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Abstract
Purpose of Review The purpose of this review is to consolidate evidence related to the use of biofeedback in swallowing 
rehabilitation. Rather than a comprehensive review, we provide a historical and conceptual justification for integration of 
biofeedback modalities in the treatment of dysphagia.
Recent Findings Although biofeedback has been used for decades in/as an adjunct to muscle strengthening rehabilitation 
programmes, advances in our understanding of swallowing neural control provide potential for new applications of technology 
to facilitate swallowing recovery. New research highlights the emergence of skill-based swallowing training, which focuses 
on adaptation of specific components of timing and coordination in the swallowing motor plan. This research suggests posi-
tive clinical outcomes using feedback that is impairment specific and is designed with principles of neuroplasticity in mind.
Summary The emerging emphasis on motor control, rather than muscle strength, implicates a critical role for the use of 
biofeedback modalities to allow conscious insights into specific aspects of the generally obscure swallowing process.
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Introduction

In the broadest of terms, our current practice for behav-
ioural management of swallowing impairment covers a 
wide range of interventions contained within two overarch-
ing categories: compensatory approaches, including diet 
modification, postural and behavioural adaptations, and 
rehabilitation approaches, categorised by some into direct 
and indirect modalities [1]. Compensatory approaches are 
used quite widely in clinical practice and by definition are 

focused on either intrinsic or extrinsic adaptations that alter 
bolus or biomechanics to produce a typically transient effect 
on efficiency or safety of swallowing [2]. Rehabilitation 
approaches are designed to alter the underlying substrates 
of swallowing, producing long-term changes in swallowing 
dynamics [3], but are perhaps somewhat less well integrated 
into routine clinical care [4]. In this manuscript, we will 
turn a lens specifically to rehabilitation strategies for dys-
phagia. Rather than a comprehensive review, we will focus 
more specifically on a conceptual justification for integra-
tion of biofeedback modalities as an adjunct to rehabilitation 
programmes.

An Evolutionary Timeline of Our Conceptualisation 
of Swallowing

“You can’t connect the dots looking forward, you can 
only connect them looking backwards” (Steve Jobs, 
2005)

The purpose of this review is to consolidate evidence 
related to the use of biofeedback in swallowing therapy. In 
keeping with the wisdom of Steve Jobs, we will reflect on 
the past and review the evolving evidence that underlies 
past, current, and hopefully future dysphagia management 
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practices. Figure 1 illustrates what we perceive as a concep-
tual timeline across two developing lines of research and 
how advances in our understanding of swallowing neural 
control predates, and consequently influences, the evolution 
of rehabilitation practices. This model will be reflected and 
elaborated on in the text that follows.

In the Beginning, There Was a Brainstem

The foundations of our developing understanding of swal-
lowing neural control were based on early work by Andre 
Jean, Art Miller, and other esteemed neuroscientists [5–9], 
who identified and elaborated on a brainstem-driven central 
pattern generator (CPG) underlying deglutitive behaviour. 
Their integrated research proposed a model of neural con-
trol consisting of a medullary CPG producing a swallow-
ing reflex. This model was based largely on experimental 
animal studies, using fictive, or experimentally stimulated, 
swallowing. Based on research at the time, the cortex was 

largely excluded from the published models outside its role 
in the voluntary initiation of swallowing [5–9]. Ensuing 
research, supporting an ever-increasing understanding of the 
role of cortical sensorimotor networks, has suggested that 
man cannot eat by brainstem alone. Ingestive swallowing 
requires some contribution from cortical structures. Martin 
and Sessle [10••] were the first to directly challenge that 
swallowing was confined to brainstem control, supported by 
a review of cortical lesion studies linked with swallowing 
dysfunction. Naturally, this paper prompted an expansion of 
our critical thinking into the importance of cortical input, in 
particular for volitional swallowing.

