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Abstract It has long been known that cancer is caused by

somatic changes. However, increasingly data are being

collected that indicate that many other diseases can be

caused by somatic mutation. This list is growing, as more

and better data become available from high-throughput

genetic analyses, to include neurological, hematological,

and immune-related disorders. However, equally interest-

ing is the observation that even in the absence of clear

phenotypic effects individuals accumulate somatic varia-

tion and that this variation includes the entire spectrum of

mutations observed in the germline. Of note, in some cases

(e.g., mitochondrial DNA heteroplasmy) the tissue distri-

bution of this variation may not be random. In this review

we present recent work describing the effects of somatic

mutations, their types, and their distribution in humans.
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Introduction

Multicellular organisms develop from a single embryonic

cell with a singular genetic constitution. It is generally

assumed that the genetic constitution of the subsequent

fully developed adult is uniform and virtually identical to

the embryonic state. To a large extent, this is an assumption

of convenience, not one based on known levels of somatic

differences among tissues, because until recently it has

been impossible to measure the number of somatic variants

within an individual directly. Nonetheless, the concept of

accumulating somatic changes was first proposed more

than 50 years ago, and argued to be a factor in aging and

even death [1]. Whether this hypothesis is accurate or not

skirts the major issue with regard to somatic variation—

how much somatic variation exists, and to what extent does

it affect phenotypic variation in general? Until recently, the

lack of feasibility of gathering appropriate data prevented

us from even asking this question seriously, but next gen-

eration sequencing and other high-throughput genotyping

technologies have made it practical to answer this question

[2–6].

Despite the general lack of knowledge surrounding the

field of somatic variation, one clear phenomenon involving

somatic mutations has been well documented and accep-

ted—cancer. Variation within and among tissues is the

ultimate causative mechanism in cancer [7]. Many papers

on the study of somatic mutation in cancer confirm this as a

thriving and important area of research [8], but somatic

variation is less commonly investigated in cancer-free

subjects. Nonetheless, it is unreasonable to assume that

mutations are limited to either a particular class of disease

or to specific genomic regions [9]. In fact, the number of

diseases that are observed as mosaics is increasingly large.

It is becoming evident that other diseases, e.g., primary

immune deficiencies, neurofibromatosis, secondary hyper-

tension [10], and others, are products of somatic variation

in key disease risk genes. However, to a large extent,

papers on somatic mutation are more idea- than data-driven

[2–5, 9, 11]. Interest is being fueled by the availability of

high-density genomic data that will ultimately inform us

about the load we all carry.
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In addition, recent research has documented not only

single-gene somatic changes, but differences in both dis-

ease and non-disease states more generally. These changes

include single nucleotide polymorphisms (SNPs), copy

number variants (CNVs), and large-scale changes in

chromosomal status, such as aneuploidy. Although some of

these are known to have phenotypic effects, not all do, and

perhaps most do not. All of this points to a large underlying

load of somatic variation that needs to be better understood

to grasp the role of genetics in the phenotype. The costs of

such intra-organismal genetic heterogeneity, due either to

somatic mutation or chimerism, have also been debated

from an evolutionary perspective, but answers are not yet

clear as to its role in selection [12•–18]. Because somatic

variation in cancer is so well studied [19–23], in this

review we focus on non-cancer-related issues of somatic

variation. Although not exhaustive, we review several

diseases that are of somatic origin and many types of

variation that may or may not have phenotypic effects.

Diseases Other Than Cancer Caused by Somatic

Mutation

Rare disorders that have a clear basis in somatic variations

include those of the hematopoietic system, in which stems

cells can mutate and expand to produce disease phenotypes.

These include paroxysmal nocturnal hemoglobinuria 1

(PNH1) caused by PIG-A mutations [24, 25] and X-linked

alpha-thalassemia mental retardation caused by mutations

in ATRX [26]. PNH1 is an acquired hemolytic anemia that

presents with hemoglobinuria, abdominal pain, smooth

muscle dystonias, fatigue, and thrombosis. It is caused by

expansion of hematopoietic stem cells with a mutation in

the PIG-A gene—a change that is acquired somatically.

