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Abstract

Purpose of Review This study aimed to review the literature
regarding the mechanisms of transition from asymptomatic
colonization to induction of otitis media and how the insight
into the pathogenesis of otitis media has the potential to help
design future otitis media-directed vaccines.

Recent Findings Respiratory viruses have long been shown to
predispose individuals to bacterial respiratory infections, such
as otitis media. Recent information suggests that Streptococcus
pneumoniae, which colonize the nasopharynx asymptomatical-
ly, can sense potentially “threatening” changes in the nasopha-
ryngeal environment caused by virus infection by upregulating
specific sets of genes involved in biofilm release, dissemination
from the nasopharynx to other sites, and protection against the
host immune system. Furthermore, an understanding of the
transcriptional and proteomic changes occurring in bacteria dur-
ing transition to infection has led to identification of novel
vaccine targets that are disease-specific and will not affect
asymptomatic colonization. This approach will avoid major
changes in the delicate balance of microorganisms in the respi-
ratory tract microbiome due to elimination of S. pneumoniae.
Summary Our recent findings are reviewed in the context of
the current literature on the epidemiology and pathogenesis of
otitis media. We also discuss how other otopathogens, such as
Haemophilus influenzae and Moraxella catarrhalis, as well as
the normal respiratory microbiome, can modulate the ability
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of pneumococci to cause infection. Furthermore, the unsatis-
factory protection offered by the pneumococcal conjugate
vaccines is highlighted and we review potential future strate-
gies emerging to confer a more specific protection against
otitis media.
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Otitis Media: Definitions and Complications

Otitis media (OM) comprises a heterogeneous group of in-
flammatory disorders affecting the middle ear (ME). With
over 700 million cases annually, OM is the most common
reason for pediatric emergency room visits worldwide [1-3].
By the age of three, approximately 80% of all children have
experienced at least one episode of OM, while a large percent-
age have had three or more, due to recurrent infection [4].

OM presents itself in several subtypes with acute or chronic
elements that are classified based on symptoms (such as fever,
irritability, pulling of the ear); visual appearance and/or perfo-
ration of the tympanic membrane; and presence of ME fluid,
with and without active inflammation [5]. Acute otitis media
(AOM) generally affect children under the age of two and is
characterized with sudden onset of symptoms, significant
pain, and signs of inflammation with accumulation of purulent
fluid behind the tympanic membrane. Based on new directives
in several countries, including Sweden and parts of the USA,
AOM in otherwise healthy children is usually treated with
general analgesia, antipyretic drugs, and only for severe and
recurrent cases with antibiotics. Despite this, OM is still a
major reason for outpatient antibiotic prescription in the
USA [2] and in many other parts of the world.
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In contrast, secretory otitis media (SOM, sometimes referred
to as otitis media with effusion) is defined as a chronic inflam-
matory condition mainly affecting children between the age of 3
and 7. SOM may occur as a sequela to AOM and is generally not
associated with any signs of an acute infection but presents with
fluid behind the tympanic membrane and is associated with hear-
ing impairment that over time can lead to cognitive and devel-
opmental problems [6¢, 7]. The continuum of manifestations,
ranging from uncomplicated, asymptomatic and self-limiting
conditions to life-threatening, recurrent or chronic disorders with
associated severe sequelae such as deafness, acute mastoiditis, or
cholesteatoma are likely explained by the multifactorial and
polymicrobial nature of OM [6e¢].

