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Abstract
Purpose of Review Breast cancer is the most common cancer among females in developed countries. Strategies such as early
detection by breast cancer screening can reduce the burden of disease but have disadvantages including overdiagnosis and
increased cost. Stratification of women according to the risk of developing breast cancer, based on genetic and lifestyle risk
factors, could improve risk-reduction and screening strategies by targeting those most likely to benefit.
Recent Findings Breast cancer risk is partly determined by genetic factors including rare pathogenic variants in susceptibility
genes and common low-risk variants. Other risk factors include alcohol use, smoking, reproductive factors, hormonal factors,
family history, mammographic density, BMI, and body height. Ideally, all risk factors are combined into an individual breast
cancer lifetime risk score, but this requires knowledge about their interactions as well as accurate effect sizes. A few risk models
seem to be sufficiently developed to inform clinical risk management to minimise cancer risk of those at increased risk and avoid
overtreatment of those at decreased risk.
Summary In this review, we briefly summarise the breast cancer susceptibility factors and discuss avenues towards combining all
these factors to create individual risk scores.

Keywords Breast cancer . Gene panel . Polygenic risk score . Individualised breast cancer risk prediction

Introduction

Breast cancer is the most common cancer among women in
Europe, with approximately 523,000 cases diagnosed annual-
ly [1] and remains a leading cause of death among adult wom-
en. Primary prevention of breast cancer by endocrine therapy
has side effects and is not absolute, whereas prophylactic sur-
gery is very effective [2] but socially and emotionally burden-
some. Secondary prevention by early detection through

mammographic screening can reduce mortality but at the cost
of overdiagnosis and the burden of false-positive results [3, 4].
Stratification of women according to the risk of developing
breast cancer could provide a persuasive rationale for surgical
intervention as well as improve the efficacy of risk-reduction
and screening strategies by tailoring starting age and frequen-
cy [5, 6•].

Box 1 Definition of breast cancer risk

Clinically, definitions such as low, moderate, and high breast cancer risk
are often used. However, this can reflect relative or absolute risks. For a
given relative risk (RR), absolute risk can vary between countries
depending on cancer incidences. Another term often used is lifetime
risk, which is the absolute risk of breast cancer over the period of a
woman’s life. Here, we definemoderate risk as RR= 2 to 4, high risk as
RR> 4, and low or population risk as RR< 2.

To accurately assess a woman’s risk, it is important to take
all risk factors into account. Having a positive family history is
one of the main risk factors for breast cancer. For women with
a first-degree relative with breast cancer, the risk for develop-
ing breast cancer is twofold compared with women without
such a family history [7]. Approximately 25% of this familial
relative risk (FRR) is explained by (likely) pathogenic variants
in a small number of genes, and a further 18% by the currently
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known common low-risk variants, mostly single nucleotide
polymorphisms (SNPs) [8, 9, 10•, 11]. Besides the familial
relative risk, other risk factors such as mammographic density
and lifestyle factors are also important. In this review, we
briefly summarise the breast cancer susceptibility factors,
and then discuss avenues towards combining all these factors
to create individual risk scores, and towards the identification
of factors capable of explaining the remainder of familial rel-
ative risk.

Rare Genetic Variation Associated with Breast
Cancer

The definition of ‘rare’ variation is somewhat arbitrary but is
generally taken as to occur in < 0.5% of the general popula-
tion. Indeed, we currently know that some variants associated
with risk to breast cancer are extremely rare (< 0.001%),
others moderately rare (~ 0.1%), or even almost ‘common’
(~ 1%). In addition, the risks conferred by these variants
may vary from less than twofold to over tenfold. Classic link-
age analysis in multiple-case families discovered some of the
genes, but many were discovered by DNA sequencing of can-
didate genes. The best-known examples of linkage-detected
genes are BRCA1 and BRCA2 [12, 13]. Pathogenic variants in
either gene, each with a joint allele frequency of ~ 0.1%, will
lead to a high risk of breast and ovarian cancer [14, 15]. Other
genes, particularly TP53, PTEN, STK11, CDH1, and NF1,
were discovered because of their association with typical fa-
milial cancer syndromes of which breast cancer is one feature
[16–20]. Accordingly, their prevalence in the population is
extremely rare. These findings also underscore the pleiotropic
effects that some DNA variations display by predisposing to
cancers of diverse tissue origin. Yet for most breast cancer
genes discovered so far, the most conspicuous ‘other’ cancer
with which an association has been firmly established is ovar-
ian cancer. Another ‘syndromic’ gene is ATM; pathogenic
variants in ATM act in a recessive way to cause Ataxia telan-
giectasia, a neurodegenerative disorder, but heterozygous car-
riers are at moderately increased risk for breast cancer [21].
The discovery that BRCA1, BRCA2, and ATM are involved in
DNA damage repair, and that BRCA2 is a Fanconi anaemia
gene [22], suggested that other DNA repair genes might also
confer breast cancer susceptibility. Sequence analysis of these
candidates then led to the discovery of CHEK2, BARD1,
PALB2, NBN, and RAD51D [23–27] as breast cancer genes,
although evidence is sometimes limited to specific variants in
populations of specific ethnic background [26]. Breast cancer
risks in these five genes are generally moderate, with the ex-
ception of loss-of-function variants in PALB2, which can lead
to breast cancer risks comparable to BRCA2 [26, 28].

