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Abstract Genome-wide association studies (GWASs) for

coronary artery disease (CAD) have identified more than

40 variants robustly associated with CAD risk in European

white populations. Overall, the majority of GWAS-identi-

fied CAD loci are in non-coding regions of the genome and

may encompass multiple signals of variable effect. Most of

these are not associated with conventional risk factors but

highlight novel pathways, including extracellular matrix

integrity, proliferative response to cellular injury and

immune regulation. Many but not all of these CAD-asso-

ciated loci have been found to replicate in South Asian and

East Asian populations although with variable effect size in

South Asians. The significantly shorter haplotype blocks in

populations of African ethnicity may be helpful in fine

mapping association signals identified in European popu-

lations and also in identifying new signals that may be

ethnic specific. However, differential linkage disequilib-

rium between tag SNPs and functional variants contribute

significantly to diluting the effect sizes, and few significant

CAD loci identified in European populations have been

replicated in African Americans.

Keywords GWAS � Coronary artery disease �
Cardiovascular disease � European population � Non-

European population � African American � South Asian �
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Introduction

In the past 7 years, genome-wide association studies

(GWAS) have been successful in mapping the chromo-

somal location of numerous common coronary artery dis-

ease (CAD)-associated alleles. Although important, these

explain only approximately 10 % of the predicted heritable

risk for CAD. The age-specific incidence of CAD in par-

ticipants in the Framingham Offspring Study was increased

approximately two-fold in subjects with a family history of

premature disease after adjustment for conventional CAD

risk factors [1]. The Swedish Twin registry followed close

to 21,000 subjects for over 35 years and estimated the

heritability of fatal CAD events to be 0.57 for men and 0.38

for women, with heritable effects being most manifest in

younger individuals [2]. Similarly several GWA studies

have demonstrated not unexpectedly that the genetic

influence is greatest for early onset CAD events [3•].

This recent progress in the genetics of CAD and other

complex disease has been driven by technological advan-

ces including high-throughput DNA microarray technol-

ogy, the availability of 1,000 Genomes data sets to

facilitate imputation of less common variants, and a num-

ber of bioinformatic approaches including pathway ana-

lysis for GWAS. In the commercial arrays used for GWAS,

single nucleotide polymorphisms (SNPs; generally

0.5–1 M) are used to tag common variation (SNPs with a

frequency of C5 %) across the human genome. Impor-

tantly, these are ‘tag’ SNPs that point to a causative locus

but are rarely in themselves functional variants. This

approach makes use of linkage disequilibrium (LD), that is,

the nonrandom coinheritance of genetic variants across the

human genome.

Segments of DNA known as haplotype blocks are shared

within ancestral groups. Due to the recent migration of
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humans into Europe, individuals of European ancestry have

more correlated SNPs and longer haplotype blocks as

compared to populations of African ancestry [4–6]. As

reported by Hinds et al., the average haplotype block is

*20.7 kb in European whites, *8.8 kb in African

Americans and *25.2 kb in Han Chinese. Thus, fewer

‘tag’ SNPs are required for genotyping a population of

European or East Asian versus African ancestry. If causal

variants are shared across different populations, by taking

advantage of differences in LD and allele frequencies,

trans-ethnic mapping could facilitate identification of

causal variants underlying disease susceptibility. In par-

ticular, the significantly shorter haplotype blocks in African

American populations can be helpful in fine mapping

association signals identified in European populations and

also in identifying new signals that may be ethnic specific

[7].

Although most GWAS for CAD have been carried out in

European white populations, smaller but important studies

have been performed in East Asian, South Asian and

African American populations (Table 1).

