factor on variation in DNA

methylation variation on a disease outcome (e.g. smoking,
methylation change, lung cancer) [83]; or (¢) to asses direc-
tionality of an observed association when reverse cause is
suspected [32].

Sources of genetic instruments to conduct MR studies are
GWAS of relevant exposures or traits, and studies identifying
methylation quantitative trait loci (meQTL), which detect
common genetic variants (SNPs) associated with variation in
DNAm at CpG sites [9, 11, 84]. Due to the nature of DNAm,
meQTL need to be identified in a temporal and tissue-specific
manner, ideally consistent with the time-point and tissue
where the epigenetic association was observed [9, 11, 84].
Large-scale meQTL studies have been conducted by Gaunt
et al. (www.mqtldb.org) [84], Bonder et al. (BIOS QTL
browser, https://genenetwork.nl/biosqtlbrowser/) [85], and
most recently, by the genetics of DNAm consortium
(GoDMC, www.godmc.org.uk/). Collectively, these studies
provide a catalogue of known meQTL. However, they have
the limitation that meQTL are exclusively derived from
peripheral blood DNA. To date, the two largest consortia for
the study of the genetics of T2D and glycemic traits are the
Diabetes Genetics Replication and Meta-analysis
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methylation based on EWAS findings and using GWAS loci to proxy
variation in the exposure. The second step calculates the causal effect of
DNA methylation (mediator) on T2D using independent methylation
quantitative trait loci (meQTL acting in cis or trans) to proxy for
variation in DNA methylation. meQTL are extracted from large studies
of meQTL catalogues. Lastly, the mediated effect is calculated by
multiplying the intermediate causal effects between the risk factor and
DNA methylation, and between DNA methylation and T2D. ¢ Applying
bidirectional MR to investigate the causal direction of an observational
association identified between DNA methylation and T2D in an EWAS

(DIAGRAM, www.diagram-consortium.org) and the Meta-
analysis of Glucose and Insulin-related traits consortium
(MAGIC, www.magicinvestigators.org/).

Special considerations for the design of MR studies have been
described elsewhere [80—82]. Based on the source of data used to
derive effect estimates of the association between the genotype,
the modifiable exposure, and the outcome, the MR approach can
be a single sample MR (estimates from a single sample with
individual-level data) or a two sample MR (estimates from two
independent samples with summary data) [81, 82]. Previously,
MR studies in T2D have been performed to understand the caus-
al role of adiposity, blood lipids, and inflammatory risk factors on
the disease [86]. However, as outlined above, MR can also be
extended to study the causal role of DNAm as a mediator in the
exposure-outcome association, or as the exposure or outcome of
interest [77]. In either case, causality needs to be supported by
identifying SNPs in strong association with methylation at the
CpG site(s) of interest [11, 47+, 77, 78, 87].

Despite continues efforts to increase sample size, the power
of current meQTL studies only allows identification of a small
number of independent SNPs strongly associated with DNA
methylation levels at CpG sites of interest [88]. This
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phenomenon imposes some limitations when using meQTL as
instruments in MR studies due to the small variance in methyl-
ation captured by the meQTL (i.e. weak instrument bias), and
the inability to conduct further sensitivity analyses to rule out
confounding by horizontal pleiotropy [88]. Evidence to date
supports a highly polygenic architecture of DNAm. Future
datasets of meQTL are expected to provide stronger instru-
ments for a larger number of CpG sites and will need to include
the development of methods to allow the use of multiple
meQTL in a single instrument whilst accounting for their likely
correlation with each other. Approaches such as multiple trait
colocalisation have proven useful in strengthening causal infer-
ence [88] but further methodological development is warranted.
The risk of false positives can be reduced by conducting an in-
depth inspection of the associations identified drawing upon
various sources of tissue-specific reference data for example.

In comparison with GWAS of complex traits that include large
sample sizes, studies with availability of genetic and DNAm data
are generally modest in size [47¢]. In principle, having a small
sample size can limit the use of DNAm in a single sample MR
analysis, but this can be circumvented in a two sample MR de-
sign, where associations are retrieved from summary data using
two independent and well-powered samples [47¢].

Interaction Between Genetic and Epigenetic Variation in T2D

The role of the epigenome in regulating gene function is not
independent of the genotype, as SNPs can influence methylation
variance at CpG sites that also have a component of environmen-
tal variance [77]. In some instances, SNPs can affect methylation
directly by introducing or removing a CpG site in the context of
CpG-SNPs [23¢, 89, 90], which have been identified in blood [84]
and in T2D relevant target tissues [90-92]. Despite identifying
SNP-DNAm associations at candidate loci for T2D [46, 47+, 90]
and obesity [93], it is still unclear whether genetic variants affect
both traits, DNAm and the disease, simultaneously or indepen-
dently. In a study conducted by Elliott et al. [46], the principles of
MR were used to ascertain the role of DNAm as a mediator in the
association between the genotype (i.e. established GWAS SNPs
for T2D) and future liability to T2D, based on methylation pro-
filed in unaffected young participants [46]. Multiple CpG sites
associated with T2D-SNPs were identified as potential non-
causal biomarkers for T2D [46]. However, only for one site (map-
ping to the KCNQI gene) was there any evidence that DNAm
was on the causal pathway to disease in later life [46].