There is a long list of genes, including BRIP1, FANCC,
FANCM, MEN1, MRE11A, PPM1D, RAD50, RAD51B,

RAD51C, RECQL, and XRCC2, for which an association with
breast cancer has been reported in a few studies, but for which
replication in sufficiently large samples of cases and controls
and establishment of effect sizes are still lacking. In fact,
BARD1 and RAD51D were only recently confirmed in such
analyses asmoderate-risk genes [29•]. Finally, a long-standing
issue is whether the Lynch syndrome genes (MLH1, MSH2,
MSH6, and PMS2) and MUTYH are associated with breast
cancer risk. Interpretation of breast cancer incidence in studies
of Lynch syndrome families is complicated due to various
biases (e.g., ascertainment). The issue remains controversial
to date, even though a recent study again found an association
between pathogenic variants in MSH6 and breast cancer risk
[30]. More detailed discussions on the association of gene
variants and breast cancer and the corresponding risks can
be found in reviews by Wendt et al., Easton et al., and
Graffeo et al. [26, 27, 31].

Box 2 Classification of gene variants

The ACMG has recommended a five-tier classification system, which has
been adopted by many countries [32]. These classes are (1) Benign, (2)
Likely Benign, (3) VUS, (4) Likely Pathogenic, (5) Pathogenic. For
VUS, the pathogenicity and hence the association with disease risk are
unknown, usually because they result in a similarly shaped amino acid
or reside in a part of the gene not essential for its function.

Challenges in Risk Assessment and Clinical
Translation

Once a gene has been repeatedly associated with breast cancer,
other challenges arise that may hamper introduction into the
clinic. One is allelic diversity and the notion that different types
of variants (e.g., nonsense versus missense changes) might con-
fer different breast cancer risks [26]. For BRCA1 and BRCA2,
the effect of mutation-position on the relative risks for breast
and ovarian cancer has been firmly established [33].
Furthermore, several missense changes have been identified
in BRCA1 and BRCA2 that cause much more moderate risks
than the typical loss-of-function variants [34•, 35]. Conversely,
while most pathogenic variants in ATM will give an intermedi-
ate breast cancer risk, one specific missense mutation
(c.7271C>G) seems to reach a level of risk approaching that
of BRCA1/2 pathogenic variants [36, 37]. The presence of alle-
lic diversity in breast cancer genes also highlights the difficul-
ties we are still having with establishing pathogenicity for each
variant. This seems straightforward for protein-truncating vari-
ants (although exceptions exist [38]), but for many missense
and ‘spliceogenic’ variants the impact on protein function
(and, by inference, on cancer risk) is hard to predict. The many
in silico tools available for this purpose still perform poorly
with respect to clinical standards, and for virtually all genes
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listed above, well-calibrated high-throughput functional analy-
ses in model systems are lacking [39]. As a result, many vari-
ants detected by sequencing in these genes are still classified as
Variants of Uncertain Significance (VUS).