GWAS in European White Populations

The first robust association with CAD identified by the

GWAS approach, a 53-kb linkage disequilibrium block

containing multiple highly correlated single nucleotide

polymorphisms (SNPs) at the 9p21.3 locus, was identified

by three independent groups in 2007 [8–10]. The early

discovery of this risk locus was facilitated by its large

effect size and high-risk allele frequency (approximately

0.48). Approximately 25 % of Europeans carry two copies

of the risk allele and have a 50 % increased risk of CAD in

general and an even greater increased risk of premature

CAD. This was demonstrated in the large Coronary Artery

Disease Genome-wide Replication and Meta-Analysis

(CARDIoGRAM) of several GWASs, in which the allele-

specific odds ratio (OR) for CAD in subjects with CAD

onset before the age of 50 years was 1.41 [95 % confidence

interval (CI) 1.34–1.48], significantly greater than that for

older individuals (OR 1.24; 95 % CI 1.20–1.28) [3•]. The

9p21 locus is also associated with the overall severity of

atherosclerosis [11, 12], with a substantially higher risk

allele frequency in subjects with multi-vessel disease.

Notably, the risk conferred by this locus is independent of

known risk factors including diabetes, plasma lipids, blood

pressure, adiposity, inflammatory markers, sex and age.

Other vascular phenotypes associated with the 9p21 risk

alleles include carotid atherosclerosis [13], stroke [14] [15]

and peripheral arterial disease [16], as well as abdominal

aortic aneurysm [17] and intracranial aneurysms [18], the

latter highlighting possible effects on vascular remodeling

pathways as well as platelet reactivity [19]. There is also a

surprising and confirmed association with periodonitis [20,

21].

The causative alleles at 9p21.3 have not been identified.

Fine mapping efforts, including targeted resequencing at

high coverage and 1,000 Genome imputation, have failed

to identify stronger associations than the original GWAS

signals [22, 23].

Although the risk region is devoid of protein coding

genes, it overlaps a large nonprotein coding RNA, termed

‘‘CDKN2BAS (ANRIL),’’ and lies adjacent to a cluster of

cell cycle-regulating tumor-suppressor genes, including the

cyclin-dependent kinase inhibitors, CDKN2A and

CDKN2B, and SNPs associated with CAD have been found

to associate with the expression of each of these genes [23–

25].

Since the 9p21 discovery in 2007, large meta-analyses

of additional GWASs, the majority of which have been

conducted in European populations, have identified over 35

additional loci of smaller effect size but with genome-wide

(P \ 5 9 10-8) significance. This success has been built

on large collaborative efforts, including the Myocardial

Infarction Genomics Consortium [26], the CARDIoGRAM

consortium [3•], the Coronary Artery Disease (C4D)

Genetics Consortium [27], CARDIoGRAMplusC4D [28•]

and others.

Novel CAD risk loci identified include genes playing

known roles in lipoprotein metabolism, hypertension and

other CAD-associated phenotypes, but importantly include

several novel loci of unknown function. Highlighting the

discovery potential of the GWAS approach, the majority of

risk loci harbor genes not previously known to be involved

in atherosclerosis or plaque rupture. Several risk regions

such as ABO and SH2B3 exhibit pleiotropic effects, asso-

ciating with multiple CAD and non–CAD-related pheno-

types. Overall, as might be expected for common variants

affecting a complex trait such as CAD, the effect sizes are

small. With the exception of the 9p21.3 locus, the LPA

gene [29] encoding lipoprotein(a), and a region of

unknown function at 6p24, the allele-specific ORs for CAD

of replicated loci are less than 1.15.

Studies in East Asian Populations

In general, most of the disease-related GWAS loci dis-

covered in Europeans have been extensively replicated in

populations of European and East Asian ancestry. Mari-

gorta and Navarro [30•] recently demonstrated a strong and

significant correlation of odds ratios of specific SNPs for

CAD and 27 other diseases across European and East Asian

samples, indicating that in general causal variants are

shared between the two populations. The SNPs that failed
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to replicate in East Asian populations mapped to genomic

regions with differing linkage disequilibrium patterns.