Subsequently, the advancement of neuroimaging tech-
niques has seen models of swallowing motor control dra-
matically evolve to reflect diverse cortical and subcortical 
input. Ertekin [41] proposed a model with a significantly 
increased cortical prominence. Included in this work were 
bidirectional integrations of sensory and motor cortices with 
the CPG in the medulla, which also extended to include 
inputs from the limbic and extrapyramidal systems and, 

Fig. 1  Visual representation of two interdependent lines of research 
that inform the development and iterative refinement of swallowing 
rehabilitation approaches [5–10, 11–14, 15–17, 18–22, 23, 24, 25, 26, 
27–30, 31, 32–40]. The timeline at the top represents selected semi-
nal research expanding our understanding of the cortical control of 
swallowing. The corresponding timeline at the bottom outlines the 

corresponding evolution of swallowing rehabilitation approaches. 
Note that the arrangement of studies in this figure is conceptual in 
nature and not necessarily to scale. We also acknowledge the many 
additional seminal papers that have contributed to the progression of 
swallowing rehabilitation science
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infratentorially, into the cerebellum. Ertekin [41], as well as 
Mosier and Bereznaya [11], were early to acknowledge the 
differentiation between reflexive and volitional conditions 
of swallowing, suggesting potential distinction in neural 
networks for these tasks. Over the past decade, neuroim-
aging research has led to a redefinition of the concept of 
swallowing neural control centred around the recognition 
of the significant cortical modulation of swallowing. This 
redefinition has led to a change in nomenclature away from 
a swallow ‘reflex’ towards what is now commonly referred 
to as a ‘pharyngeal swallowing response’. Further research 
has resulted in increasingly complex models of swallow-
ing motor control that acknowledge contribution of a broad 
range of cortical structures with a role in modulation of the 
pharyngeal response [12–14]. A question that is yet to be 
clarified: Do cortical networks only modify the motor plan 
created within the medullary CPG for ingestive swallowing 
or is there a unique swallowing neural network that utilizes 
cortical motor planning regions to augment, or differentiate, 
the reflexive swallowing CPG?

Rehabilitative Approaches for Dysphagia 
and Early Adjunctive Biofeedback

In Fig. 1, we also outline a similar timeline for the develop-
ment of our rehabilitative approaches, with clinical imple-
mentation following the exploration, expansion, and docu-
mentation of new knowledge. As above, in the early days, 
our models of swallowing motor control supported a concep-
tualisation of swallowing as a reflex; therefore, our clinical 
thinking did not consider this to be a deficit that would be 
amenable to behavioural rehabilitation. As a consequence, in 
the early days of dysphagia management, clinical care of the 
patient with dysphagia focused predominantly on compensa-
tory approaches. These methods included diet modification 
to facilitate ease and safety of swallowing, or cohesiveness 
of bolus, postural adaptations to redirect bolus away from 
the airway, effortful swallowing to generate increased force 
on the descending bolus to decrease residual, and Mendel-
sohn manoeuvre to maintain opening of the upper oesopha-
geal sphincter (UES) [42].

Muscle Strengthening Approaches

One of the first clear reports of rehabilitation as a long-term 
restorative approach was a case study by Bryant in 1991 
[15•]. This study documented transition of the effortful 
swallow and Mendelsohn manoeuvre from the compensatory 
domain to the rehabilitative domain in a patient with head 
and neck cancer. Of interest, this was also a first report of the 
use of surface electromyography (sEMG) as a biofeedback 
modality in rehabilitation of swallowing.

Over the ensuing years, approaches to dysphagia man-
agement continued to extend beyond compensation alone 
to harness the potential of rehabilitation. Like Bryant [15•], 
others went on to investigate the transition of established 
compensatory manoeuvres, known to increase bolus pres-
sure, into the rehabilitative realm [16, 17]. As such, rehabili-
tative approaches were characterised at this time by repeti-
tive execution of these manoeuvres to strengthen muscular 
substrates of swallowing. At first, these approaches were 
largely nonspecific, targeting swallowing musculature at a 
global level such as in the effortful swallow, which involves 
several oral and pharyngeal muscle groups [43]. While such 
approaches may be appropriate for patients with diffuse mus-
cle weakness, they lack the specificity necessary for patients 
who present with deficits in specific areas. Strengthening 
exercises then evolved to become more specific. For patients 
with apparent submental muscle weakness, exercises such 
as the head-lift manoeuvre [18], chin-tuck against resist-
ance [19], and expiratory muscle strength training (EMST) 
[20] provided opportunities for strengthening of these mus-
cles specifically. Other exercises, such as the tongue-hold 
manoeuvre [21], allowed for the musculature of the posterior 
pharyngeal wall to be the focus of rehabilitation, while iso-
metric lingual exercises provided opportunity for increasing 
lingual strength [22].