Another challenge is to establish the penetrance of patho-
genic variants and the corresponding breast cancer risks with
sufficient accuracy. With some exceptions, there is still much
uncertainty surrounding the magnitude and precision of the
risks conferred by pathogenic variants in the genes. One prob-
lem underlying this issue is ascertainment bias in the sample
used in the analyses. Patient series consisting mostly of wom-
en with a positive family history are almost certainly
overestimating risk due to the enrichment of other risk factors.
This is especially true for tumour syndrome genes, investiga-
tion of which is usually triggered by the syndrome criteria. For
example, the penetrance of TP53 variants was initially esti-
mated to be very high [40]. But with the introduction of gene
panel sequencing, pathogenic variants in TP53 were also re-
ported in families who do not fulfil the classical criteria of Li-
Fraumeni Syndrome [41]. These families show older ages of
onset of breast cancer [42], suggesting lower penetrance of at
least some TP53 pathogenic variants. This is consistent with
recent estimates of the prevalence of pathogenic germline
TP53 variants in the general population [43], which are also
much higher than expected on the basis of the prevalence of
Li-Fraumeni Syndrome alone. The other problem is the rarity
of variants, which necessitates the analysis of very large case-
control series in order to sufficiently narrow down confidence
intervals of risk estimates. For this reason, we have reasonably
good breast cancer risk estimates for the 1100delC variant in
CHEK2, which occurs in ~ 0.5% of the general population in
Europe [44, 45] and the USA [29•, 45], but not for most other,
much rarer variation in this gene. To establish an odds ratio of
2 with a 95% confidence interval of 1.4–2.8, conferred by a
variant with an allele frequency of 0.01%, it would require
genotyping 100,000 cases and 100,000 controls. Larger num-
bers are needed for lower risks and lower allele frequencies.

Gene Panel Studies—Non-BRCA1/2 Genes

Gene panel sequencing (GPS) has become a diagnostic reality
in cancer genetics. Due to the lower costs and improving data
quality, it became possible to test multiple genes in addition to
BRCA1 and BRCA2 in a single assay, driven by a desire to
explain familial clustering of breast cancer in more families
and thus impact clinical management. As explained above, the
frequency of pathogenic variants found in clinic-based series
of familial cases is dependent on the selection criteria of the
families included. The highest frequencies, up to 10%, of
pathogenic variants are still found in the BRCA1 and BRCA2
genes in familial breast cancer cases [46–48]. Pathogenic var-
iants in non-BRCA1/2 genes are found in 3.7–6.2% of the

cases [29•, 46–50]. The highest frequencies of pathogenic
variants in non-BRCA1/2 genes are found in CHEK2, ATM
and PALB2 [29•]. However, this increased diagnostic yield
comes at the expense of a large proportion of detected VUS,
which poses a significant clinical problem. Gene panel studies
have found a VUS in 13.6–41.6% of the cases [46, 48, 49, 51].
This means that for every pathogenic variant found in a case,
two to three cases with VUS are detected. Furthermore, gene
panels contain many genes for which the relevance to breast
cancer is unknown or uncertain, as outlined above. Due to
these uncertainties, most of the test results of commercial gene
panels do not translate well into cancer risk assessment. Even
the relatively well-defined cancer risks conferred by BRCA1
and BRCA2 are influenced by mutation position and mutation
class, as well as by non-genetic exposures and lifestyle factors
[35, 52, 53]. Therefore, the gain in clinical utility of testing
genes for which evidence of their association with breast can-
cer is still ill-defined remains limited [26, 54].

SNPs and Polygenic Risk Scores

Since 2005, genome-wide association studies, using SNP arrays
and very large case-control samples, enabled the identification
of common low-risk variants for breast cancer [11].
Collaborative groups, such as the Breast Cancer Association
Consortium (BCAC), have currently identified ~ 180 SNPs as
significantly associated with breast cancer [10•]. The first sub-
stantial batch of SNPs was found by the Collaborative
Oncologic Gene-environment Study (COGS) in 2013, coordi-
nated by BCAC, which was subsequently confirmed and ex-
tended by combining with other GWAS data [55]. Another 65
loci were detected after the introduction of the OncoArray, a
SNP array with a much denser SNP coverage than COGS
[10•]. Some of the associated SNPs aremore strongly associated
with Estrogen Receptor (ER)-negative or ER-positive subtypes
of breast cancer [10•, 56•]. The currently known SNPs explain
18% of the familial relative risk for breast cancer, but a much
greater proportion (~ 40%) can be explained when variants that
can be reliably imputed from the OncoArray data are included
[10•, 57•]. To validate these latter SNPs, very large case-control
studies are needed to reach genome-wide significance levels of
association because many of these are expected to be relatively
rare (< 5%) and/or of very small effect sizes.

