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Abstract
Purpose of Review The purpose of this review was to provide
an overview of the recent concepts regarding cardiac output
measurement devices that utilize non-pulse contour methods,
especially in an intraoperative setting. The techniques include
inert gas rebreathing method, partial CO2 rebreathing method,
impedance cardiography, and its derivative technologies such
as electrical velocimetry and bioreactance, transesophageal
echocardiography/Doppler, and transthoracic echocardiogra-
phy/Doppler. We focused on the invasiveness of the devices
and their underlying technology.
Recent Findings Although various types of cardiac output
monitoring devices are available, none of them may be con-
sidered as an ideal device in terms of accuracy, trending ability
of cardiac output changes, and reproducibility of measure-
ments. There are increasing types of devices applicable for
intraoperative use, yet only few data are available regarding
the trending ability of cardiac output changes and reproduc-
ibility of the measurements. Therefore, the empirical applica-
tion of these devices for various surgical patients may be done
under the consideration of their invasiveness and their under-
lying technology, and it may provide us with more data over
time.

Summary The non-pulse contour-derived cardiac output mea-
surement devices are classified according to their underlying
principles, which closely reflect their advantages and disad-
vantages in the perioperative setting.
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Introduction

Cardiac output (CO)monitoring devices are used for detecting
hemodynamic changes and guiding further therapy in both
perioperative and postoperative periods. Perioperative CO
monitoring has the potential benefits of reducing morbidity
and mortality by optimizing perioperative fluid management.
Less invasive CO monitoring devices are emerging as substi-
tutes to the more invasive pulmonary artery catheterization
(PAC). PAC is increasingly being avoided owing to its inva-
siveness [1]. The potential benefits of PAC are offset by its
complications, which may also be responsible for the failure
of PAC-based CO optimization in improving outcomes [2].
As the decision-making process in medical practice involves
balancing the benefits and risks, the disadvantages of the var-
ious monitoring methods should be considered when adopting
devices into clinical practice. The possible risks of CO mon-
itoring devices are invasiveness, cost, and inaccuracy.
Inaccuracy may result in incorrect decision-making owing to
an incorrect interpretation of a situation (Fig. 1) Different
monitoring devices have their own advantages and limitations
related to their underlying technology. In this monograph, we
classified and reviewed intraoperative non-pulse contour CO
monitoring devices according to (1) their invasiveness and (2)
their underlying technology.
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The pulse contour method is defined as a technique for
measuring and monitoring stroke volume (SV) on a beat-to-
beat basis based on the morphological information obtained
on an arterial pulse pressure waveform [3•]. The arterial pres-
sure waveform may be obtained invasively (by using an arte-
rial catheter) or non-invasively (without the use of an arterial
line: volume clamp method, applanation tonometry, and pho-
toelectric plethysmography). Pulse contour analysis-derived
CO measurements may be used in an uncalibrated form (not
calibrated to biometric and physiological data) or calibrated to
an external CO measurement (transpulmonary thermodilution
[TPTD] and lithium dilution.) The commercially available
devices that are based on pulse contour methods include the
FloTrac System, PiCCO-Technology, LiDCO System,
VolumeView System, CNAP Monitor, PRAM System, and
T-Line System. There are several comprehensive reviews
available concerning pulse contour methods [4].

Classification of CO Monitoring Devices by Their
Invasiveness

The devices can be stratified into several levels based on their
invasiveness (Table 1). Except for the direct aortic flow probe
insertion and other invasive perivascular flow probe place-
ments that require surgical procedures, PAC (thermodilution)
may be considered as the most invasive of all CO monitoring
techniques. Numerous complications of PAC have been iden-
tified such as dysrhythmia, infection, pulmonary artery rup-
ture, injury to adjacent arteries, embolization, pulmonary in-
farction, cardiac valvular damage, pericardial effusion, and
intracardiac catheter knotting [5–8] (Table 1). The complica-
tion rate of PAC is about 5–10% [8] and is higher if access-
related complications are included. The group with the second
level of invasiveness includes TPTD, lithium dilution tech-
nique, and ultrasound dilution technique, which require the
placements of both arterial pressure catheters and central ve-
nous catheters (CVC). The complications related to CVC in-
sertion are pneumothorax, hemothorax, thrombus, bleeding,
hematoma, arterial catheterization, vascular injury,
extravenous wire malposition, stroke or cerebral ischemia,
infection (local or systemic), arrhythmia, and right atrial