Strengthening exercises such as these have allowed for 
effective approaches to rehabilitation of dysphagia charac-
terised by peripheral muscle weakness. However, they do 
not come without limitations. Detraining effects have been 
identified for strength training approaches, which means 
additional attention to post-treatment maintenance pro-
grams is required [44, 45]. Additionally, growing evidence 
indicates that weakness is not always the primary cause 
of dysphagia [46–48], with corroborating research to sug-
gest that muscle strengthening may be contraindicated for 
some patients [48–50], for example, in inadvertently inhib-
iting anterior–superior hyoid excursion [48, 51]. There is 
also the fundamental question of which approach to take 
if the patient with dysphagia is not weak. Strengthening 
approaches may not be suitable. For patients who present 
with dysphagia characterised by other deficits, such as poor 
swallowing skill [46, 47], strength training may also run the 
risk of reinforcing deficits such as pharyngeal mis-sequenc-
ing [52]. As such, alternative approaches to dysphagia reha-
bilitation are indicated.

Neural Plasticity and a Shift to Skill‑Based 
Swallowing Approaches

Coinciding with our recognition of cortical contributions 
to swallowing, there has been an increase in understand-
ing mechanisms of neuroplasticity and how these princi-
ples may translate to swallowing management. Neural 
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plasticity has been defined by Kleim and Jones ([23••] p. 
S225) as ‘the mechanism by which the brain encodes experi-
ence and learns new behaviours’. These same mechanisms 
are involved following damage as the brain ‘relearns lost 
behaviour in response to rehabilitation’. Most will likely be 
familiar with their work, which highlighted ten principles 
of experience dependent plasticity. As outlined by Kleim 
and Jones [23••], principles 1 and 2 describe how failure 
to engage a neural system may lead to further degradation, 
while, conversely, engaging it with increasing competence 
supports improvement of function. Principle 3 highlights 
the specific relationship between the training experience 
and the plastic change that is induced. Principles 4, 5, and 
7 stress the importance of delivering appropriate therapy 
at the correct dosage, with a need for sufficient repetition 
and intensity of salient training. Time since injury and the 
age of the individual also influence neural plasticity, as rep-
resented by principles 6 and 8, with an apparent tendency 
for increased plasticity shortly after injury and for younger 
individuals. The authors also explore the diffuse effects of 
neural plasticity. These effects can either be positive, as pro-
posed by principle 9, which describes the ability of neural 
plasticity in one set of neural circuits to promote change in 
other circuits. They can also be negative, as in principle 10, 
which describes the potential for neural plasticity to impede 
expression or induction of plasticity within the same cir-
cuitry. For a more comprehensive description of these prin-
ciples, the reader is directed to the seminal paper by Kleim 
and Jones [23••]. The involvement of the cortex in swallow-
ing is evident, and thus, the relevance of these principles in 
swallowing rehabilitation is clear. A subsequent manuscript 
by Robbins et al. [24••] translated the key principles of neu-
roplasticity to swallowing and provided a comprehensive 
discussion of key considerations and strategies to support 
integration of these principles into practice.

The recognition of significant cortical modulation of 
swallowing and potential for neural plasticity opens new 
avenues for swallowing rehabilitation. Development of strat-
egies that directly target swallowing skill through principles 
of neural plasticity may more efficiently maximise swallow-
ing recovery in those where dysphagia is not due to muscle 
weakness.