The breast cancer–associated SNP alleles are distributed
normally throughout the general population. This means that,
in contrast to pathogenic variants in breast cancer susceptibil-
ity genes, all individuals in the population carry a certain
number of risk alleles, with most individuals carrying the av-
erage number. Individually, these risk alleles confer a very
small increase in breast cancer risk but their joint effect may
be a substantially higher [8]. In the absence of evidence of
clear interactions between SNPs [8, 58], a simple log-
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additive (or multiplicative) model combines all SNPs into a
single Polygenic Risk Score (PRS).

Many different PRSs for breast cancer have been published
in recent years (Table 1). Most studies have generated PRSs
for overall unilateral breast cancer, a few have addressed ER
status-specific PRS-models with the use of subtype-specific
odds ratios of certain SNPs. Subtype-specific PRSs can po-
tentially be useful to guide clinical management for chemo-
prevention and other prevention strategies. Two studies [74,
75] have used a PRS to predict contralateral breast cancer, and
two have studied the PRS as risk modifier in rare gene muta-
tion carriers (BRCA1, BRCA2, and CHEK2) [72•, 73•]. The
number of SNPs, their allele frequencies, and effect sizes deter-
mine the discriminatory and predictive power of a PRS.
Predictive power of a PRS is usually expressed as odds ratio
(OR) per standard deviation unit of the distribution; discrimi-
natory power is assessed by the area under the curve (AUC).
The number of SNPs included in a PRS is not strongly corre-
lated with the overall effect size or the AUC. This is because the
SNPs detected in the earliest studies, although smaller in num-
ber, generally have higher effect sizes than those detected more
recently in studies with more statistical power. Including large
numbers of SNPs at lower than genome-wide significance
thresholds may increase predictive power of the PRS but at
the expense of being less specific [57•].

A limitation of many PRSs is that most SNPs contained in
it are discovered in European-descent populations and their
effects cannot be translated directly to other ethnicities.
Studies are ongoing to define breast cancer–associated SNPs
and evaluate the European-descent-derived PRSs in Asian and
African-American populations.

For all PRS-models, theAUC ismodest, but should this alone
preclude their application as an individual test to predict if a
woman will develop breast cancer or not? A comparison with
gene panel testing, which is widely used in the clinic for this
purpose, is illustrative. A PRS has been shown to be capable of
stratifying women into different risk categories in a clinically
meaningful way [8, 62, 73•, 74], but the most relevant clinical
information of the PRS is in the extreme tails of the distribution.
And because these tails concern the general population (as op-
posed to gene carriers only), the associated attributable risks of
the PRS are in fact far greater than that achieved by gene panel
testing. For example, the best performing PRS at this moment
includes 313 SNPs with an association at a p value threshold
three orders below genome-wide significance (P < 10−5). For
this PRS, in the general population, 35% of all breast cancers
occur in women in the highest quintile and only 9% of all breast
cancers in the lowest quintile [57•]. Women in the top 1% of the
PRS313 are at fourfold elevated risk relative to population aver-
age (95% CI 3.34–4.89), a risk-level defined in many countries
as ‘high’. In comparison, BRCA1mutation carriers explain < 2%
of all breast cancer in Western Caucasian populations [76] and
comprise ~ 0.1% of the general population. Implementation

research is ongoing to introduce the PRS into clinical genetic
testing, e.g. in the Netherlands, Germany, the UK and the USA.
An example of how individual PRS testing could aid risk
counselling in the setting of familial breast cancer is shown in
Fig. 1, which highlights how two individuals that would other-
wise have received the same risk assessment (sisters in genera-
tion IV) on the basis of their identical family history, are clearly
classified into distinct risk classes on the basis of their PRS313.

Another potential application of the PRS is in deciding
when and how frequent women should undergo breast cancer
screening [6•, 77]. In most countries running such screening
programs, women are offered screening above a certain age,
usually between 45 and 50, when their breast cancer risk ex-
ceeds a certain cost-effective level. Women in the lowest quin-
tile of the PRS313 in fact never reach that threshold, whereas
those in the highest quintile will attain this level of risk before
age 40 years [57•].