Instead of using T2D-SNPs as causal anchors to identify CpG
sites associated with liability to T2D, Richardson et al. used
meQTL as instrumental variables to ascertain the causal role of
DNAm as a mediator in the genotype-T2D and genotype-
glycemic traits association [47¢]. meQTL were extracted from
the mQTL database [84], while associations with the outcome
were extracted from the latest GWAS meta-analysis in T2D
[94] and glycemic traits [95, 96]. Analyses were performed using

a two sample MR, and after multiple testing correction, a causal
role of DNAm on T2D (at p < 1.39 x 10%) was identified at CpG
sites in cg04198914 (HNF1B), cg03864215 (KCNJ11),
€g23956648 (IGF2BP2), and ¢g25064352 (WFSI) [47¢], as well
as at cg15453836 (PEAKI) and cg01883759 (JAZFI) [47¢]. With
respect to the glycemic traits, a causal effect of methylation on
fasting proinsulin was detected at five CpG sites (in PDE2A,
PTPMTI, STARDI0, and ARAPI), and with HbAlc at seven
CpG sites (in G6PC2, TBCD, and FN3K) [47°]. The use of
colocalisation methods further indicated that the same causal var-
iant was explaining variation in DNAm and T2D at KCNJ1] and
WEFS1, while for the remaining loci, associations were explained
by two different but correlated instruments [47¢]. To ascertain the
true direction of effect, a reverse MR (T2D-DNAm) was con-
ducted for associations with previous evidence of colocalization
[94]. In this analysis, 25 SNPs identified in a recent GWAS meta-
analysis for T2D were used as genetic instruments. Compared
with results of the forward MR (DNAmM=> T2D), results of the
reverse MR showed weaker evidence (p > 1.39 x 10”®) that T2D
was causally determining changes in DNAm at KCNJ1/ and
WEFSI [47¢]. Overall, the study by Richardson et al. illustrates
how MR methods can be used to prioritise DNAm markers with
potential influence on T2D and related traits. However, CpG sites
identified in this causal analysis cannot be regarded as true medi-
ators of the SNP-T2D and SNP-glycemic trait associations, as
possible horizontal pleiotropic effects (i.e. SNP-T2D association
independent of DNAm) could not be completely ruled out, even
after incorporating colocalisation methods.

Causal Effect of DNA Methylation on T2D and Related Traits
Based on EWAS Findings

MR can also be applied to associations detected observationally
using EWAS, e.g. for BMI [32¢, 78, 87], although this approach
has yet to be formally adopted for T2D. For BMI, MR analyses
have demonstrated that changes in methylation are more likely
to be a consequence of BMI rather than the cause [32°, 87].

A logical extension of this causal evidence (that the disease
state impacts methylation and not vice versa) is that methylation
variable loci may be informative in prediction of future comor-
bidities. In a study by Wahl et al. [32¢], a methylation risk score
generated using 11 CpG sites prospectively associated with BMI
was able to predict future T2D risk (relative risk = 2.3, 95% CI =
2.07-2.56 per 1SD increase in the score) [32¢].

Considering the growing evidence of methylation variable
loci associated with T2D based on well-powered EWAS and
meta-analyses of EWAS of T2D, it is necessary to strengthen
evidence of the causal role of these signals using triangulation
of causal inference methods, including MR, to prioritise can-
didate methylation loci for the early detection, adequate
subtyping, and treatment of T2D. Even if they are not causal,
CpG sites detected prospectively in association with T2D can
be used as biomarkers based on the replicability of these
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associations across studies, and on their relevance in revealing
new biological mechanisms of disease.

Conclusion

Epigenetic studies of T2D offer a new avenue to discover novel
biological mechanisms implicated in T2D aetiology alongside
biomarkers of disease that are potentially informative for disease
prediction. A number of loci have been detected in large-scale
studies measured predominantly in blood, including 7XNIP,
ABCGI, CPTIA, and SREBFI. Methods to establish causality
of epigenetic markers in T2D aetiology are becoming common-
place. Because observational studies do not allow differentiation
between causal and consequential epigenetic variation, triangu-
lation of methods for assessing causality is increasingly infor-
mative. MR is a frequently used method for assessing causality
that we have reviewed here. Ultimately, understanding the cau-
sality of epigenetic markers in T2D aids prioritisation of CpG
sites as earlier biomarkers to detect disease, or in drug develop-
ment to target epigenetic mechanisms in order to treat patients.
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