Non‑invasive Brain Stimulation (NIBS)

The concept that repeated execution of a motor behaviour 
can lead to neuroplastic changes in the sensorimotor net-
works involved in the execution of that motor behaviour has 
led to new options for rehabilitation. The potential role of 
inducing such neuroplastic changes in swallowing with non-
invasive brain stimulation (NIBS) provided a first entry into 
focused manipulation of cortical inputs to drive swallowing 
recovery.

In the context of swallowing rehabilitation, NIBS is a 
form of neuromodulatory intervention that aims to improve 
swallowing motor function via extrinsically induced neu-
roplastic changes in swallowing-related sensorimotor net-
works. The two most commonly researched and perhaps 
most refined NIBS techniques are repetitive transcranial 
magnetic stimulation (rTMS) [53] and transcranial direct 
current stimulation (tDCS) [54]. In general, NIBS tech-
niques are applied to the cortex through the intact scalp 
and are thought to modulate trans-synaptic excitability and 
efficiency similar to long-term potentiation- and long-term 
depression-like mechanisms involving N-methyl-D-aspartate 
(NMDA) [55, 56].

Although promising, recent meta-analyses [25] and com-
mentaries [26] highlight the variability of the treatment para-
digms, as well as the heterogeneity of treatment effects. In 
the context of the known factors that can potentially influ-
ence extrinsically induced neuroplastic modulation (includ-
ing age, genetic disposition, and recent history of synaptic 
activation, to name a few) [57], the role of NIBS paradigms 
as stand-alone swallowing rehabilitation interventions 
requires further investigation.

Another factor to consider in the application of NIBS 
approaches is the relative non-specificity of the (magnetic or 
electrical) stimulation of the targeted neuronal tissues. NIBS 
protocols are not specific to biomechanical or pathophysi-
ological features of swallowing. It is possible that further 
focusing of the stimulation target, or pairing stimulation 
with intrinsic, behavioural activation of task-related corti-
cal circuits through simultaneous performance of a motor 
task, may yield even greater, more stable benefits. Simi-
larly, priming cortical motor networks to modulate motor 
cortical excitability prior to performing motor training may 
also further enhance rehabilitative potential [58]. Although, 
theoretically, this may focus the treatment towards specific 
behaviour, it begs critical questions: With a preponderance 
of muscle strengthening approaches in our dysphagia toolkit, 
is it logical to pair cortical stimulation with a peripheral 
strengthening exercise? What rehabilitation approaches do 
we have that recruit central neural mechanisms?

Behavioural Cortical Activation

In an attempt to increase cortical control of swallowing with 
greater specificity than what is afforded by brain stimulation 
techniques, more recent work has shifted to what might be 
termed behavioural swallowing skill training. In an histori-
cal reference from 1972, predating much of the research on 
the swallowing CPG [5–9], use of cortical input as a reha-
bilitation approach to drive swallowing performance was 
addressed by Larsen [27]. In this early manuscript, Larsen 
states ‘ < the patient > is taught the importance of regulat-
ing his swallowing volitionally rather than on a reflex basis. 
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In other words, swallowing is made subject to intellectual 
control…. He will be taught to “think swallow” and then 
swallow’ (p. 189–90). Much more recent research has started 
testing these early concepts.

Research by Jing et al. [28] has found that specific neural 
networks can be intrinsically stimulated through engage-
ment of perceptual and cognitive schemes of swallowing. 
This task-based functional magnetic resonance imaging 
(fMRI) study compared brain activity of healthy participants 
(n = 29) during swallowing and while watching someone 
swallow. Across both conditions, the supplementary motor 
area (SMA) and left middle temporal gyrus were activated. 
Hence the authors suggest that contemplating swallowing 
activates similar neural pathways as executed swallow-
ing, thus suggesting potential for cortical re-organisation. 
A similar study evaluated not only cortical representation 
of imagined swallowing, but also the ability to purposely 
manipulate identified regions of cortical activation. Kober 
and colleagues [29] utilised fMRI to evaluate if imagined 
swallowing produced comparable activation to executed 
swallowing. Similar to Jing et al. [28], these two tasks pro-
duced comparable brain activation, but this study also iden-
tified activation of the bilateral cerebellum, basal ganglia 
and insula. In an extension of the Kober et al. study [29], 
participants received neurofeedback, an online representa-
tion of brain activation in regions of interest identified in 
the first study. The authors report that the use of feedback 
increased activation not only of targeted regions, but with 
extension to other cortical regions involved in swallowing.

