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Abstract The epithelial to mesenchymal transition

(EMT) generates tumor cells with stem cell characteristics

and with phenotypes similar to those of cancer stem cells

(CSCs). Evidence suggests CSCs are in an intermediate

state of EMT expressing reduced levels of E-cadherin and

with mesenchymal features including invasiveness associ-

ated with metastasis. These findings suggest mechanisms

regulating EMT and stemness are closely integrated.

Recent reports from several laboratories have identified

novel mechanisms regulating EMT and stemness involving

epigenetics, microenvironment, and dedifferentiation. Cir-

culating tumor cells (CTCs) have also been shown to have

features of EMT, but it is unclear which fraction has the

properties of CSCs. EMT characteristics of both CSCs and

CTCs are associated with resistance to current clinical

treatments, indicating that therapy targeting CSCs in

addition to more differentiated tumor cells are required for

durable responses. Thus, EMT characteristics of CTCs may

prove useful biomarkers for effective therapy for many

cancers.
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Introduction

The epithelial to mesenchymal transition (EMT) is a

reversible developmental program responsible for the for-

mation of the tissues and organs of the body whereby

nonmotile epithelial cells with strong cell-to-cell adhesion

and apical–basal polarity become individual, motile mes-

enchymal cells with front-to-back polarity (Fig. 1) [1].

Molecular markers of EMT include loss of the epithelial

marker E-cadherin and gain of EMT-inducing transcription

factors and mesenchymal markers including N-cadherin,

fibronectin, and vimentin [2]. EMT is associated with the

reorganization of the actin cytoskeleton including loss of

cortical actin and gain of filamentous actin. However, the

most important marker of the gain of mesenchymal fea-

tures is the acquisition of motility [3]. Examples of EMT in

development include implantation, gastrulation, neural

crest formation, and cardiac valve formation. EMT also

occurs as a normal physiological response to tissue injury

that can become pathological, as seen with tissue and organ

fibrosis [4]. Importantly, the developmental program of

EMT is reactivated in cancer, such that epithelial cells

undergo an EMT, acquiring mesenchymal features that

enable them to migrate and invade. This reactivation of the

developmental program of EMT in cancer is believed to be

responsible for metastasis of the primary tumor to distant

sites, which is responsible for most cancer-related deaths.

The process of EMT is reversible through a mesenchymal

to epithelial transition (MET) in which the motile mesen-

chymal cells, once reaching their destination, revert to an

epithelial phenotype. MET is essential in normal

development.

The primary model explaining tumorigenesis and tumor

heterogeneity has been the clonal evolution theory whereby

cells acquire changes, genetic or epigenetic, that provide
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them with a growth advantage. These cells become the

dominant clone in the tumor and are responsible for its

tumorigenic capacity. More recently, a cancer stem cell

(CSC) model has been proposed to explain tumor hetero-

geneity [5]. Unlike the clonal evolution model, the CSC

hypothesis is based on hierarchical organization such that

only a small subset of cells in a tumor is responsible for

tumorigenesis. CSCs are cancer cells with the stem cell

properties of self-renewal and differentiation. CSCs can

self-renew to generate more CSCs and can differentiate to

generate all the non-CSC progeny in the tumor. Impor-

tantly, CSCs do not necessarily originate from transfor-

mation of a stem cell. In addition, CSCs can arise from the

transformation and dedifferentiation of non-CSCs via

genetic or epigenetic changes to non-CSCs. The presence

of CSCs has been demonstrated in hematopoietic, breast,

pancreatic, and colon cancers. In addition, CSCs have been

implicated in several other cancers, but are not likely to be

responsible for all cancer types.

EMT Promotes Stem Cell Features and Induces CSCs

A critical topic in the field of EMT and CSCs is the

intersection between EMT and stemness. Mani et al. [6, 7]

demonstrated that induction of EMT in human mammary

epithelial cells by overexpression of the transcription fac-

tors Snail or Twist generated stem cell-like cells (Fig. 1).