Hormonal, Environmental and Lifestyle Risk
Factors

A number of non-genetic risk factors are presently firmly
established as being associated with breast cancer. Besides
age, these include physical factors such as body height and
weight [78, 79]. For weight, breast cancer risk is dependent on
menopausal status. Weight gain and obesity (BMI > 30) after
menopause are associated with an increase in postmenopausal
breast cancer [78]. It is likely that higher oestrogen levels
underlie this effect in postmenopausal women [80]. A higher
mammographic density due to a high proportion of connective
and glandular relative to adipose tissue leads to a higher risk
for breast cancer [81, 82]. Hormonal factors influencing breast
cancer risk include the use of oral contraception and hormone
replacement therapy (HRT) [83, 84], as well as age at menar-
che and menopause [85]. Reproductive history (age of first
childbirth or nulliparity) may have similar impact on mamma-
ry gland biology [82, 86]. The lifestyle factors like alcohol use
and smoking increase breast cancer risk as well, while phys-
ical activity and breastfeeding seem to act protectively
[87–89]. Finally, a personal history of benign breast disease
also signifies an increased breast cancer risk [82].

Combining Risk Factors

Since any woman will have only a single certain risk level at a
givenmoment in time to develop breast cancer over the course of
her life, genetic and non-genetic risk factors must somehow
combine to define that risk. A major challenge for individual
breast cancer risk prediction, therefore, is to design risk calcula-
tion models that accommodate all known risk factors, which
require knowledge about the underlying model and how they
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interact. Through the large international consortia such as
BCAC, data to design and validate such models are now forth-
coming. There are now much more accurate estimates on how
the PRS canmodify the breast and ovarian cancer risks conferred
by pathogenic variants in BRCA1, BRCA2, and CHEK2 [72•,
73•] (Table 1). This can help inform choices and timing of pre-
ventive surgery or chemoprevention. The interaction between
the 1100delC variant in CHEK2 and the PRS appears to follow
a simple multiplicative interaction, but the per SD hazard ratio
estimates in BRCA1 and BRCA2 carriers were smaller than those
in general population (Table 1). In BRCA1 carriers, the PRS
based on SNPs associated with ER-negative disease showed a
much stronger association with breast cancer risk in comparison
with the ER-positive PRS, consistent with the predominant ER-
negative tumour subtype in BRCA1 carriers [73•]. These issues
highlight the complexity of some of these interactions and un-
derscore the necessity of large prospective cohort studies to val-
idate these models. A similar deviation from simple multiplica-
tive interactions has been found for individuals with rare patho-
genic variants in more than one breast cancer–associated gene
[90]. There is limited evidence for interaction between SNPs and
lifestyle/hormonal factors [91]. For environmental factors (e.g.
reproductive factors, BMI and alcohol intake), the PRS can, in
general, be combined in a multiplicative way [92].

Breast Cancer Risk Prediction Models

Currently, predicting whether a woman will develop primary
breast cancer or not is mainly done within Cancer Family

Clinics. Healthy women who are worried because of their
family history for breast cancer can be referred by their gen-
eral practitioner to such a clinic; alternatively, breast cancer
patients with a clear family history are referred by oncologists,
also because of the potential impact a gene diagnosis may
have for their therapeutic options. The major incentive behind
these referrals is the possibility to detect a high-risk variant in
BRCA1, BRCA2 and, more recently, PALB2. As set forth
above, however, such variants are found in < 10% of all re-
ferred families. For women from non-BRCA1/2 breast cancer
families, breast cancer risk is often based on family history
alone, although more than 20 risk prediction algorithms
known today [93] include other risk factors as well. Some
well-known risk prediction algorithms are the Gail model,
BRCAPRO, Tyrer-Cuzick and the breast and Ovarian
Analysis of Disease Incidence and Carrier Estimation
Algorithm (BOADICEA). Depending on what the model pre-
dicts and for which population, the most appropriate model
can be used.

