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Abstract Systems biology is the creation of theoretical

and mathematical models for the study of biological sys-

tems, as an engine for hypothesis generation and to provide

context to experimental data. It is underpinned by the

collection and analysis of complex datasets from different

biological systems, including global gene, RNA, protein

and metabolite profiles. Regenerative medicine seeks to

replace or repair tissues with compromised function (for

example, through injury, deficiency or pathology), in order

to improve their functionality. In this paper, we will ad-

dress the application of systems biology approaches to the

study of regenerative medicine, with a particular focus on

approaches to study modifications to the genome, tran-

scripts and small RNAs, proteins and metabolites.
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Abbreviations

ChIP Chromatin immunoprecipitation

SDS-PAGE Sodium dodecyl sulphate polyacrylamide

gel electrophoresis

qPCR Quantitative polymerase chain reaction

Introduction

Regenerative medicine concerns the repair or replacement

of damaged, diseased or otherwise poorly functioning tis-

sues and organs, with the aim of restoring biological func-

tionality. Systems biology offers many opportunities at the

research and clinical level for the experimentation and fa-

cilitation of regenerative medicine, by providing models that

predict the effects of drugs, diseases or treatments on bio-

logical systems at multiple levels and allow the contextu-

alisation of changes, whether stoichiometrically or

quantitatively in terms of the interacting networks of genes,

transcripts, proteins, metabolites and phenotypic data. While

a basic theoretical model of a biological system may be

obtained by genome-wide reconstruction, to be relevant, it

should be refined with recourse to high-density ‘omics ap-

proaches. There are specific advantages and disadvantages

unique to each technique and –omic system of interest, but

broadly the approaches offer the production of complex, in-

depth, data-rich datasets that offer a snapshot insight into the

epigenomic, transcriptomic, proteomic or metabolomic

profile of the cells of interest at a particular point in time.

This is an important point to note, as each of these systems is

dynamic and can be modulated with time. Analysis at dif-

ferent time-points can offer some insight into the stability of

particular results over time, and systems biology often ne-

cessitates that the data are obtained at intervals over a time

series, in order to investigate the dynamics of the system of
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interest. Systems biology requires an iterative approach

whereby the models can be created, tested, refined and re-

tested, with the aim of ultimately producing models that

approximate the reality of the biological systems of interest.

In this paper, we discuss various analytical techniques that

can be used to investigate systems biology and studies that

have begun to apply this to the study of regenerative medicine.

Systems Biology: Modelling Biological Systems

Huang et al. elegantly discuss the properties of systems

biology applied to stem cell biology. The authors describe

the properties of the stem cell network in terms of its state

space (the ‘three-dimensionality’ of large numbers of in-

terconnected pathways and networks as they feed into and

affect each other, in contrast to the more linear pathway

descriptions), the high dimensionality of the system

(comprising large numbers of variables) and the hetero-

geneity of the system (to account for the discrepancy be-

tween the implicitly assumed homogeneity of tissue

cultures and the heterogeneity of actual populations) [1••].

The networks have ‘traffic’ in different directions, based

on the three-dimensionality of the integrated networks,

which can be modulated with time, to accommodate the flux

and directionality of movement in the system. This equates to

network features such as gene expression levels, protein and

metabolite abundance and post-translational modifications.

These dynamic models begin to mathematically describe the

interactions between different systems in order to ap-

proximate the reality of the systems. Steady-state models

account for the equilibrium reached when the dynamic flux in

the system tends to balance as a result of the multi-level

interactions between different factors in the system. Certain

nodes in the system account for preferred states (or ‘attractor’

states) that tend to have multiple routes that result in these

outcomes, in order to buffer the system and stabilise it against

disruptive influences. Critically, these mathematical models

require the incorporation of real-life data to adjust and im-

prove the fit of the models to the real-life situation. Figure 1

illustrates the interaction between the state space, the high

dimensionality and heterogeneity and the requirement for the

incorporation of ‘omics data into the models in order to im-

prove the accuracy of the model and its capacity for effective

prediction of particular outcomes given a particular set of

parameters or modifiers to the system, such as prediction of

the effect of a drug on the system, or the differentiation state

of a stem cell.