perforation or other heart-related complications [9]. The com-
plication rate with these techniques is in the range of 1–20%
[9–11]. Although ultrasound-guided insertion may reduce the
complication rate, the risk of complications is still substantial
[9, 12, 13]. The transpulmonary lithium dilution technique
involves an additional risk of lithium toxicity. The third level
of invasiveness includes insertion of arterial pressure lines or
transesophageal ultrasonic probes. This group of devices in-
cludes pulse contour analyses and transesophageal echocardi-
ography (TEE)/Doppler (TED). Arterial cannulation has gen-
erally been found to be a safe procedure, and the incidence of
serious complications is less than 1% [14, 15]. Similarly, the
major complication rate associated with TEE is less than 1%
[16], while no complications have been reported for TED
[17]. Finally, the least invasive techniques, also known as
non-invasive or minimally invasive methods [18–20], include
the bioimpedance/bioreactance method, partial CO2

rebreathing method, inert gas rebreathing (IGR) method,
transthoracic echocardiography (TTE)/Doppler (TTD) meth-
od, and non-invasive pulse contour method.

Classification of Non-pulse Contour CO Monitoring
Devices by Their Underlying Technology

The determination of CO has been the subject of extensive
developments over the last decade. The monitoring devices
may be classified according to their underlying principles
(Appendix).

CO Monitoring Devices: Principles and Practices

Fick’s Principle

This is an invasive and time-consuming method that is not
suitable for continuous measurement as it requires drawing
of arterial/mixed venous blood samples from the arterial line
and the PAC, in addition to the measurement of exhaled oxy-
gen volume. Although this method is considered the gold
standard for CO measurement, it is rarely used for intraoper-
ative monitoring.

Partial Gas Rebreathing Method

The NICO system (Novametrix Medical Systems,
Wallingford, CT, USA) measures CO via a disposable
rebreathing circuit that is added to the ventilator tubing and
automatically provides a non-invasive CO measurement at 3-
min intervals. Its easy application and the availability of auto-
matic and continuous measurement make it suitable for peri-
operative use. This technique was found to have good agree-
ment with PAC thermodilution in animal models [21],
surgical/ICU (intensive care unit) patients [22, 23], pediatric

Fig. 1 Benefits and risks associated with CO monitoring devices
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patients [24], and cardiac surgery patients [25]; moderate
agreement in thoracic surgery patients [26] and cardiac sur-
gery patients [27]; and poor agreement in post-cardiac surgery
patients [28, 29] and acute lung injury patients [30]. The de-
vice appears to have a high repeatability (4%) [28, 31]. There
is no study adequately analyzing the trending ability of CO on
this device.

The drawbacks of this technique are the need for stable
CO2 elimination, which prevents its use in awake, spontane-
ously breathing subjects, and its unreliability in patients with
chest trauma or pulmonary pathology, [28, 30, 32, 33].
Because CO2 detection is crucial in this technique, ventilator
setting is an important factor in ensuring the accuracy of mea-
surements. Tidal volumes (TV) of 10 mL/kg result in good
agreement between this method and PAC thermodilution,
whereas lower TV (6 mL/kg) may result in underestimation
of CO [33]. Similarly, measurement in children with low TV
may also be less accurate [24]. The accuracy of this technique
also depends on shunt fraction [34]. As patients with severe
lung injury have increased shunt fractions, it is difficult to

estimate CO using this technique. Further, arterial blood gas
analysis is required for shunt estimation [35]. The device
seems to bemore accurate in low-to-moderate CO than in high
CO [22, 23, 36].

Although the device is considered harmless to patients,
there is a potential risk of elevated arterial CO2 levels, which
excludes its use in patients with critically increased intracra-
nial pressure or pulmonary hypertension (PH). Arterial CO2

partial pressures can rise by about 10% of their initial values
owing to the intermittent addition of extra dead space. It is also
unclear whether this technique may be used during laparosco-
py and CO2 insufflation. Despite these limitations, this device
has the potential for intraoperative use in selected patients,
provided its trending ability is validated.