But would this mental recruitment of swallowing net-
works carry over to functional outcomes? Szynkiewicz 
et al. [30] investigated outcomes of a 6-week mental practice 
regime. Typically ageing participants imagined completing 
a lingual strengthening exercise programme—they did not 
actually perform the lingual movements. By week 6, all par-
ticipants had significantly improved objective measures in 
lingual strength, compared to baseline. These three studies 
represent a growing body of emerging research that sup-
port the engagement of cortical control of swallowing and 
enhancement of cortical activation with feedback.

Motor Learning and Biofeedback

The processes of motor learning and relearning are depend-
ent on neuroplasticity, inasmuch as they result in the for-
mation and pruning of neural pathways [59]. Motor learn-
ing and relearning describe the ability to acquire/reacquire 
permanent movement of coordinated, skilled actions in 
response to practice and experience [60]. By definition, this 
underlines the fundamental goal of swallowing rehabilita-
tion. Zimmerman et al. [59] provide an excellent review and 
framework of motor learning theories applied to dysphagia 
management. This paper highlights three key factors that 

underpin successful motor relearning, including (i) specific-
ity of practice, (ii) task challenge, and (iii) feedback. Swal-
lowing skill training is an approach that incorporates vital 
theories of experience-dependent plasticity into dysphagia 
rehabilitation. This method centres around gaining volitional 
control of timing, force, and/or coordination of the mus-
cles or processes involved in swallowing through functional 
practice. The use of biofeedback modalities is often used to 
facilitate learning [47].

Feedback can be generally defined as intrinsic or extrin-
sic [61, 62]. Intrinsic feedback is the sensory-perceptual 
information felt when performing a task [63]. In the case of 
patients with neurological impairment, intrinsic feedback 
systems may be impacted by sensory loss. Extrinsic feed-
back, commonly referred to as biofeedback, is delivered 
through an external source, via either visual, auditory, or 
haptic methods [61]. Importantly, extrinsic feedback aug-
ments intrinsic feedback by providing information to sup-
plement sensory loss and establish new sensory engrams 
[62, 64]. This point is critical in dysphagia management 
since many conditions impact the sensory system [65, 66], 
which is essential across all phases of deglutition to produce 
accurate swallowing motor output [64–67]. Essentially, bio-
feedback converts concealed movement into user-friendly 
output so that swallowing can be more easily adapted to the 
desired performance [62]. This process of error-based learn-
ing [68] encourages active patient involvement to improve 
task accuracy and is also believed to promote motivation and 
treatment adherence [62, 69].

A recent systematic review and meta-analysis exam-
ined the effects of biofeedback as an adjunct to swallowing 
therapy for adults with dysphagia [70]. In total, 23 studies 
(n = 448 participants) conducted between the years 1976 and 
2016 were included in the analysis [70]. Across all studies, 
the most common instrumentation included sEMG, accel-
erometry, and lingual manometry. All but one of the stud-
ies incorporated swallowing as a therapy exercise during 
intervention, reflecting the principle of task specificity. The 
study meta-analysis included only five controlled studies 
(stroke n = 95; head and neck cancer n = 33; mixed aetiol-
ogy n = 10) focusing on execution of primarily strengthen-
ing exercise and found that biofeedback treatment enhanced 
hyoid displacement compared to control treatment. However, 
what is unclear from the studies included in this review is 
whether treatment outcomes were influenced by the use of 
biofeedback or the use of strengthening exercise. The stud-
ies did not compare treatment outcomes with biofeedback 
to outcomes without biofeedback; thus, the active treatment 
cannot be elucidated. Consequently, this report did not really 
address the effects of biofeedback, rather the combined 
effects of biofeedback with strengthening. Importantly, the 
authors suggested that additional work is required to indicate 
whether biofeedback is more effective when used in skill 
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training paradigms than with strength training for dysphagia 
management.