Epigenetic Modifications, Small RNA and Transcript

Analysis

DNA is associated with histone proteins in structures called

nucleosomes that can be moved by the DNA remodelling

machinery, enabling conformational changes in the DNA

architecture that modulate the accessibility of the gene

promoters to the transcriptional machinery. Epigenetic

histone modifications (or ‘marks’) are a ‘language’ of post-

translational modifications (principally phosphorylation,

acetylation, methylation and SUMOylation of specific

amino acids, including lysine and serine) that can con-

tribute to the repression, or facilitation, of gene expression

by altering interactions with chromatin remodelers and

affecting chromatin dynamics [2].

Epigenomics is the study of this process at the global

level, including the histone modifications, methylation

state of the DNA (which has roles in development and

some pathologies) and other architectural changes to the

chromatin. There is currently an EMBO-funded project

underway (4DCellFate) which seeks to understand the in-

teractions between different nucleosome proteins and re-

modellers across the stem cell genome. Such multi-level

systems biology approaches offer the potential for a much

more integrated vision of the pivotal fundamental pro-

cesses in regenerative medicine, such as stem cell fate

determination. Meissner et al. examined the methylation

pattern in pluripotent stem cells and differentiated cells

using a bisulphite sequencing approach, and found that the

pattern of methylation of CpG islands (CG-rich sequences

of DNA) was distinct between stem cells, stem cells under

prolonged culture in vitro and differentiated cells, which

has relevance to both fate determination and pathological

states [3]. Epigenomics is discussed further in the context

of pluripotent and induced pluripotent stem cells in [4].

To study gene transcripts at the global level, two main

approaches are commonly used, namely next-generation

sequencing (NGS) and microarrays. Microarrays are

printed arrangements of oligonucleotide probes that enable

the simultaneous comparative analysis of the abundance of

thousands of transcripts. We have previously discussed the

application of microarray analysis in the context of bio-

materials samples, including technical details about the

application of this approach, and thus this will be discussed

in more brevity in the current review [5].

Microarrays are available for examining the abundance of

transcripts and also of small untranslated RNAs. The ex-

amination of transcript abundance has the advantage that

even low-abundance samples can be studied, as the RNA can

be amplified once converted to complimentary DNA

(cDNA). Some protocols, such as the 100 ng input modifi-

cation for the Affymetrix HuGene 1.0/2.0 ST arrays, are

particularly useful for minimising sample input. Interpreta-

tion of microarray data has the caveat that the transcripts are

not necessarily being actively translated, although this can

be circumvented using a modified technique called poly-

some analysis to harvest the fraction of mRNAs which are

associated with the translational machinery (ribosomes).
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This issue does not apply to the study of small untranslated

RNAs, as these RNA species are directly functional in RNA

editing (e.g. small nucleolar RNAs, or snoRNAs) or re-

pressing the translation of other transcripts (e.g. mi-

croRNAs, or miRNAs). Small RNA arrays are available

which enable the analysis of thousands of small RNAs, but

generally focus on miRNAs. Small RNAs have been shown

to have importance in chromatin remodelling [6] and stem

cell differentiation [7], and both snoRNA and miRNA spe-

cies have been linked with the cellular response to topo-

graphically patterned surfaces, including the stem cell

response to osteogenic topographies which could be used to

pattern orthopaedic implants [8–10].

Systems biology approaches to transcriptomics seek to

capture networks of correlated gene expression, in order to

gain insight into the interaction between gene products. This

includes large-scale, pair-wise comparisons of expressed

genes, to examine which genes could be co-regulated, and

the inter-relation of different datasets from different –omic

approaches in order to refine and extend the theoretical and

mathematical models that unite the datasets.