X-linked alpha-thalassemia mental retardation is sometimes

associated with myelodysplastic syndrome, with cases often

associated with somatic mutations. Interestingly, in the case

of ATRX mutations, somatic variants appear to confer more

severe myelodysplastic syndrome disease than do germline

mutations [27]. Clearly, the ability to clonally expand

hematopoietic stem cells can provide a mechanism by

which somatic mutation can confer disease risk.

Neurofibromatosis 1 (NF1), a disorder that maps to a

segment of chromosome 17q, presents with cafe-au-lait

spots, Lisch nodules in the eye, and fibromatous tumors of

the skin. Several studies have shown that a large minority

of NF1 cases are due to somatic mutations, often dele-

tions or microdeletions in this chromosomal region (up to

40 % of cases) [28]. Other cases are caused by somatic

mitochondrial DNA (mtDNA) mutations [29]. In either

case, it is clear that somatic changes are often causative

of NF1. Similarly, NF2 has been shown to often be

caused by somatic mutation as well (25–30 % of cases)

[30, 31].

Diseases of other tissues can be shown to be somatic in

origin by careful characterization of resected tissue.

Examples include diseases of the heart and kidney. For

example, mutations in connexin 40, a cardiac myocyte-

expressed protein encoded by GJA5, have been shown to

affect electrical communication and associate with a large

minority of atrial fibrillation cases. Most of the GJA5

mutations found in cardiac myocytes of patients were not

present in blood, indicating a somatic origin [32]. A similar

situation has been found in some Alport syndrome cases.

Alport syndrome is an X-linked dominant disorder char-

acterized by kidney disease, hearing loss, and eye abnor-

malities. It is caused by mutations in collagen IV

components, mostly COL4A5. Although most Alport syn-

drome cases are inherited through the germline, it has been

reported that males with a less severe phenotype have

COL4A5 somatic mutations [33, 34]. As with many

X-linked diseases that would otherwise be extremely

severe in presentation or lethal in males, somatic mutations

can present with milder forms of disease.

Somatic mutation has also played a role in some neuro-

logical diseases, including epilepsy, autism spectrum dis-

orders (e.g., Rett syndrome), and intellectual disability [35],

although comparisons of monozygotic twins for multiple

sclerosis (MS) have been essentially negative [36]. The

latter example is based on whole genomic data of discordant

monozygotic twins, but the data were derived from lym-

phoctyes—clearly not the ideal tissue for MS. Neurological

disease may be particularly sensitive to somatic mutation

because even less than 10 % of cells carrying a mutation

can affect phenotypes based on the distribution of these

cells in the brain. For example, hemimegalencephaly

(HMG), which presents with an enlargement and malfor-

mation of an entire hemisphere, is associated with somatic

mutations of AKT3 and other mutations in the PI3K-AKT3-

mTOR pathway [37–39], even when as few as 8 % (and

generally fewer than 35 %) of cells carry the somatic

mutation. However, because of the broad distribution of the

mutation-carrying cells, individuals can still present with

HMG. The effects of even rare somatic mutations may be

due to the unique development pattern of the brain and its

complex clonal migration patterns, such that clonality is not

limited to adjacent or nearby cells.

Lissencephaly, or smooth brain, can be caused by

mutations in two genes: Doublecortin X (DCX) or Lis-

sencaphaly 1 (LIS1). Mutations in LIS1, which maps to

17p1, are usually lethal in males, but milder forms have

been associated with somatic mosaics in two patients with

predominantly posterior subcortical band heterotopia [40].

In these patients, 18–24 % of blood cells and 21–34 % of

hair roots were mutated. Somatic mutations of DCX1 have
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also been shown to associate with similar disease pheno-

types [41]. As with the neurological diseases above, not all

neuronal cells carry the mutations, but they do exist in

leukocytes, suggesting early somatic mutation.

Mutations in the X-linked pyruvate dehydrogenase A1

(PDHA1) can present with metabolic or neurological traits.

Metabolic disease usually leads to death in infancy from

lactic acidosis, but the neurological form presents with

symptoms including epilepsy, mental retardation, and

spasticity. A continuum exits between these two presen-

tations. A high proportion of heterozygous females present

with severe disease, but a report showed that a female with

mild disease had evidence of preferential X-inactivation

and somatic mutation [42]. Similarly, a male with a mild

form of disease had an exon skipping mutation in both skin

and muscle tissue, but not lymphocytes [43]. Although

limited to single clinical cases, both of these examples

show that somatic mutations in a single gene can affect

disease risk. And of note, both cases caused by somatic

variation presented with milder forms of disease.