Shortly after the 9p21.3 finding in Europeans was

reported, three groups replicated the association with CAD

in Chinese Han [31], Japanese [32, 33] and Korean [34]

populations. Fewer large GWAS studies for CAD have

been carried out in East Asian as compared to European

populations. In 2011, Wang et al. [35] reported a three-

stage GWAS for CAD in the Chinese Han population. The

numbers were relatively small, consisting of a total of

3,470 cases and 4,583 controls. A novel association

between rs6903956 near C6orf105 on chromosome 6p24.1

was found. Of note, the MAF of this SNP is higher in the

HapMap European (CEU) population (28 vs. 6.7 % in

Chinese), and no association with CAD has been reported

in European GWAS.

In 2012, Lu et al. [36•] performed a meta-analysis of two

GWAS of CAD in Han Chinese, consisting of 1,515 cases

and 5,019 controls with replication in 15,460 cases and

11,472 controls. Four loci originally identified in European

populations were confirmed, including 9p21.3, PHACTR1,

TCF1 and C12orf51, and four new loci identified, including

WDR35, GUCY1A3 (later confirmed in CARDIoGRAMp-

lusC4D [28•]) and C6orf10-BTNL2 and ATP2B1. In the

same year, Takeuchi et al. [37] reported on a multistage

GWA study performed in the Japanese. The discovery

phase consisted of a GWAS in 806 cases and 1,337 con-

trols with wet lab replication of 12 SNPs in 3,052 cases and

6,335 controls. Three loci achieved significance: 12q24

near BRAP and ALDH2, HLA, DRB-DQB on 6p21 and

9p21.3.

More recently (2013), a two-stage CAD GWAS was

reported in Korean and Japanese populations [38]. The

discovery sample included 2,123 cases and 3,591 controls

recruited in Korea with wet lab replication in 3,052 cases

and 4,976 controls in Japan. CAD association was repli-

cated for three GWAS-identified loci identified in Euro-

pean populations including the SORT1 locus at 1p13.3

(rs599839), the 9p21.3 CDKN2BAS locus (rs4977574) and

PDGFD at 11q22.3 (rs974819).

Guo et al. [39] recently investigated the association of

the 9p21.3 locus with CAD in 12 case–control studies of

East Asians and undertook a meta-analysis for effect size,

heterogeneity, publication bias and strength of evidence.

SNPs (rs1333049, rs2383206 and/or rs10757278) were

genotyped in 12 case–control studies involving a total of

9,813 patients and 10,710 controls. The mean summary

odds ratios for these three 9p21.3 SNPs was 1.29, similar

to that observed in European populations. In accord with

this finding, a large meta-analysis by Dong et al. [40]

reported a similar allele-specific odds ratio for the lead

9p21 CAD risk SNP in East Asian and European

populations.T
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Overall, the GWAS and candidate loci replication

studies in East Asian populations have successfully repli-

cated many of the loci identified in much larger European

studies. Novel loci, e.g., ATP2B1, are of interest and await

confirmation in larger studies.

Studies in South Asian Populations

There have been few studies reported in South Asians

despite the apparently higher risk for CAD than would be

anticipated based on conventional risk factors. In 2010,

Saleheen et al. [41] examined the relationship of 9p21.3

risk variants to acute MI in a case-control study in Pakistan

consisting of 1,851 cases and 1,903 controls. For the

Pakistani population, the odds ratio of the lead SNP,

rs1333049, was 1.13 (CI 1.05–1.22) as compared to 1.31

(1.26–1.37) in a meta-analysis of Europeans.

In 2011, the IBC 50 K CAD Consortium [42] conducted

a large candidate gene study of CAD susceptibility,

including analysis of 49,094 genetic variants in 2,100

genes using a customized gene array in 15,596 CAD cases

and 34,992 controls (11,202 cases and 30,733 controls of

European descent; 4,394 cases and 4,259 controls of South

Asian origin). Associations of several previously known

CAD susceptibility loci including 9p21.3, LPA, COL4A1/

COL4A2, ZC3HC1 and CYP17A1 were confirmed. Of note,

associations in South Asians did not differ appreciably

from those in Europeans, except for 9p21.3 exhibiting an

allele-specific odds ratio of 1.14 versus 1.27 (P for

heterogeneity = 0.003).