Although the large data yield is an advantage of systems

biology, one of the challenges for the use of –omic tech-

niques for systems biology is the vast quantity of complex

data that results from it. Certain software programmes have

been developed to aid visualisation and interpretation of

results. The likely interactions between different differen-

tially abundant RNA species can be mapped using software

such as Ingenuity Pathways Analysis (http://www.

ingenuity.com), which enables a useful overview of the in-

teractions between different genes, and can also be utilised

for the analysis of some other –omic techniques, including

Fig. 1 Schematic overview of the systems biology process, illustrat-

ing the iterative cycle between prediction and experiments and

highlighting methods of data generation and integration of ‘wet’

experimental data (such as –omics data) for the refinement of the

mathematical models. Inset image illustrates part of the modelling

process, comparing the ‘topology’ of a gene network in terms of

linear pathway delineation (a more traditional biochemistry approach)

with its position within a network of interactions at a given point in

time, and shows how this can be expanded into a three-dimensional

dynamic state space model, where each of the topologies of the

network exists at a particular state (S) at a particular point in time (t1),

but that these are dynamic, and can tend towards a particular

expression profile (or ‘attractor state’) if a suitable attractive state

(such as a suitable stimulus to promote stem cell differentiation along

a particular lineage) is present. Inset image (on topology and

dynamics) reproduced from with permission from Huang [1••]

Curr Pathobiol Rep (2015) 3:37–45 39

123

http://www.ingenuity.com
http://www.ingenuity.com


metabolomic data. This software also enables the prediction

of likely phenotypic changes that would result from groups

of key gene up- and down-regulations, for example, pre-

dictors of various stem cell fates. This was used recently to

gather information about the predicted fate of stem cells

cultured on osteogenic micro- and nano-topographically

patterned titania substrates [9]. If certain genes are of par-

ticular interest, microarray analyses should ideally be

validated using another technique, typically quantitative

PCR (qPCR). A number of studies addressing aspects of

regenerative medicine have also used other techniques to

complement the results of microarray data, including im-

munohistochemistry, which was used by Hsiang et al. to

examine the production of inflammatory cytokines and

indicators of healing in a rat system using a model conduit

[11].

NGS is a newer approach for the analysis of DNA

(DNA-Seq), RNA (RNA-Seq) and chromatin immunopre-

cipitation (ChIP-Seq) samples. The deep sequencing ap-

proach adopted in this technique improves the accuracy of

the sequencing data, as there should be multiple ‘reads’ of

each sequence, which enhances the coverage in DNA-Seq.

For RNA-Seq, deep sequencing has the advantage that the

number of RNA species can be quantitated, which can give

an estimate of gene expression levels, which is not avail-

able from microarray data [12]. Multiple samples can be

run in a single lane, which enables efficient multiplexing,

and in the example of RNA-Seq, the RNA is converted to

cDNA (complementary DNA, which is the reverse com-

plement of the RNA sequence), fragmented and adapters

are added. Fragments are assembled into libraries and se-

quenced in short reads, which are assembled by compar-

ison to a reference genome or sequences, or by assembling

contiguous fragments in the absence of a reference. RNA-

Seq is discussed further in [13, 14]. Rabani et al. used a

combination of metabolic labelling and sequencing to

study RNA dynamics (transcription, maturation and

degradation) in murine cells, an approach which could

offer valuable insight into the dynamics of RNA species in,

for example, primary cells isolated from clinical samples,

information which could help to bridge the gap between

global transcript and protein data [15].

Compared with microarray analysis for transcriptomic

studies, NGS has the advantage that previously uncharac-

terised RNA species can be detected in RNA-Seq, and the

technique can also detect small RNA species (small RNA-

Seq), including novel small RNAs. This technique has

great potential for use in the field of regenerative medicine,

since RNA-Seq can be used with scarce samples (down to

*10 pg in some cases) and can cope with some sample

degradation, as the sequencing approach does not require

polyadenylation of transcripts, which are useful for pre-

cious samples, such as clinical material.