These stem cell-like cells continued to have properties of

EMT. Induction of EMT in mammary cells induced a stem

cell phenotype similar to CSCs. They went on to show that

EMT gives rise to metastatic CSCs. Post-therapy breast

tissue was found to be enriched in tumor cells with CSC-

like and mesenchymal features [8]. Recent studies by Rhim

et al. [9•] and Abell et al. [10] have shown that CSCs may

be a population of cells in an intermediate state of EMT

(Fig. 1). These cells express low to moderate levels of the

epithelial marker E-cadherin and at the same time, have

mesenchymal features. Abell et al. [10] showed that mutant

stem cells in an intermediate stage of EMT and claudin-low

breast cancer (CLBC) cells with mesenchymal features

shared a gene expression signature. These cells were sim-

ilar to cancer stem cells, maintaining stemness features and

tumor-initiating properties, and were highly invasive [11].

Similarly, Rhim et al. [9•] found that pancreatic ductal

adenocarcinoma cells (PDACs) had features of an inter-

mediate stage of EMT, coexpressing both epithelial and

mesenchymal markers. They found that PDACs metasta-

sized ‘‘early’’, before histological evidence of malignancy.

Further, circulating PDACs had pancreatic stem cell

Fig. 1 Molecular characteristics of EMT and stemness in development versus cancer. The similar features of EMT in both development and

cancer are illustrated. Differences between the maintenance and/or acquisition of stemness in development and cancer are also shown
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properties, being CD24/CD44 positive and being able to

grow in pancreatosphere assays. Together, these studies

suggest that cancer cells passing through EMT acquire self-

renewing stem cell traits.

That CSCs may exist in an intermediate stage of EMT

suggests mechanisms that regulate EMT and stemness are

closely integrated. Recent papers from several laboratories

have identified novel mechanisms regulating EMT and

stemness that include epigenetic modifications, changes in

the microenvironment, and dedifferentiation of non-CSCs

to CSCs. Each of these potential mechanisms is discussed

below.

Promotion of EMT and Stemness by Epigenetic

Changes

An important focus of research into EMT and stem cell

features of cancer cells relates to the mechanisms that

regulate EMT to promote stemness in CSCs. Several recent

publications have demonstrated the power of epigenetic

changes to promote EMT and induce stemness in CSCs.

Abell et al. [10] identified an epigenetic mechanism con-

trolling EMT in stem cells and CLBC cells with stem cell

features. MAP3K4, a MAP3K kinase regulating the JNK

pathway, activates the acetyl transferase CBP, promoting

acetylation of histone H2BK5 to maintain the epithelial

phenotype. Loss of H2BK5 acetylation on a specific set of

genes in both stem cells and CLBC resulted in an inter-

mediate state of EMT. One of the genes regulated by

H2BK5 acetylation is SMARCD3, a SWI/SNF chromatin-

remodeling factor [12]. Knockdown of SMARCD3 in

mesenchymal-like basal breast cancer cells partially

restored epithelial features of these cells. Further, overex-

pression of SMARCD3 was sufficient to induce EMT in

mammary epithelial cells and to induce a gene-expression

signature similar to that of mesenchymal CLBC cells with

stemness characteristics, being CD44 and ALDH1-positive

and CD24-negative.

In addition to identification of acetyl transferases and

chromatin modifiers that regulate the induction of EMT

and stemness, recent studies by Song et al. [13] and Taube

et al. [14] have demonstrated the role of specific microR-

NAs (miRs) in the regulation of stemness and EMT in

breast cancer. Song et al. [13] showed the ability of miR-22

to promote EMT and stemness. miR-22 silenced the miR-

200 family, which controls epithelial maintenance, by

targeting the expression of the ten eleven translocation

(TET) family of methylcytosine dioxygenases, inhibiting

demethylation of the mir-200 promoter. miR-22 expression

was sufficient to induce expansion of the mammary stem

cell compartment, EMT features, and invasiveness, sug-

gesting it is an initiator of tumor initiation. Overexpression

of miR-22 correlated with poor patient outcomes in breast

cancer, suggesting that miR-22 may be a viable thera-

peutic target for breast cancers with EMT and stemness

features.

In contrast with EMT-inducing properties of miR-22,

Taube et al. [14] has found that miR-203 represses EMT

and stemness. Expression of miR-203 in human mammary

epithelial cells was repressed by induction of EMT by

TGFb, or by overexpression of EMT-inducing transcription

factors Twist or Snail. It was also repressed in CLBC cells

and in CD44hi/CD24low stem cell-enriched fractions.