Inert Gas Rebreathing Method

Innocor (Innovision, Glamsbjerg, Denmark) is the commer-
cially available product that applies the IGR method for CO
monitoring. This system utilizes two types of physiologically

Table 1 Invasive feature of CO monitoring devices; risk stratification and the complications

Level of
invasiveness

Types of technique Factors associated
with risk

Complications Complication rate

1 Pulmonary artery catheter thermodilution Pulmonary artery
catheter insertion

Dysrhythmia, infection, rupture of
pulmonary artery, injury to adjacent
arteries, embolization, pulmonary
infarction, cardiac valvular damage,
pericardial effusion, intracardiac
catheter knotting

5–10%

2 1) Transpulmonary thermodilution
2) Transpulmonary ultrasound dilution
3) Transpulmonary lithium dilution

(TPLD)

a) Central venous
catheter insertion
(common)

b) Arterial catheter
insertion (common)

c) Lithium infusion
(TPLD specific)

a) Pneumothorax, hemothorax,
thrombus, bleeding, hematoma,
arterial placement of catheter,
vascular injury, extravenous wire
malposition, stroke or cerebral
ischemia, infection (local or
systemic), arrhythmia, and right
atrial perforation or other
heart-related complications

b) Listed in the box below
c) Lithium intoxication

1–20%

3 Invasive pulse contour, transesophageal
echocardiography/Doppler (TEE/TED)

a) Arterial catheter
insertion (invasive
pulse contour
specific)

b) Probe insertion into
the esophagus
(TEE/TED specific)

a) Permanent ischemic damage, sepsis,
pseudoaneurysm formation

b) Dental trauma, submucosal
hematoma of pharyngeal area, jaw
subluxation, tonsillar bleeding,
perforations, bleeding from
esophageal tract, dysphagia, vagal
reflexes, sympathetic reflexes,
infections

a) Less than 1%.
Ultrasound-guided
insertion may reduce
the risks, although
they still remain
substantial

b) Less than 1%

4 Bioimpedance/bioreactance method, inert
gas rebreathing method, partial CO2

rebreathing method
Transthoracic echocardiography/Doppler,

non-invasive pulse contour methods

None
CO2 rebreathing (partial

CO2 rebreathing
method specific)

Hypercapnia NA
NA

The techniques are listed in order of decreasing invasiveness

CO cardiac output, CO2 carbon dioxide, NA not applicable
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inert gases: a blood-soluble gas (0.5% nitrous oxide, N2O) and
an inert insoluble gas (0.1% sulfur hexafluoride, SF6). The
rebreathing bag is prefilled with an O2-enriched mixture of
these two gases. A photoacoustic infrared gas analyzer is used
for the continuous and simultaneous measurement of the
levels of the inert gases and of CO2. Photoacoustic analyzers
measure gas concentrations over a 5- to 6-breath or 10- to 20-s
interval of rebreathing into the closed system. The concentra-
tion of the blood-insoluble SF6 following equilibration aids in
the calculation of the total system volume (lungs, valve, and
rebreathing bag). Subsequently, the rate of disappearance of
N2O reflects its uptake by pulmonary blood flow (PBF).
These data (total system volume and rate of N2O disappear-
ance) are used for calculating the total PBF that participates in
gas exchange. This system was developed for spontaneously
breathing patients and has been extensively validated in vari-
ous types of spontaneously breathing patient populations in-
cluding patients with heart failure [37, 38], PH [39, 40], atrial
fibrillation [41, 42], and pulmonary disease [43, 44], as well as
in pediatric patients [45]. Overall, IGR demonstrated good
agreement with gold standard methods including PAC
thermodilution, the Fick method, and cardiac magnetic
resonance-derived CO in these patient populations.
However, only few studies [46, 47••] validated its accuracy
in ventilated patients, who are the main subjects of this review.
Reutershan indicated good interchangeability with PAC
thermodilution in mechanically ventilated patients with acute
respiratory distress syndrome by using an older generation
IGR device [46]. Similarly, Perak showed good agreement
between CO determined by IGR and the Fick equation in
pediatric patients [47••]. The authors indicated the need for a
valve adapter that allowed for rebreathing. Data regarding the
repeatability and trending ability of this device in mechanical-
ly ventilated patients are not available as of now. Peyton et al.
reported the repeatability of this device as being less than 20%
in spontaneously breathing cardiac patients and healthy vol-
unteers [48].