The Microbiology of Otitis Media

Respiratory viruses such as influenza viruses (A and B), rhi-
noviruses, respiratory syncytial virus (RSV), and adenovi-
ruses are well-known causes of both asymptomatic and symp-
tomatic OM [8, 9]. Besides causing infection on their own,
viruses commonly predisposes individuals to bacterial AOM
that is generally more symptomatic and primarily caused by
the bacterial triad Streptococcus pneumoniae (the pneumococ-
cus), Haemophilus influenzae, and Moraxella catarrhalis
[10]. A fourth pathogen worth mentioning is S. pyogenes,
which although it only causes a small percentage of AOM
cases, is the second most common organism associated with
AOM complications [11]. The same bacterial species are also
detected in ME fluid from patients with SOM, although an
increased occurrence of bacteria such as Pseudomonas
aeruginosa and S. aureus are detected in the ME fluid of these
patients [6¢°, 12—14]. Whether this change in species tropism
is indicative of a change in the ME environment, as the acute
infection transitions into a more chronic state, or suggests that
AOM and SOM are two separate clinical entities is currently
not completely understood. Even though there are bacterial
strains that are more otogenic, the bacteria associated with
various subtypes of OM mostly reflect the composition of
the normal nasopharyngeal microflora, and disease is as-
sociated with changes in the host environment that pro-
vides an opportunity for these organisms to actively move
to the site of infection [15]. Among these bacterial organ-
isms, S. pneumoniae and H. influenzae are the most com-
mon causes of OM overall, regardless of subtype.

S. pneumoniae, the focus of this review, accounts for 30—
50% of all AOM cases in different parts of the world, which
amounts to approximately 300 million cases annually [1, 16ee,
17, 18]. S. pneumoniae is also an especially important patho-
gen in OM, as it is the main cause of recurrent infections as
well as postinfectious complications, including ventilation
tube insertion (myringostomy) [19ee, 20ee].
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Epidemiologic Correlations Between Colonization
and Disease

Although pneumococcal colonization is widespread, and
mostly asymptomatic, transition to disease occurs frequently
enough to make S. pneumoniae one of the main causes of
respiratory tract infections, such as OM, sinusitis, and pneu-
monia worldwide [3, 21-25].

Bacterial Colonization and Otitis Media

S. pneumoniae effectively colonize the mucosal surfaces
of the nasopharynx (NP) beginning within the first few
weeks or months of life [26e¢]. It is commonplace for
children to be successively colonized and by the time they
reach the age of two, greater than 95% of children will
have been colonized with individual serotypes for weeks
or months that are sequentially replaced as more serotypes
are acquired [27-29]. The frequency and time of coloni-
zation in the NP has long been associated with increased
risk of OM [30, 31] Furthermore, otitis-prone children are
more heavily colonized than are non-otitis-prone children
[10, 30, 32, 33], suggesting that the resident normal mi-
croflora participates in the pathogenesis of OM. Indeed, it
is well established that colonization of the human NP
always precedes the dissemination of bacteria to other
sites, such as the ME, sinuses, lungs, as well as meninges
and blood [3, 21, 34].

Role of Viral-Bacterial Interactions in Induction
of Pneumococcal Otitis Media

Epidemiologically, transition from NP colonization to OM
is highly correlated with concomitant viral infection [8, 35,
36]. Indeed, many animal models of infection require or
augment bacterial infection in the presence of a preceding
viral infection [10, 37-39]. Essentially all upper respirato-
ry tract viruses can predispose secondary bacterial OM,
albeit with different propensities [10]. The mechanisms
underlying this predisposition are in generally associated
with suppression of the host immune response, although
bacterial factors may play a partial role as well.
Additionally, other changes to the host NP environment
or co-colonization with other species of the respiratory
tract microflora, such as the potential otopathogens
H. influenzae and M. catarrhalis [30, 40—46], or the nor-
mal microflora are common and can modulate the pneumo-
coccal transition from colonization to disease [26¢°, 47,
48e+] (see below for more detail).
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Transition from Asymptomatic Biofilm Colonization
to Otitis Media

Presence of Biofilms During Colonization and Disease

It has been speculated over the years that pneumococci colo-
nizing the NP may form biofilms [49—53], but it was not until
recently that this was shown in mice in vivo [54ee, 55, 56].
Biofilms are collaborating multicellular communities closely
associated with the mucosal epithelium and encased in a self-
produced polymeric matrix that often incorporates host com-
ponents [57]. Aggregation in sessile biofilms provide the bac-
teria with a survival advantage in the harsh NP environment
that is devoid of ample nutrition and where bacteria are ex-
posed to factors of the innate immune response. [58—60]. As
biofilms are inherently more resistant to antibacterial agents
and able to resist host-immune responses, this will ultimately
facilitate persistence and support the dissemination of virulent
clones in the population.