Importantly, restoration of miR-203 expression inhibited

stemness and EMT properties of CLBC cells, inhibiting

invasiveness, mammosphere formation, tumorigenesis, and

metastasis, suggesting the potential of miR-203 to suppress

transformation and breast cancer.

Promotion of EMT and Stem Cell-Like Features

by Signals From the Microenvironment

Recent work has identified factors produced and released

by the tumor microenvironment that promote EMT and

stemness. In colon cancer, hepatocyte growth factor (HGF)

secreted by stromal myofibroblasts promoted EMT and

stemness [15]. These colon CSCs expressed high levels of

Wnt induced by factors secreted by stromal myofibroblasts.

Colon CSC self-renewal capacity was apparent from tumor

initiation capacity, spheroid culture, and stem cell markers.

Significantly, these factors secreted by the microenviron-

ment were sufficient to promote CSC formation from more

differentiated non-CSC tumor cells, showing the ability of

the microenvironment to control EMT and stemness in

colon cancer. Scheel et al. [16] have identified signals that

induce and/or maintain mesenchymal features and stem

cell fate in the breast. In this study, they used previously

identified spontaneously arising mesenchymal subpopu-

lations of cells (MSPs) isolated from immortalized

human mammary epithelial cells. They found that the

mesenchymal and stem cell state of MSPs was main-

tained by increased TGFb1, BMP antagonists and Wnt

signaling, and by reduced BMPs and Wnt antagonists.

Importantly, the self-renewal and motility properties of

the MSPs could be reversed by inhibiting TGFb or by

adding back BMP4 or Wnt antagonists. These findings

emphasize the importance of autocrine signaling to

maintaining the stem cell fate of these MSPs. They also

asked whether this autocrine loop applies to cancer stem

cell tumorigenicity and metastasis. For example, do

Ras-transformed MSPs behave like CSCs? They found

that Ras-transformed MSPs have more tumor initiating

potential and are more metastatic than Ras-transformed

mammary epithelial cells. Importantly, blocking the
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autocrine loop created by TGFb and Wnt that supports

MSPs also blocked tumor initiation and metastasis in the

Ras-transformed MSPs.

EMT Promotes Stem Cell Like Features in Cancer Cells

by Dedifferentiation

Until recently, CSCs were believed to exist at the top of a

cellular hierarchy giving rise both to new CSCs with high

tumor-initiating properties and to more differentiated

non-CSC tumor cells. More recently, several studies have

suggested that non-CSCs can acquire CSC features. Ini-

tial studies by Scheel et al. [16] and Chaffer et al. [17•]

described the ability of normal and non-CSC cells to

convert to stem-like cells that were dependent on signals

from the microenvironment. They predicted that this

conversion and/or dedifferentiation may be promoted by

signals that drive EMT. Similarly, as described above,

studies of colon CSCs showed the ability of HGF to

reprogram non-CSCs to CSCs [15]. This conversion or

dedifferentiation was dependent on the factors secreted

by stromal cells like HGF and on Wnt signals. These

studies were extended to basal-like breast cancers, for

which it was shown that conversion of non-CSCs to CSCs

was frequent in specific subtypes of breast cancer, for

example basal-like breast cancers. These conversions

were dependent on EMT-inducing factors TGFb and

ZEB1, which promoted high levels of expression of the

stem cell marker CD44. The ability of specific cancer cell

types to interconvert between non-CSC and CSC states,

thus controlling the tumorigenic and invasive potential of

the cancer cells, is an important mechanism that may be

targeted therapeutically to inhibit both tumorigenesis and

metastasis.