Lastly, autoimmune diseases can be caused by somatic

mutations. A recent study of autoimmune lymphoprolifer-

ative syndrome (ALPS), a disease of benign lymphopro-

liferation, elevated immunoglobulins, plasma IL-10 and

FAS-L, and accumulation of double-negative T cells,

showed that in several cases this was due to somatic

mutation [44]. Inherited heterozygosity of TNFRSF6 pre-

cedes this disease, followed by a genetic events in the

second allele. In this study, seven patients fit this profile;

three had somatic mutations in their second allele, and four

had evidence of loss of heterozygosity. Two different types

of somatic events were therefore shown to cause this disease

in individuals with susceptible (heterozygote) genotypes.

The above examples of the roles that somatic mutations

can play in non-cancer human disease are not exhaustive,

but clearly demonstrate that even where the majority of

certain disease cases are caused by germline transmission,

a substantial proportion can be triggered by somatic

changes. The role that somatic mutation plays in disease is

also probably affected by the pattern of development of

specific tissues. For example, tissues or cells that are

continually derived from stem cells, e.g., hematopoietic

cells, may be more likely to present with disease following

somatic change. Alternatively, if cell migration is not

purely based on physical proximity, such as in the brain, a

relatively small number of cells with somatic mutations can

cause severe phenotypes [35].

Somatic Mutation Spectrum

In the above section, we focused on somatic mutation and

its association with disease, but did not explicitly discuss

the types of mutations that have been observed somatically.

Here we document the type of mutations, whether disease

causing or not, to gain a better understanding of the dis-

tribution of mutant types and their relative frequency. We

preface this by stating that comprehensive analyses are not

yet available, but will be soon.

Changes in ploidy number were among the first somatic

variants detected. For example, liver polyploidy and

aneuploidy have been known for decades, being first noted

in 1909 [45, 46]. It has been estimated that approximately

50 % of human hepatocytes are polyploid and 30–90 % are

aneuploid [46]. Taken together, these data are astounding

for the overall level of somatic variation observed. In the

liver, based on rodent models, polyploidy has been argued

to be the product of failed cytokinesis. Although it is not

clear how such cells survive and thrive without patholog-

ical effects, it has been argued that this distribution has a

functional role that allows the generation of genetic vari-

ation and adaptation to xenobiotic exposure [47, 48].

In addition to the liver, other tissues exhibit deviations

from diploidy. For example, multiple chromosomal aneup-

loids that would be lethal if present in all tissues have been

observed somatically. These include trisomies of 8, 12p, and

20. All of these are recognized syndromes. Trisomy 8, for

example, causes severe clinical effects and often miscar-

riage; therefore, it usually only survives as a somatic variant.

Such chromosomal abnormalities are not only observed in

subjects with disease. A recent report of examining two

female monozygotic twins used both a SNP array and FISH

to show that nucleated blood cells were aneuploid for sex

chromosomes [49]. In one twin, 7 % of cells had confirmed

monosomy X. In the other twin, 1 % of cells were aberrant.

These changes did not coincide with any clinical presenta-

tion, although both subjects had the sickle cell trait.

Clonal mosaicism for large-scale changes, including

aneuploidy and loss of heterozygosity, has been shown to

occur with increasing age [50, 51]. These studies, based on

genome-wide data from blood samples, identified mosaics

present in at least 5 % of cells. Many of the observed

mosaic variants are those found in cancers, but were

present even in subjects without clinical diagnosis at the

time of their blood draws. Prior to age 50, only about

0.2–0.5 % of samples showed evidence of mosaicism, but

the fraction increased rapidly after this time point to

2–3 %. Of note, having mosaicism prior to diagnosis was

predictive of disease later [50]. These data emphasize the

fact that we accumulate somatic mutations with age, even

in the absence of concurrent disease, but that these muta-

tions may be important in late-onset disease.