The Gail model predicts breast cancer lifetime risks for
women older than 35 years and is widely studied and validat-
ed. It includes hormonal risk factors, breast biopsies and af-
fected first-degree relatives [93, 94]. The Chen model extends
this by incorporating mammographic breast density as well
[95]. The BRCAPRO model calculates breast cancer lifetime
risks and the risk of contralateral breast cancer. The calcula-
tion is based on family history, the prevalence of BRCA1 and
BRCA2 pathogenic variants, population incidence rates and
pathological markers for breast cancers [96]. The Tyrer-
Cuzick model incorporates hereditary (first- and second-

Fig. 1 Standardised Polygenic
Risk Scores for breast cancer
cases and their female relatives. In
this non-BRCA1/2 breast cancer
family, multiple family members
were genotyped by SNP array.
For all genotyped individuals, the
SNP313 Polygenic Risk Score
(PRS) was calculated. The
individual PRSs are standardised
to population controls in the
BCAC dataset (mean = 0 and
SD= 1 in controls). The numbers
in the figure are therefore Z-
scores of the individual PRSs. A
higher Z-score indicates a higher
breast cancer risk
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degree relatives with breast or ovarian cancer), hormonal and
environmental risk factors (age, BMI, menarche, reproductive
factors, menopause and HRT) and pathological variables
(b reas t b iops ies and ben ign breas t pa tho logy) .
Mammographic density will be incorporated in the model in
an upcoming version [93]. BOADICEA calculates breast can-
cer lifetime risks and contralateral cancer risks for women
with a family history of breast cancer [97]. The model in-
cludes tumour pathology characteristics, current cancer inci-
dences and pathogenic variants in ATM, BRCA1, BRCA2,
CHEK2 and PALB2. For BOADICEA, family history is not
restricted to a number of relatives or a particular degree.

Several studies have shown an improved discriminative
power between breast cancer cases and controls by combining
the PRS with a breast cancer risk prediction tool [60, 63, 66,
69]. In one study [62], new breast cancer lifetime risks for
women from breast cancer families were calculated by adding
the PRS to family-based risk prediction. For up to 23% of the
women, screening recommendations, as stipulated by local
management guidelines, could alter.

The BOADICEA model has recently been extended to ac-
commodate a broad range of genetic and non-genetic risk
factors for breast cancer, adding mammographic density, re-
productive factors, age at menarche and menopause, use of
hormones, BMI, body height, alcohol use and the SNP313 PRS
to the previous version [98•]. This is the first time that somany
factors are combined into a single model. Unsurprisingly, the
potential for risk stratification was the greatest when all risk
factors were used for risk prediction. Of all factors, the PRS
had the largest contribution in risk stratification. Without
knowledge of the genetic status of a woman for the rare genes,
or family history, the lifetime breast cancer risk varied from
2.8% for the lowest to 30.6% for the highest percentile of the
PRS. The model assumes that the risk factors and the PRS act
multiplicatively, consistent with evidence from previous stud-
ies but not yet formally demonstrated for PRS313. Similarly,
the assumption that the PRS313 combines multiplicatively
with the effects of rare truncating variants in the five breast
cancer genes will need validation. Finally, the current
BOADICEA model uses population breast cancer risks of
several countries but the UK risk factor distributions and
therefore may require tailoring for application in other
populations.

Conclusion

Approximately half of familial relative risk of breast cancer
can be explained by the genes and variants identified over the
past three decades. In order to be able to maximally exploit a
woman’s genomic data for breast cancer risk prediction, we
will have to detect the genetic factors underlying the remain-
ing half. To do so, researchers must face the conundrum of

genome-wide significance and costs. Restricting to protein-
coding regions by whole-exome sequencing, a so-called bur-
den-type association analysis (counting presumable loss-of-
function variants in cases and controls), and using a
Bonferroni-corrected significance level of p < 2.5 × 10−6 will
require data on at least 10,000 cases and 10,000 controls to be
sufficiently powered. For whole-genome sequencing, not only
the costs per sample are several-fold higher than for exome
sequencing, genome-wide significance is at least 50-fold more
stringent, requiring many more samples to be analysed. In
addition, functional annotation of intronic and intergenic var-
iants, to guide which variants to include in the association
analysis, is still in its infancy.

Epidemiology has firmly established and quantified the
role of many non-genetic factors in causing breast cancer.
Currently, computational models are being built that integrate
available knowledge so as to allow highly personal risk esti-
mates. Ultimately, such models will empower women to ex-
ploit these risk estimates and take appropriate actions to lower
this risk (many risk factors are modifiable). While there are
many challenges still to overcome (particularly the lack of
evidence to demonstrate improved clinical or economic out-
comes), the use of genomic and personal lifestyle data in
breast cancer prediction seems imminent.
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