Circulating Tumor Cells (CTCs), CSCs, and EMT:

Mesenchymal Features of CTCs and How CTCs Relate

to CSCs

Recent studies of multiple cancer types have demonstrated

EMT and stem cell properties of CTCs (Fig. 2). In pan-

creatic cancer, most pancreatic CTCs were found to

exclusively express mesenchymal markers and to have

stemness properties, including being CD24?/CD44? and

forming pancreatospheres [9•]. In prostate cancer, CTCs

were identified with stemness markers [18]. Different lev-

els of epithelial and mesenchymal marker coexpression

were observed for these CTCs, suggesting the prostate

cancer CTCs were in different transitional states. In met-

astatic breast cancer patients, a major proportion of CTCs

were found to have EMT and tumor stem cell properties

[19]. This study was further extended to CTCs from breast

cancer patients without diagnosis of metastasis, suggesting

that acquisition of EMT and stemness can occur early in

the dissemination process, similarly to pancreatic cancer

[9•, 20, 21]. These studies have been significantly extended

by a recent study by Yu et al. [22•], who showed that CTCs

from metastatic breast cancer have features of EMT

(Fig. 2). Importantly, they found that EMT in CTCs cor-

related with breast cancer treatment responses and patient

relapse. They suggested the importance of EMT as a

potential biomarker of therapeutic resistance and as a drug

Fig. 2 EMT, CSCs, and CTCs.

Mesenchymal CTCs are likely

to represent CTCs and CSCs

with tumor-initiating potential.

Epithelial tumor cells lacking

mesenchymal features are

shown in orange. Tumor cells in

an intermediate state of EMT

with both epithelial and

mesenchymal features are

shown in green. Individual or

sheets of tumor cells primarily

with mesenchymal features are

shown in blue. It is postulated

that it is the sheets of

mesenchymal tumor cells [1],

and not the epithelial tumor

cells, which will successfully

traverse the vasculature [2],

exiting to form metastases [3],

but this hypothesis needs

additional experimental support

(Color figure online)
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target in breast cancer. They also found that CTCs with

mesenchymal markers often circulated as clusters instead

of individual cells (Fig. 2). It remains unclear what pro-

portion of CTCs are CSCs and what are the consequences

to patient treatment, response, and survival. A major hurdle

in the use of CTCs to monitor patient response to treatment

and/or relapse is the presence of subpopulations of CTCs

that are dedifferentiated CSCs with mesenchymal features.

These cells, which have undergone EMT, are not likely to

be detected by current CTC isolation approaches that rely

heavily on such epithelial markers as EpCAM and cyto-

keratins, which may be lost in aggressive CTC and/or CSC

phenotypes that have lost their epithelial features and

gained mesenchymal characteristics. This is very relevant

to patient response to current therapy, because drug-resis-

tant CTCs clearly have mesenchymal features associated

with EMT. Productive response to therapeutic intervention

correlated with reduced mesenchymal CTCs, whereas

therapeutic resistance correlated with increased mesen-

chymal CTCs, indicating the importance of being able to

monitor, study, and treat these subpopulations in patients

[22•].

Conclusions

Recent work has established the critical link between EMT

and stemness features of CSCs. This work has identified

novel mechanisms regulating the induction and mainte-

nance of EMT and CSCs that will pave the way to finding

novel solutions for targeting CSCs that are resistant to

traditional cancer therapy [23, 24]. Clearly, better treat-

ment of patients with CSCs could be achieved if CTC

isolation methods could detect CTCs that have undergone

EMT. Currently, many clinical trials are in progress to

examine either EMT or CTCs (ClinicalTrials.gov). There

are, however, only two trials, one of metastatic colorec-

tal cancer (NCT01286883) and one of breast cancer

(NCT01866202), that are examining EMT markers in

CTCs and CSCs, with the idea of using these as biomarkers

and/or prognostic markers of treatment. Defining molecular

mechanisms controlling EMT in cancer cells will aid the

treatment of patient cancers. The resistance of CSCs with

EMT to traditional therapy clearly demonstrates the

importance of targeting CSCs and/or the conversion of

non-CSCs to CSCs. Recent high-throughput, small-mole-

cule screening has focused on identification of treatment

which specifically targets CSCs and/or EMT [25]. Addi-

tional work has focused on identification and use of

approved drugs to reduce CSCs and/or EMT. One such

proposed treatment is use of the broad-acting tyrosine

kinase inhibitor sunitinib against claudin-low breast cancer

and other EMT-dependent cancers [26]. The biotechnology

industry is attempting to develop novel therapeutic strate-

gies to specifically target EMT and CSCs. As we learn

more about the genomic and/or proteomic properties of

these cells, therapeutic targeting will become a real pos-

sibility for developing new therapy for treatment of cancer.
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