Swallowing Skill Training with Biofeedback

Arguably, the distinction between swallowing skill training 
and strength training protocols with biofeedback is non-
explicit and likely represents more of a continuum than cat-
egorization. Execution of an effortful swallow, for example, 
does not require complex skill; thus, biofeedback can be 
considered adjunctive. However, the Mendelsohn manoeu-
vre [71] demonstrates components of skill-based training by 
requiring patients to volitionally modulate timing aspects 
of swallowing. This task is challenging to perform even for 
healthy controls without some type of visualisation. Recent 
research has documented little change in UES function after 
a treatment protocol of Mendelsohn manoeuvres with sEMG 
biofeedback to monitor floor of mouth muscle activation 
[72, 73]. One might argue that this is not surprising as it 
employed monitoring and sustained contraction of floor of 
mouth muscles when it was unclear if the primary abnor-
mality was weakness of those muscles. This rehabilitation 
approach may be misdirected if non-compliance of the UES 
were inhibiting opening.

In an attempt to separate strength from skill components 
in rehabilitation, Athukorala et al. [31] applied sEMG bio-
feedback to a specific skill-based training approach. The pur-
pose of this approach was to improve precision in the timing 
and magnitude of submental muscle contraction with bio-
feedback to upregulate conscious control. Ten patients with 
Parkinson’s disease (PD) completed 10 h of skill training 
spread across a 2-week treatment period. During sessions, 
participants were instructed to swallow such that the peak 
of the sEMG waveform hit a target that moved randomly 
about the screen. Effortful type swallowing was prevented 
by calibrating targets between 20 and 80% of the individual’s 
maximum submental muscle strength. Following three con-
secutive ‘hits’, the target reduced in size by 10%, adhering to 
the construct of task challenge. Alternatively, the size of the 
target automatically increased by 10% with three repeated 
‘misses’. Sessions comprised 100 dry/saliva swallows across 
5 blocks of 20 swallowing trials, providing high intensity 
and high repetitions. Significant improvements were docu-
mented in all measures of functional swallowing using the 
timed water swallowing test [74] (volume per swallow, 
time per swallow, volume over time) as well as all meas-
ures of sEMG activity (premotor time [reaction time], pre-
swallow time [anticipatory movement], and total duration 
of swallowing). Swallowing-related quality of life was also 
improved as measured with the SWAL-QOL [75]. All treat-
ment gains were maintained at the 2-week follow-up. This 
sustained change in behaviour may indicate improved neu-
ral connectivity as a function of skill-based treatment [76]. 

Furthermore, training was completed using saliva swallow-
ing only; transference of improvement to swallowing liquid 
bolus indicates that the protocol promoted skill-acquisition 
of functional swallowing behaviour. This ability to adapt and 
modify tasks based on changing conditions likely provides 
long-term benefits for improved swallowing [77].

Further exploratory research applied the same protocol [31] 
to a case study involving a 44-year-old male with multiple 
system atrophy (MSA) cerebellar disorder [32]. The patient 
completed 1-h weekly treatment sessions and daily home 
practice for a 6-week period. Home-based treatment required 
the patient to practice variable swallowing trials, facilitated 
through a smartphone video module. Post-treatment instru-
mental evaluation found reduced post-swallow residue and 
elimination of premature spillage and aspiration. Patient-
subjective report included decreased coughing and choking 
episodes and improved quality of life. The authors conclude 
that the biofeedback treatment improved the timing and control 
of the patient’s swallowing, which translated into quality-of-
life outcomes.