Biofilms are present in up to 80% of all infections and are
typically found in chronic and recurrent infections, such as
OM [61]. Prior to our observation that asymptomatically col-
onizing pneumococci grow on the mucosal surface as biofilms
[54ee, 55], in vivo biofilm formation had only been shown
during disease states in association with adenoids and mucosal
epithelium of children with recurrent or chronic ME disease
and chronic rhinosinusitis [62¢, 63, 64, 65, 66]. However, it is
unclear whether the biofilms detected at these disease sites
represent asymptomatic colonization and persistence of bac-
teria from which virulent bacteria may seed off under the right
conditions or if they are directly involved in the disease pro-
cess [50, 53, 67].

Mechanisms of Transition to Otitis Media

Biofilm bacteria grown in vitro have an avirulent phenotype
and are unable to cause AOM in animals [53, 68, 69+¢]. This is
true also when bacterial biofilm colonization is induced in
animals in vivo [69+°]. However, virus infection is known to
increase adherence of bacteria to epithelial cells [70-73], com-
promise the function of the Eustachian tube, induce dysfunc-
tion of the mucosal epithelium and immune cells [10], as well
as to induce inflammation, fever, and the release of cytokines
and other “danger signals” in the secretion [74-76]. All of
these factors potentially contribute to the disruption of coloni-
zation and dissemination of bacteria.

Indeed, pneumococci are able to sense alterations in the NP
environment resulting from virus infection [69e¢], including
ATP and glucose release from damaged tissue, norepinephrine
release from activation of a sympathomimetic response, and
increased temperature associated with fever [77—80]. Each of

these stimuli was shown to induce dispersal and dissemination
of bacteria from asymptomatically colonized mice, resulting
in severe AOM [69++, 81]. The increased virulence of biofilm-
dispersed bacteria in various animal infection models, includ-
ing AOM, compared to planktonic, broth-grown bacteria, is
explained by the major differences between the transcriptomes
of'the bacterial populations. Dispersed bacteria produced from
an in vitro model system [82] exhibited major changes in their
transcriptome with 134-1179 genes (depending on dispersal
stimuli) being significantly up- or downregulated when com-
pared to biofilm bacteria [83¢¢]. Genes associated with carbo-
hydrate metabolism, bacteriocin production, and common vir-
ulence factors such as capsule, pspA, ply, pcpA, nanA, and
nanB were upregulated in dispersed bacteria, whereas compe-
tence genes and adhesins were downregulated [83¢]. These
results are supported by a proteomic study by Hall-Stoodley’s
laboratory, who showed that biofilm bacteria use alternative
metabolic pathways and downregulate capsule and other vir-
ulence factors when compared to broth-grown bacteria [84s¢].
These results have provided a better understanding of the
mechanisms involved in the induction of otitis media and have
explained the increased virulence seen in animals infected
with actively released biofilm bacteria compared to broth-
grown bacteria.