Using a modified RNA-Seq approach termed ribosomal

profiling, ribosomes can be isolated in order to identify the

sections of mRNA which are ‘protected’ by the ribosomes

to gain insight into the mRNA species being actively

translated into the cell. Such analyses should help to im-

prove the interconnection between different –omic data-

sets, such as transcriptomic and proteomic studies, which

can be challenging to compare. In the context of regen-

erative medicine, these approaches would be valuable for

evaluating, for example, gene expression in clinical sam-

ples using RNA-Seq, and promoter occupation by os-

teogenic transcription factors in stem cells exposed to

different stimuli to correlate with gene expression patterns

using ChIP-Seq. In addition, genome annotation provided

by NGS can be cross-referenced with data produced by

metabolomics and proteomics (techniques for the study of

the global metabolite and protein profiles, as will be dis-

cussed) to gain insight into additional metabolic networks

that had not been fully annotated. ChIP-chip is a term used

to describe the combination of ChIP experiments and mi-

croarrays, to give a more comprehensive assessment of the

binding sites in the genome, but unlike ChIP-Seq, this

approach relies on known gene sequences being present in

the array. The complexity of the data generated by NGS

can present an issue, however, as vast datasets are gener-

ated, and the software pipelines available for the analysis

and interpretation of these data are still maturing. Data

analysis for DNA-Seq and RNA-Seq experiments is dis-

cussed further in [16].

The Global Metabolite Profile

While analysis of the genome is now well established and

proteome analysis continues to develop as a technology

(now suitable for complete analysis of some moderate-sized

proteomes) [17], the analysis of biological small molecules

has lagged behind that of the other ‘omes’ until recently. The

term ‘metabolome’ to describe the complete small molecule

complement of a biological system was coined by Oliver in

1998 [18••], and the analysis of the metabolome became

known as metabolomics or metabonomics.

Metabolites are the substrates and products of the che-

mical reactions that constitute life. As such, they comprise

an enormously heterogeneous mixture of compounds and

compound classes (e.g. sugars, amino acids, lipids, organic

acids and biogenic amines). This alone leads to significant

issues with the provision of metabolomics as a true ‘omic

technology—methods ideal for the characterization of

amino acids are likely to be poor for the characterization of

steroids, for example. Despite this, most metabolomics

platforms now detect hundreds to thousands of com-

pounds, covering the majority of key biochemical

pathways.
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Careful design of experiments is absolutely critical to a

successful metabolomic analysis. Broadly, an experiment

will consist of control and treatment samples with replicate

sets for each. Treatments may, of course, be series, such as

time-courses, dose-curves or growth curves. The number of

biological replicates is dictated by two factors: the vari-

ability of the metabolites in the sample, and the minimum

fold-change expected to be detected in the samples. For

example, clinical samples are likely to be extremely vari-

able and often even small changes in metabolite concen-

tration are of interest and thus hundreds to thousands of

samples per state may be required for sufficient statistical

power. In contrast, well-defined cell culture experiments

(for example, where cells are exposed to drug treatments)

may be characterized by low variability and the effects

may be large, so a handful of replicates may be sufficient.

We have previously discussed the application of metabo-

lomics in the context of stem cell biology [19•], and in our

experience, the use of a chloroform:methanol:water ex-

traction buffer to directly harvest metabolites from cells

adhering to biomaterial surfaces, such as titanium, has been

valuable for the rapid quenching of metabolic reactions

[19•, 20]. Quick quenching is essential for minimising ‘run-

on’ metabolic reactions, and labile metabolites can be

better retained by rapid sample processing. As with all

–omic approaches, experimental consistency is important, as

small changes in conditions, such as the volume of medium

used in a cell culture experiment, or a change in the fre-

quency of media changes, introduce unwanted additional

variables and may impact upon the experimental results.