Of perhaps greater interest is if we can produce change in 
isolated components of the pharyngeal motor plan outside of 
muscle strengthening. In this context, the use of biofeedback 
may be considered an integral component of skill training, 
rather than an adjunct to task execution. Recent research has 
investigated the capacity of patient-driven high-resolution 
manometry (HRM) biofeedback to modify resting pressure 
of the UES in isolation. Nativ-Zeltzer and colleagues [33] 
recruited ten patients undergoing HRM for assessment of 
dysphagia, globus, chronic cough, and gastroesophageal 
reflux. In a single session, patients were able to increase the 
average resting and maximum UES pressure, using the HRM 
colour plots as biofeedback. While some participants were 
able to decrease basal UES tone, no statistically significant 
effect was seen for this condition. Winiker et al. [34] used 
similar methods to evaluate the capacity for healthy adults 
to adapt UES tone across a 2-week (10 h) training proto-
col. Similar to Nativ-Zeltzer et al. [33], participants could 
increase UES pressure following 1 week of practice; how-
ever, there was no evidence for purposeful pressure decrease.

Low-resolution (3 channel) pharyngeal manometry has 
been applied to dysphagia intervention to facilitate patient 
control and coordination of pressure patterns for swallowing. 
Huckabee et al. [52] identified a cohort of patients presenting 
with dysfunctional timing of pressure initiation at the proxi-
mal and distal pharynx, leading to nasal redirection, aspi-
ration, and pharyngeal residue. Sixteen patients underwent 
twice daily, 1-h sessions for a minimum of 1 week. Using 
the pressure waveforms associated with proximal and distal 
pharyngeal pressure as visual biofeedback, participants were 
coached to volitionally increase the temporal separation of 
the two peaks that represented maximum pressure between 
the upper and lower pharynx while swallowing. Eleven of 16 
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patients returned to pressure patterns approximating those of 
healthy controls, resulting in resolution of nasal redirection, 
aspiration, and pharyngeal residual, as well as return to a 
normal diet. Biofeedback is considered to be most beneficial 
when providing information about a function not directly 
observable, allowing a participant to see what they cannot 
easily see or feel. In this regard, pharyngeal manometry, 
although somewhat uncomfortable, may provide a valuable 
avenue for feedback of specific features of the pharyngeal 
response.

A different approach to visual biofeedback was used by 
Martin-Harris and colleagues [35] to improve swallowing-
respiratory patterns. Thirty patients with head and neck can-
cer underwent a hierarchical training approach that consisted 
of three modules: (i) identification of respiratory-swallowing 
patterns, trained via visual diagrams on the KayPENTAX 
Digital Swallowing Workstation; (ii) performance acquisi-
tion of optimal swallowing-respiratory patterns with liquid 
boluses and visual biofeedback; and, finally, (iii) mastery 
to achieve the correct expiratory-swallow-expiratory pat-
tern, without visual feedback, to 80% accuracy. With twice-
weekly, 1-h training sessions, all participants were able to 
achieve mastery within 4 weeks, which was accompanied by 
significant improvements in laryngeal vestibule closure and 
penetration aspiration scale scores. Additionally, significant 
improvements were seen in tongue-base retraction and phar-
yngeal residual, which may suggest a type of task transfer-
ence associated with skill-based training. Also consistent 
with a skill-based, cortically driven change, all participants 
who attended the 1-month follow-up demonstrated mainte-
nance of treatment effects.

Conclusion

Our expanding understanding of cortical contribution to 
swallowing motor control has informed the development 
and iterative refinement of increasingly specific rehabilita-
tion approaches. As supported by this narrative review, the 
emerging emphasis on motor control, rather than muscle 
strength, implicates a critical role for the use of biofeedback 
modalities to allow conscious insights into specific aspects 
of the generally obscure swallowing process. Collectively, 
the body of research referred to in this review is a call to 
arms for researchers to continue to refine rehabilitation 
approaches that address specific characteristics of underly-
ing swallowing impairment. Additionally, the hope is that 
clinicians will intentionally transcend a focus on compensa-
tory dysphagia management and embrace the potential of 
neuroplastic changes for improved cortical control of swal-
lowing. Perhaps a future review will comment on today’s era 
as a transitionary period between our current understanding 

of cortical swallowing networks and future interventions that 
selectively target neural networks responsible for distinct 
aspects of swallowing motor control.
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