The first published GWAS for CAD including a sub-

stantial number of South Asians was by the C4D Consor-

tium and included a discovery data set of 15,420 CAD

cases, of which 6,996 were South Asians [27]. Their rep-

lication sample included 21,408 CAD cases with only

3,359 of South Asian descent. A total of 11 previously

reported common variants for CAD were confirmed in this

study with directionally consistent effects in European and

South Asian populations for all 11 loci. However, the odds

ratio for several of these including 9p21.3, SORT1 and

WDR12 was somewhat lower in the South Asian studies.

Five new loci achieved genome-wide significance,

including LIPA on 10q23, PDGFD on 11q22, a locus

containing multiple genes on 7q22, KIAA1462 on 10p11

and ADAMTS7. More recently, the CARDIoGRAMp-

lusC4D Consortium carried out an association analysis in

63,746 CAD cases and 130,681 controls identifying 15

novel loci reaching genome-wide significance [28•]. This

study included additional South Asian cohorts, but sub-

group analysis by ethnicity was not reported.

In summary, despite smaller data sets, there is general

concordance in the directional effects of CAD risk alleles

identified in European populations on CAD risk in South

Asians. It is of interest that in contrast to the similar effect

size reported in European and East Asian populations, the

effect size of many risk alleles appears attenuated in South

Asians, possibly due to interaction with unknown genetic

or environmental risk modifiers. Other larger GWA studies

in this population are underway.

African American Populations

In the recent study by Marigorta and Navarro [30•], SNPs

associated with 28 disease phenotypes in Europeans

exhibited low replication in individuals of African ancestry

despite an average statistical power of 59.2 %. This might

suggest limited sharing of causal variants between Euro-

peans and Africans as compared to East Asians. However,

given the lower level of LD in African populations,

potentially shared casual variants may not be tagged by the

index SNP identified in European studies [30•].

In general, CAD-associated loci identified in European

populations have failed to replicate or shown attenuated

effects in black populations. In the PAGE multiethnic study

[43], the association of 13 published CAD SNPs with

incident CAD events over a 9–16-year follow-up period

was examined in four large US prospective cohorts,

including 26,617 white individuals (6,626 events), 8,018

black individuals (914 events), 1,903 Hispanic individuals

(113 events), 3,669 American Indian individuals (595

events) and 885 Asian/Pacific Islander individuals (66

events). In white subjects, 9 of the 13 loci were statistically

associated with incident CAD events including 9p21,

16q23.1, 6p24.1, 2q36.3, MTHFD1L, APOE, ZNF627,

CXCL12 and LPL. Notably, despite an adequate sample

size, these SNPs were not associated with CAD in black

participants, and 9p21.3 reached nominal significance in

the American Indian but not the other small populations.

Kral et al. [44] sought to further characterize the role of

genetic variants in 9p21.3 in African American individuals.

Healthy siblings of African American patients with docu-

mented CAD \ 60 years of age (548 sibling pairs) were

genotyped and followed for incident CAD for up to

17 years. Of 86 SNPs across the 9p21.3 region, a single

SNP within the 30UTR of the CDKN2B gene met stringent

criteria for statistical significance, including permutation-

based evaluations. This variant, rs3217989, with a MAF of

0.242, was associated with protection against CAD (OR

0.19, 95 % CI 0.07–0.50, P = 0.0008) and in this study

replicated in a combined analysis of two additional case/

control studies of prevalent CAD/MI in African Americans

(n = 990, P = 0.024, OR 0.779, 95 % CI 0.626–0.968).

This was the first report of a CAD association signal in a

population of African ancestry within the 9p21 locus.
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Although common in the African American population,

rs3217989 has an MAF of \0.01 in European white and

Asian populations, and this finding remains to be confirmed

in independent African American cohorts.