Metabolomics experiments may also be broadly char-

acterized as ‘targeted’ or ‘untargeted’. In practice, all

metabolomics experiments are in some way ‘targeted’ due

to the inability of any single system to detect every

metabolite in a system. There is a distinction, however,

between ‘targeted’ methodologies [21, 22] that rely on

detection of carefully defined panels of compounds, and

‘untargeted’ methods [23, 24••, 25] that use broad-based

detection methods to detect as many features as possible.

There are significant advantages to each method, but

briefly, targeted methodologies generally provide more

sensitive and rigorous quantitative data on a panel of de-

tected compounds while having the limitation that one fails

to detect compounds outside this panel. Untargeted meth-

ods detect many more compounds, but are more limited in

terms of confidence of identification for the detected

metabolites, and can suffer from reproducibility issues. The

method selected depends significantly on the user’s

knowledge of the system to be studied and their goals. For

example, for hypothesis-driven analysis, such as research-

ing energy metabolism [26], a targeted method may be

most appropriate, however, if systemic effects are sus-

pected, the pathway of effect is not known, or if it is

suspected that an effect may occur at multiple foci, un-

targeted methodologies may be more appropriate.

Untargeted metabolomics can also be performed in a

high-throughput manner to give greater insight into the

dynamics of the metabolome of interest, as discussed in

[27]. And although such approaches are currently generally

restricted to the study of simple organisms such as bacteria,

future adaptation of the approach for mammalian systems

would have great potential for offering insight into the

dynamics of metabolic changes in systems of interest in

regenerative medicine. To better infer the functional rela-

tionships between different metabolites in mammalian

cells, measurements of dynamic flux in the metabolome

(known as fluxomics) can be made by rapid, repeated

sampling. This flux can be modelled by ordinary differ-

ential equations (ODEs), as discussed in [28, 29]. Flux

balance analysis uses steady-state models which make the

assumption that there is no ongoing flux in metabolite

concentration in the system, and make predictions based on

the steady-state stoichiometry of the metabolites in the

metabolic networks. A useful introduction to flux balance

analysis is provided in [28, 30]. The isotope 13C can be

used to examine the flux of metabolites, by adding labelled

metabolites and tracking the proportions in which they are

converted to other intermediates.

The two most commonly used methods of collecting

metabolomic data are by mass spectrometry (MS) [23] and

nuclear magnetic resonance [31]. MS has the advantage in

sensitivity, while NMR has the benefits of higher repro-

ducibility and absolute (rather than relative) quantitation.

MS is commonly directly coupled to a separation system

although direct infusion MS has been performed in large

studies [32]. The most commonly used separation systems

are liquid (LC) [33•] or gas [34] (GC) chromatography. GC

is generally of much higher chromatographic resolution

than LC, but LC has the benefit that no derivatisation of the

sample is usually required (GC requires compounds that

can be volatilized, so many small molecules must be

chemically modified such that they vaporize on heating).

An advantage of LC–MS is the enormous variety of

separation chemistries that are available, allowing the re-

searcher to cope with the diversity of metabolites.

Reversed-phase chromatography is ideal for separating

non-polar compounds such as lipids [24••], while HILIC

chromatography is ideal for polar compounds such as

amino acids [33•]. Ion chromatography may be used for

ionic compounds such as organic acids [35]. Of course, no

separation system is functional without a detector, and

there is a huge diversity of MS equipment that may be

coupled to chromatography systems. However, they may

be broadly categorized as either useful for targeted analysis

(Paul traps, single quadrupole and triple quadrupole in-

struments), or for untargeted analysis (time-of-flight
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instruments, orbitraps and Fourier-transform ion cyclotron

resonance mass spectrometers). The latter instruments have

undergone many developments in recent years to improve

their capabilities for targeted analysis, but they still fall

short of the sensitivity of a modern triple quadrupole

instrument.