The drawbacks of the IGR device are its lower accuracy in
high CO conditions [41, 49] and its inability to provide con-
tinuous measurements. However, one study suggested that an
IGR device could provide measurements once in every 5 min
[48]. This is a potential intraoperative CO monitoring device
as it is completely non-invasive, safe, easy-to-use, and accu-
rate in various patient groups, especially patients with cardiac
rhythm failure and pulmonary disease, who are unsuitable for
monitoring with other techniques. Further validation of this
technique is required in ventilated patients and in the periop-
erative setting.

Indicator Dilution Technique

The DDG pulsed dye densitometry series (Nihon Kohden,
Tokyo, Japan) is one of the commercially available product

using the indicator dilution technique. In this technique, signal
detection in the arterial blood is performed in a manner similar
to that of pulse oximetry. Transcutaneous measurements of
two wavelengths (805 and 940 nm) are used to calculate the
ratio between hemoglobin and the injected indicator, indocy-
anine green (pulse dye densitometry; PDD). Indocyanine
green distributes exclusively in the intravascular space follow-
ing a bolus injection and is cleared via hepatic elimination at a
half-life of 4.1 min. Hemoglobin concentration is required for
the calculation of the absolute indocyanine green concentra-
tion. CO is calculated from the indocyanine green dye-dilution
curve (dye densitogram) according to the Stewart-Hamilton
equation. Similar to pulse oximetry, factors that compromise
signal detection, such as vasoconstriction, interstitial edema,
movement, or ambient light artifacts, may limit the reliability
of CO assessment by using this method [50, 51]. There are
conflicting reports regarding the accuracy of PDD. The indo-
cyanine green dye dilution CO measurement was found to
have acceptable agreement with PAC thermodilution in vari-
ous surgery patients [52], cardiac surgery patients with limited
performance [51, 53], post-cardiac surgery patients [54], and
critically ill pediatric animal models (acceptable bias and pre-
cision) [55]. Bremer et al. found the technique to be reliable
only at CO values > 5.0 L/min [56]. A similar trend of in-
creased overestimation in the low CO range was also reported
by other studies [52]. Kroon et al. reported concordance rate of
81% for the trending ability of PDD, when compared with
PAC thermodilution CO [54]. They also demonstrated that
the device had good reproducibility. However, the intraoper-
ative use of this technique may be limited owing to the fol-
lowing reasons: limited performance on trending ability and
lack of continuous measurement of CO as subsequent mea-
surements cannot be performed until indocyanine green is
excreted. Theoretically, the total elimination of indocyanine
green takes about three half-lives, and the residual plasma
indocyanine green may contribute to errors.

Transpulmonary ultrasound dilution (TPUD) is another
method that utilizes the indicator dilution technique. This is
used in the commercially available product called COstatus
(Transonic Systems Inc., Ithaca, NY, USA). This device con-
sists of an extracorporeal arteriovenous loop set that is con-
nected to an arterial catheter on one side and a CVC on the
other side. Two reusable sensors for blood ultrasound velocity
and flow are clamped on to the loop, and a roller pump circu-
lates blood through the arteriovenous loop for each measure-
ment session. Isotonic saline, which is used as the indicator, is
injected into the venous side of the arteriovenous loop, ran-
domly during a respiratory cycle, at the rate of 0.5–1.0 mL/kg,
to a maximum volume of 30 mL for each measurement. The
venous sensor detects the indicator and determines the time
and volume of injection. Following its passage through the
cardiopulmonary system, the arterial sensor records the travel
time of the indicator and the changes in blood ultrasound
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velocity. At the end of three consecutive measurements, blood
is returned to the patient by flushing the arteriovenous loop
with heparinized saline, thus avoiding any blood loss. The
device was found to have good agreement with PAC
thermodilution in critically ill post-cardiac surgery patients
[57], although this study did not provide any evidence of its
use in the intraoperative setting. The reproducibility of TPUD
is indicated by its coefficient of variance of 6% [57]. The
device was found to have good agreement and trending ability
in children undergoing heart surgery [58] and in neonatal an-
imal models [59–61, 62•].