Smaller scale somatic mutations have also been detected

at the genome-wide level. CNVs were detected among

tissues taken at autopsy using array-comparative genomic

hybridization (aCGH) [52••] and via sequencing of induced
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pluripotent stem cells isolated from fibroblasts [53]. In both

cases, there was compelling evidence that somatic CNV

mutations existed long before the analyses, and they were

in an estimated 30 % of fibroblasts [53]. These data indi-

cate that somatic CNVs are frequent, and perhaps not

random [52••]. Importantly, in these two studies there was

no evidence that these variations were associated with any

phenotypes.

Retrotransposons constitute a large proportion of the

human genome (at least 50 %) [54], but their movements

were thought to be suppressed somatically, at least fol-

lowing early development [55, 56]. However, recent work

has shown that thousands of somatic insertions occur in the

brain later than previously thought [57•]. All three major

classes of retrotransposons, L1, Au and SVA, were found

to be variably distributed in the brains of three individuals,

providing evidence for mobilization to protein-coding

regions expressed in the brain. These results indicate that

retrotransposition can alter the genetic structure of the

brain somatically, with implications for disease risk [58].

The least well-understood types of somatic variation at

the genome-wide level are SNPs. This is mainly because

data are lacking, but they will probably ultimately reveal

many differences within an individual. A recent study,

however, has provided suggestive results as to the level of

somatic SNP variation to expect. Specifically, when mono-

zygotic (MZ) twins discordant for multiple sclerosis were

genetically and genomically characterized, twin pairs dif-

fered at up to *0.3 % of sites in the genome. Because these

differences can only be attributable to somatic changes in

one or the other of the MZ twins, they provide a baseline of

expected changes. However, these data are only from one

source, CD4?T cells, and therefore cannot provide a good

representation of the overall level of somatic SNP variation

within an individual. This phenomenon needs to be explored

in more detail, but it would not be surprising to find more

extensive differences among tissues. This claim is to some

extent based on data from within tumors, suggesting large-

scale sequence differences where up to *70 % of somatic

mutations are not present in all samples from the same tumor

[23]. Admittedly, these exome-sequence-based data may

over-represent the level of sequence differences because

they are from tumors, but they can serve as an upper limit.

Sequence heterogeneity from somatic mutation within non-

tumor tissue has been observed as well [2, 59]. More data are

needed to assess the levels of SNP somatic variation, but it is

clear it will be both present and non-negligible.

Mitochondrial DNA Somatic Variants

It has long been known that as people age they can accu-

mulate mtDNA mutations that increase their levels of

heteroplasmy. This has been especially well studied in

muscles. In addition, some of the somatic mtDNA muta-

tions that accumulate with age have been associated with

disease. For example, T414G was reported to be present as

a somatic mutation in the brain tissue of Alzheimer’s

patients but not controls [60]. T414G also accumulates

with age in fibroblasts and skeletal muscle [61, 62].

Several other somatic heteroplasmy changes have been

reported. T408A mutation has been reported as an age-

related somatic mutation in muscle [63–66], as has A189G

mutation [63–69]. Our recent study of mtDNA hetero-

plasmy variation among tissues of the same individuals has

confirmed some of these patterns and extended them in an

unexpected way [70••]. Using massively parallel sequences

of ten common tissues taken at autopsy from two cancer-

free individuals, we assessed patterns of mtDNA hetero-

plasmy across tissues and subjects. Of 20 observable

mtDNA heteroplasmies, 10 were recurrent. That is, they

were observed in both subjects in the heteroplasmic state,

but importantly only in the same tissues: kidney, liver, or

skeletal muscle. These heteroplasmic sites included previ-

ously identified ones, such as A189G and T408A described

above, as well as ones described in another study that

sequenced mtDNA from multiple autopsy tissues [71].

Importantly, the two studies showed that the tissue-specific

pattern of mtDNA heteroplasmic sites was consistent,

lending support to the hypothesis that certain heteroplas-

mies develop preferentially in very specific tissues only.

Since the recurrent heteroplasmies were observable only in

the highest copy number tissues and in proximity to or in

DNA replication control regions, it was hypothesized that

these mutations affected DNA replication [70••]. Consid-

ering their totality, the data clearly indicate that mtDNA

mutations accumulate somatically in the heteroplasmic

state with age, occur in a tissue-specific fashion, and may

affect disease.