Whether one is performing a targeted or untargeted

metabolomic analysis, the process of data analysis for MS is

relatively unchanged. Data are collected in the form of pro-

prietary raw data files and then processed to obtain defined

peaks (whether detected de novo by an algorithm, or speci-

fied by the analyst at run time), which are collated across

replicate sets and compared by their area or intensity to other

replicate sets. Statistical analysis is performed and the dataset

is put into context, either mechanistically, with reference to

biochemical pathways, or in clinical studies, stratified with

respect to clinical outcomes and patient data. Several open-

source, cross-platform programmes that automate all or part

of the process are available, such as MzMine [36], XCMS

[37] and IDEOM [38]. When performing any analysis, it is

critical to have a good understanding of the raw data, the

statistics to be applied, the fundamentals of biochemistry and

the biological question to be addressed.

We previously employed a metabolic approach to in-

vestigate the metabolic profile of stem cells cultured on

osteogenic 15-nm-high titania nanopillars. This work

highlighted the change from a metabolically quiet, quies-

cent skeletal stem cell profile on planar substrates to an

‘active’ metabolic profile on substrates inducing osteogenic

differentiation. Specific metabolites involved in the os-

teogenic differentiation process were highlighted and of

particular interest were a range of amino acids and sphin-

gosine. This study agreed with other research that showed

increased metabolic demand in cells undergoing osteoge-

nesis in response to chemical stimulation [39].

In embryonic stem cells, plasticity was associated with

an increased abundance of unsaturated (C=C double bonds)

metabolites, which was reduced in differentiating cells

[40•]. Weckwerth discussed the integration of –omic data

from different sources, including NGS and metabolomic

data [41].

The Protein Dimension

Proteomics has utility in systems biology for its ability to

capture information about post-translational modifications

(such as phosphorylation and glycosylation), relative and

absolute protein quantification and information to enhance

interfacing and integration with other systems, since pro-

tein–DNA, RNA and protein–protein interactions can be

detected using proteomic approaches.

DiGE (2D-fluorescence difference gel electrophoresis) is

a technique for the two-dimensional resolution of protein

abundance. In DiGE, proteins from control and test samples

are labelled with different fluorescent CyDyes (typically

Cy3 and Cy5), and in the first dimension, isoelectric fo-

cussing is performed to separate the labelled proteins by

native charge, which utilises a high-voltage electric current

to separate proteins along immobilised pH gradient (IPG)

strips. In the second dimension, proteins are separated by

molecular weight using the technique SDS-PAGE, to pro-

duce a ‘spot map’ of resolved proteins. The spot maps are

scanned using a fluorescent scanner at suitable wavelengths

to detect both fluorophores. Using comparative spot map

analysis software such as DeCyder (GE Healthcare), the spot

maps can be analysed to gain information about the relative

abundance of various proteins between two or more condi-

tions, and by comparison with a reference gel containing a

higher protein load, this enables protein identification, by

picking spots from the 2D gels, followed by MS. This was

used to investigate protein expression levels in osteopro-

genitors, stem cells and fibroblasts [42] cultured on micro-

[42] and nanoscale [43] topographies.

Compared with traditional 2D gel electrophoresis, the

technique has the advantages of increased sensitivity (due to

the use of fluorescent CyDyes for protein labelling) and

enhanced comparability between gels, as there is the option

of including a pooled internal standard on each gel. Protein

isoforms and post-translational modifications can also be

detected using this approach. We and others have previously

discussed experimental design for DiGE experiments [44•,

45•], technical adaptations of this technique for use with

biomaterials samples [44•] and the modification of the

technique for the detection and prevention of artefacts [46].

The use of saturation labelling (a type of CyDye labelling

that aims to label all cysteine residues in the sample proteins

with dyes with maleimide chemistry) greatly increases the

sensitivity of the technique, which makes it particularly

applicable to regenerative medicine, where clinical samples

and other scarce or valuable protein sources are routinely

used. Laser capture microdissection was used to examine

protein samples from histological sections from clinical

cancer samples, and this technique could be used to capture

small amounts of tissue from retrieved implanted devices,

organoids or similar scarce sources. In addition, as discussed

in McNamara et al. [44•], sample pooling can be a valuable

means of generating additional material, and the use of re-

lated protein sources (such as protein from tissue cultures, or

comparable tissue close to an implant) can be useful in

generating sufficient material for a reference gel when the

sample source is low abundance. DiGE was used by Horrillo

et al. to investigate the differentiation of mouse embryonic

stem cells upon treatment with zebularine, an inhibitor of

cytosine methylation [47]. DiGE was used to examine the

proteome, in concert with microarray analysis to investigate

the transcript profile of the cells, and epigenetic marks were
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examined using techniques including methylation-specific