The limitations of this device are the following: arterial
pressures are not available during the time that the CO is
measured (5–6 min when the pump is operated); the volume
of isotonic saline injections may be an issue in patients who
are extremely hypervolemic; and an arterial catheter and CVC
are required for monitoring. The devicemay have the potential
for intraoperative use, especially in small children with arterial
catheters and CVC.

Thermodilution Technique

A detailed description of PAC thermodilution and TPTD is
beyond the scope of this review and is attempted elsewhere [1,
6, 63].

Impedance Cardiography

The conventional impedance cardiography (ICG) devices in-
volve placing electrodes on the patient’s body surface, which
may interfere with the performance of surgical procedures.
Several products incorporate the classic thoracic ICG, such
as the Niccomo monitor (Medis GmbH, Ilmenau, Germany)
and the BioZ monitor (Cardio Dynamics, San Diego, CA,
USA). Niccomo is reported as lacking adequate accuracy
[64, 65], although there is no evidence comparing it with
PAC thermodilution. There was inadequate agreement be-
tween BioZ and PAC continuous thermodilution in patients
undergoing off-pump coronary artery bypass graft, with a ten-
dency to overestimate and underestimate CO in low CO and
high CO conditions, respectively [66].

Another device, ECOM (ConMed, Irvine, USA), is based
on a modification of the thoracic electrical bioimpedance
method and involves electrodes attached to a specially de-
signed endotracheal tube. There was inadequate agreement
between ECOM and PAC thermodilution in patients undergo-
ing cardiac surgery [67–70], along with poor trending ability
[68, 70]. The repeatability of this device appeared to be good
(10% of precision) [70]. ECOM is a simple system to employ
in the perioperative setting, although it lacks the required ac-
curacy. However, the direct evidence of improved postopera-
tive outcomes following the use of ECOM encourages its
perioperative use [71••].

NICaS (NIMedical, Petah Tikva, Israel) utilizes whole-
body impedance, which is detected peripherally as impedance
signals, for determining CO. Although it is not validated in the
intraoperative setting, studies have reported poor agreement in
PH patients [72] and good agreement in cardiac disease pa-
tients [73]. Although there are recent case series on its periop-
erative use in patients with pheochromocytoma [74] and those
undergoing Cesarean sections [75], there is inadequate evi-
dence to support its intraoperative use.

NICOM (Cheetah medical, Portland, USA) is a device that
uses the bioreactance method and has been validated in various
intraoperative settings. Studies have reported poor agreement
with Doppler echo-derived CO in patients undergoing abdom-
inal surgery [76–78] and with PAC thermodilution for living
donor liver transplantation [79, 80]. This device seems to be
unreliable in abdominal surgery, possibly owing to the massive
fluid shifts and tissue retraction in these procedures. It has been
demonstrated as having poor accuracy in pediatric population,
although the studies involved inconsistent physical conditions
and settings [78, 81–84]. The repeatability of the device is
reported to be good [31], while its trending ability is relatively
reliable [83, 85–87, 88•]. Although the device has inadequate
accuracy, it may be useful in some perioperative settings, as it
provides continuous COmeasurement and SV variation, which
are proven parameters to guide fluid therapy [84, 89–92].

There is no commercially available transbrachial electrical
velocimetry device. A prototype of the device has been vali-
dated in volunteers with favorable results [93, 94••]. Although
no study has been reported under perioperative setting, the
precision of the device as well as its accuracy against magnetic
resonance image-derived CO have been confirmed [94••].
Considering its potential for the perioperative use, its empiri-
cal perioperative use may be allowed and further analysis is
expected in this field.

Aesculon and its portable version, Icon (Osypka Medical,
Berlin, Germany), employ electrical velocimetry (EV)
methods to determine CO. The device has been validated in
intraoperative settings and found to have good agreement with
TEE for coronary artery surgery [95]. However, other studies
have identified it as having poor agreement with various ref-
erence methods in cardiac disease patients [96] and critically
ill patients [97]. In contrast, the device may be useful as it has
acceptable accuracy in pediatric patients with various condi-
tions [98••, 99–107]. The device was found to have high re-
producibility [106, 108], although data on its trending ability
in humans are lacking. The device has the potential for intra-
operative use in pediatric patients.