The largest GWAS for CAD-related complex traits in

African Americans was reported by Lettre et al. [45•] in

2011. The NHLBI CARe study consisted of 8,090 subjects

from five population-based cohorts: Atherosclerosis Risk in

Communities (ARIC; N = 3,269), Coronary Artery Risk

Development in young Adults (CARDIA; N = 1,209),

Cleveland Family Study (CFS; N = 704), Jackson Heart

Study (JHS; N = 2,200) and Multi-Ethnic Study of Ath-

erosclerosis (MESA; N = 1,737), genotyped on the Af-

fymetrix 6.0 array. However, the number of CAD cases

was relatively small. In this study the authors took

advantage of the shorter LD blocks in African Americans

in an attempt to fine-map some of the associations previ-

ously reported in Europeans. To do this, they evaluated

SNPs that were correlated with the index SNP in HapMap

CEU (r2 [ 0.5) but largely uncorrelated with it in the

HapMap African population (YRI, r2 \ 0.1). For many

traits, the same signals were responsible for the associa-

tions in Europeans and African Americans with important

exceptions where the predominant association signals were

at SNPs strongly correlated with the index SNPs in Hap-

Map CEU but not with the index SNPs in HapMap YRI

including at the 9p21.3 locus for CAD.

The only 9p21.3 SNP previously reported in European

populations to reach significance in CARe was rs6475606 at

9p21 position 22081850 in intron 12 of CDKN2BAS (ANRIL)

(replication P value 6.4E-4; adds ratio 2.0). Of interest,

rs6475606 lies within a smaller HapMap YRI LD block

(43 kb) as compared to the major 128-kb LD block defined in

the HapMap CEU population. The frequency of the effect

allele of rs6475606 was 0.109 in this African American

population versus 0.008 in HapMap YRI and 0.52 in Hap-

Map CEU data sets. It was hoped that this finding might

define a smaller genomic interval within the 9p21 locus to

search for causative alleles. Several linked SNPs overlap

DNAse protected sites, harbor enhancer histone marks and

are predicted to alter transcription factor binding motifs.

In a more recent study of the genetics of coronary artery

calcification (CAC) [46], 166 SNPs in the 9p21.3 region

significant for CAD and CAC for EUR population were

queried. Of these, 24 SNPs displayed nominal evidence for

association (P B 0.05). Ten of these 24 SNPs localized

within the 43-kb HapMap YRI region and 14 in the 128-kb

HapMap CEU LD block. However, neither the strongest

9p21.3 EUR SNPs for CAC (rs1333049) nor CAD

(rs4977574) in Europeans reached significance in the

African American population. The peak CAC association

was within the smaller 43-kb LD block at rs16905644

(effect allele frequency 0.11, Bonferroni corrected

P = 0.0068). No signal for CAC was apparent for either

rs6475606 [44] or rs3217989 [45•], reported to associate

with CAD in African Americans by Kral et al. [44] and

Lettre et al. [45•], respectively.

Conclusion

In conclusion, despite the high prevalence of CAD among

African Americans and the potential advantage of interro-

gating their shorter LD blocks for fine mapping of previously

identified CAD loci, progress has been minor. The two

signals reported for CAD at the 9p21.3 locus have not yet

achieved replication in independent African American data

sets, and other signals for CAD per se have not been iden-

tified, although replication has been achieved for signals

associated with discrete CAD risk factors [45•]. It is possible

that the genetic risk for CAD relates more strongly to genetic

contribution to discrete risk factors more common in African

Americans including hypertension and obesity. Multiple

genetic variants of small effect are believed to account for

much of the missing heritability of CAD in Europeans, and

these may be even greater in number and thus more difficult

to detect in populations of African descent.

As Carlson et al. [47••] reported from the Population

Architecture using Genomics and Epidemiology (PAGE)

study, a consortium of multi-ancestry, population-based

studies, 25 % of tag SNPs identified in European GWAS had

significantly different effect sizes in non-European popula-

tions, and this was particularly evident in African American

cohorts. They demonstrated that that differential LD between

tag SNPs and functional variants within populations contrib-

uted significantly to diluting the effect sizes in this population

[47••]. Larger studies in both African American and South

Asian populations are underway, and other approaches such as

pathway analysis for GWAS may provide new information

relevant to the biology of CAD in these populations.
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