PCR, which specifically amplifies sites that have been

methylated. These techniques were utilised alongside more

traditional cell lineage evaluation approaches, such as im-

munostaining and flow cytometry. Fractionation enables the

investigation of different sub-proteomes (such as nuclear,

nucleolar or organellar compartments) by enriching for a

particular subset of the proteome. Highly abundant proteins

can also be depleted to enhance the detection of other less-

abundant proteins, for example using albumin-depletion

columns.

Some liquid chromatographic (LC)-based approaches,

where LC separation is coupled to mass spectrometric

protein identification, such as iTRAQ (isobaric tags for

relative and absolute quantification), can be used to enable

multiple comparisons between different conditions of in-

terest and can be used to produce quantitative data on

protein abundance. The ability to compare up to eight

conditions against each other (in an ‘8-plex’ experiment)

has great advantages for regenerative medicine, by en-

abling the comparison of the proteome under a variety of

conditions, for example, following culture of cells on dif-

ferent biomaterials surfaces, or under different culture

conditions. The iTRAQ approach was used to compare the

protein profile of embryonic stem cells and the equivalent

stem cells of teratocarcinomas [48].

Approaches such as stable isotopic labelling of amino

acids in cell culture (SILAC) enable the comparative

metabolic labelling of mammalian cells during culture, by

incorporating heavy and light isotopes of amino acids

during culture under two different culture conditions. This

approach is useful for in vitro tissue culture experiments

and, since the metabolic labelling is performed in living

cells, avoids issues with labelling artefacts (which can

occur with DiGE under some conditions) and changes to

the proteome that can occur during protein extraction that

could lead to the depletion of protein from one sample

group, which can occur with post-extraction labelling ap-

proaches. Dynamic SILAC is useful for collecting infor-

mation across a time series, enabling a systems biology

approach to be adopted. Sobczyk et al. examined the effect

of chemoattractants on the cytoskeleton of the slime mould

Dictyostelium over a timescale of under a minute [49•].

Dynamic SILAC has also been used to investigate global

protein turnover in human cells [50•], and pulsed SILAC

was used to investigate modulation of the proteome in re-

sponse to induction of miRNAs [51]. In the context of

regenerative medicine, such techniques have the potential

to offer valuable insight into the dynamics of the proteome

under different conditions, for example, the protein signa-

tures and biomarkers associated with cytocompatibility and

immunotolerance of materials with time.

Future Directions

In future studies, the incorporation of high-content imag-

ing, such as immunofluorescence with microscopy suited to

automated image collection, and analysis pipelines for the

extraction of multidimensional image descriptors would be

a valuable addition to systems biology studies in regen-

erative medicine. A high-content image approach was

previously used to identify a ‘signature’ of cellular features

that could be used for lineage prediction of stem cells at

early time-points [52], and such a setup would have great

potential for enhancing the predictive power of systems

biology approaches.

Conclusions

Systems biology aims to integrate data from a variety of

global data sources, including genomics, fluxomics, meta-

bolomics, proteomics, transcriptomics, epigenomics,

DNA–protein interactions and interactomics. These tech-

niques would benefit regenerative medicine as the data

yield is high and increasingly comprehensive, and systems

biology has the potential to gain more functional infor-

mation from the datasets by modelling biological systems

and enabling the prediction of states in response to defined

changes to the system. This would be invaluable for

modelling processes such as stem cell fate determination,

predicting implant tolerance or reactivity and characteris-

ing the development of organoids.
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