Continuous Doppler and Morphological Echocardiography

TTE has limited applicability in the perioperative setting ow-
ing to the difficulty in obtaining continuous and consistent
measurement of CO with it. TEE is a currently used
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monitoring technique in the perioperative setting as it provides
information concerning cardiac and aortic structures, cardiac
contractility, and volume/fluid assessment. Similar to TTE,
TEE has inaccuracy or inconsistency issues that are related
to operator skill. To overcome the drawback of it being an
operator-dependent measure, a TTD-based monitoring meth-
od called USCOM (Uscom, Sydney, Australia) and a TED-
based monitoring method called CardioQ (Deltex Medical,
Chichester, UK) have been developed. USCOM utilizes con-
tinuous wave Doppler to obtain velocity-time integrals of ei-
ther transaortic blood flow at the left ventricular outflow tract
or pulmonary valve blood flow, by applying a non-imaging
probe in the suprasternal notch (aortic valve) or left parasternal
site (pulmonary valve). The cross-sectional area of the aortic
root may be a source of error as it is derived from nomograms
based on patient height [109], without the use of 2-
dimensional (2D) echo. Chong and Peyton conducted a
meta-analysis of six studies that analyzed USCOM and iden-
tified a mean weighted bias of − 0.39 L/min, precision of
1.27 L/min, and percentage error of 42.7% [110]. Recently
available data have confirmed it as having acceptable agree-
ment with 3D-TTE in pregnant women [111•]. Further,
USCOM was successful in detecting blood loss in healthy vol-
unteers [112]. Another study demonstrated that the tandem use
of USCOM and CardioQ provided reliable accuracy as well as
trending ability of CO [113•]. The limitation of this device is its
reliance on operator skill. Adequate training to achieve the ap-
propriate angle of insonation for optimizing flow signal may
improve the measurement accuracy [114, 115].

CardioQ utilizes a disposable probe that is inserted in the
esophagus to measure blood flow in the descending aorta for
the continuous measurement of CO [116]. It only measures
flow in the descending thoracic aorta, which is 70% of the
total flow. Therefore, an additional conversion factor is need-
ed to compensate aortic arch flow. Similar to USCOM, the
diameter of the descending aorta is not directly measured but
estimated from nomograms based on patient characteristics.
As the thoracic aorta elongates and unfolds with advancing
age, the reliability of the technique reduces owing to probe
displacement [117]. CardioQ is endorsed by the British guide-
lines for use in patients undergoing major or high-risk surgery
[118]. Moller-Sorensen et al. found that this technique had
poor agreement with PAC thermodilution in patients undergo-
ing coronary artery bypass graft. However, they reported the
device as having good precision (12.8%) and an acceptable
trending ability [119•]. The device-derived SV respiratory var-
iation accurately predicted fluid responsiveness under general
anesthesia [120, 121].

Modified Pulse Wave Transient Time

The esCCO (Nihon Kohden, Tokyo, Japan) technique esti-
mates CO by utilizing modified pulse wave transient time

(mPWTT). This system uses an existing electrocardiogram
and a specific type of pulse oximeter. Recently available data
demonstrate its poor agreement and insufficient trending abil-
ity with TPTD in off-pump coronary artery surgery patients
[122]. Similar results have been reported in critically ill pa-
tients [123–126, 127•, 128, 129•], cardiac surgery patients
[130], and liver transplantation patients [131]. In contrast, it
was found to have good agreement with acceptable trending
ability in renal transplant patients [132] and poor agreement
with acceptable trending ability in liver surgery patients [133].
The inaccuracy with this technique may be related to low
systemic vascular resistance [126, 129, 131]. This device ap-
pears to have lower accuracy in low CO conditions [122]. It
was found to have acceptable reproducibility [127, 128, 134].
Intraoperative interventions such as administration of vasoac-
tive drugs and anesthetics, intrathoracic pressure changes, sys-
temic vascular resistance changes, cardiac displacement, and
arrhythmias are likely to affect the quality of the ECG and
pulse oximetry signals. Further, its relatively low trending
ability may also limit its intraoperative use.

Conclusions

Although various types of less invasive methods for CO mea-
surement have been developed, none of them are entirely ideal
for perioperative use. Each device has its own advantages and
drawbacks related to its underlying technology. The current
evidence for their perioperative use is limited. The empirical
application of these devices for various surgical patients may
provide us with more data over time.
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