Distribution and Mechanisms for Somatic Mutations:

Conclusions?

Mutations arise because of errors in DNA replication or

chromosome segregation. This can occur at any stage of

development and either during meiosis or mitosis, as we

have documented in this review. For somatic mutations that

affect phenotypes, it is expected that the earlier in devel-

opment that a mutation occurs, the more impact it will have

on embryogenesis. This may decrease its chance of sur-

vival and propagation. As a result, somatic mutations are

probably more common than de novo germline mutations

observable in adults, and somatic mutations in single tis-

sues are probably more common than somatic mutations

shared by multiple tissues.
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Somatic mutations can be of various types, including

single-nucleotide substitution, repeat instabilities, copy

number variations, genomic rearrangement, and changes in

chromosomal ploidy, as previously discussed. Smaller

somatic mutations such as single-nucleotide substitutions

may show a non-random pattern (e.g., mutational hotspots

and CpG dinucleotide), but data are not yet fully available

to assess this on a large scale. However, as different

mutation types, especially those with phenotypic effects,

may have varying impacts on cell and tissue survival, the

distribution of mutation types can differ between somatic

and germline mutations. As we discussed, somatic changes

often confer less severe phenotypes and therefore may be

more tolerated than similar germline changes. In any case,

the data on these concepts to date are not definitive, but are

becoming increasingly available.

Additionally, the distribution of somatic mutations may

differ across cells and tissues, as we have shown for

mtDNA heteroplasmy. One potential reason for this is that

in any given tissue, a significant fraction of the genome

might be irrelevant to its normal function, thus permitting

accumulation of mutations with few consequences to the

cell and its host organ. If a gene is expressed in one tissue

but not in another, mutations may be selected against in the

former but not in the latter. A cell-autonomous environ-

ment may also tolerate mutations more than cells in a non-

autonomous environment [72]. In addition, the mutational

load may differ across tissues because tissues, due to their

functional differences, might tolerate mutations at different

levels. This can be further compounded with age because

somatic mutations may accumulate at different rates across

tissues. It has been estimated that the number of somatic

mutations could be thousands to tens of thousands [73].

One source of somatic de novo mutations is errors in the

normal operation within a cell. For example, it has been

shown that somatic mutations can arise as a result of non-

allelic homologous recombination [74, 75]. They also can

be caused by L1 transposition [76] or arise from recom-

bination-restarted replication forks [77]. In addition,

exogenous factors of DNA damage can influence the pat-

tern and distribution of somatic mutations differently

across tissues. For example, long-time tobacco usage may

lead to mutations in the lung, but not other tissues.

Excessive ultraviolet exposure could result in accumulation

of mutations in sun-exposed skin but not in unexposed

skin. Similarly, liver and kidney may have a constant

exposure to toxic materials and thus may accumulate more

mutations than other tissues.

Despite these intuitive ideas, our knowledge is severely

limited regarding the accumulation of somatic variation

within individuals. This is largely due to the inability to

easily assay somatic variation across the genome and

among tissues in a cost-effective way. This limitation is

rapidly disappearing, especially with the advent of acces-

sible next-generation sequencing (NGS) [3–5]. NGS is

probably the best technology available today for detecting

somatic mutations. It provides high-resolution readout of

the whole genome, and with high depth it can allow esti-

mation of the fraction of a specific mutation in a sample of

cells.

Sample collection also plays a very important role in

somatic mutation studies. A mutation probably will be

harder to detect in a sample that contains a mixture of cell

types than in a homogeneous sample. Thus, a well-

designed protocol for sample collection is necessary for the

success of a somatic mutation study. The protocol should

include a detailed description of the location in a tissue

where the DNA sample has been collected. A cost pro-

hibitive alternative, at least for the time being, is single-cell

sequencing; this will allow a full evaluation of the scope of

somatic mutations within a tissue.

Conclusions

In conclusion, somatic mutation in the absence of cancer

has been under-studied, but is now recognized as common,

with and without discernible phenotypic effects. Future

studies addressing the pattern and scope of these mutations

will be critical to better evaluate the role that genetics plays

in disease and individual identity.
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