Modulation of Disease by the Respiratory Tract
Microbiome

Additionally, there is evidence that the normal microbiome is
involved in modulating the transition from colonization to
infection. In an elegant study by Bogaert and coworkers, chil-
dren were followed for 12 months and the microbiome in the
nasopharynx was analyzed and compared with the incidence
of respiratory illnesses. In this study, bacterial species from the
normal flora, such as Dolosogranulum spp., Corynebacterium
spp., and Moraxella spp., were associated with less AOM,
whereas Veillonella spp. and high levels of S. pneumoniae
and H. influenzae were associated with a higher incidence of
infection [26¢¢]. The exact role of the interaction between
S. pneumoniae and H. influenzae in vivo is not clear as studies
have shown that non-typeable H. influenzae promoted pneu-
mococcal biofilm formation in vitro [85], as well as in the
chinchilla model of AOM, and reduced the incidence of sys-
temic disease [67]. The effect on local infection is unclear.
Studies by Pettigrew and coworkers have, similarly, shown
that Corynebacterium and Dolosigranulum are protective for
development of OM, and that Actinomyces, Rothia, Neisseria,
and Veillonella are associated with an increased risk for develop-
ment of AOM [48+¢]. In contrast to Biesbroek et al., this study
showed an association between Moraxella spp. and an increased
colonization and risk for AOM with S. pneumoniae. This
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association is supported by studies showing that the presence of
M. catarrhalis is a marker for increased severity of infection with
other pathogens, including S. preumoniae, and corresponding
increases in the risk of AOM [86, 87]. Additionally, the ascension
of pneumococci into the ME of mice was increased in the pres-
ence of M. catarrhalis in the nasopharynx, and M. catarrhalis
was able to passively protect pneumococci against (3-lactam kill-
ing in dual biofilms [88]. Still, the role of Moraxella spp. in
disease induction could potentially differ with age as the ages
of the study participants was lower in the Biesbroek study than in
the Laufer study, and the protection against respiratory illnesses
was especially pronounced at an early age. Based on this infor-
mation, no clear picture of the role of the interaction between
various species present in the nasopharynx and their role in pro-
tection or induction of AOM can be found.

Vaccines

Effectiveness of Pneumococcal Conjugate Vaccines
Against Otitis Media

The poor immunogenicity of the 23-valent polysaccharide vac-
cine in infants and young children resulted in the development of
the 7-valent pneumococcal conjugate vaccine Prevnar® (PCV7),
released in 2000. This vaccine showed a strong immunogenicity
in children [89]. Over the years, vaccines with increased valency
have been developed to be more broadly protective and more
suitable for the serotype distribution responsible for disease in
other places than the USA. As of September 2016, conjugate
vaccines, including Synflorix® (PHiD-CV or PCV10), a 10-
valent pneumococcal vaccine with H. influenzae protein D, and
PCV13 have, together with PCV7, been implemented in 132
countries around the world [90]. The vaccine efficacy has been
most striking for invasive pneumococcal disease (IPD) with up to
93% protection detected [91¢¢]. The effects of the pneumococcal
conjugate vaccines (PVCs) against OM and its complications
have unfortunately not provided similar levels of protection
[91ee, 92, 93¢, 94, 95].

Now, several years after the introduction of the PCV vaccines,
it has become apparent that none of the vaccines have had a
significant impact on nasopharyngeal colonization with
S. pneumoniae [92, 93+, 96-98]. This is despite the 55-77%
reduction in vaccine serotype-induced AOM compared to the
prevaccine era [16°e, 91+¢] and the 35-46% reduction in all pneu-
mococcal AOM [91ee, 99, 100]. This suggests that the vaccines
have eliminated colonization with most vaccine serotypes but that
serotype replacement with non-vaccine types has occurred rather
immediately. However, these studies also indicate that the non-
vaccine serotypes establishing colonization in the nasopharynx
are, at least so far, less able to cause AOM. Interestingly, the all-
cause AOM is estimated to be reduced by only 0—7% in many
regions of the world [91ee, 101, 102], despite a reduction in
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pneumococcal OM, which suggest both that a concomitant in-
crease in serotype replacement by non-vaccine serotypes is taking
place to some extent and that AOM caused by other organisms is
increasing. However, with the introduction of PCV 13, some parts
of the world with high levels of pneumococcal colonization and
disease have seen a 24-68% reduction in all-cause AOM [16ee,
103, 104], suggesting an increased efficacy of the vaccine in areas
with the highest disease burden. As not enough time has passed to
make long-term predictions about the efficacy of these vaccines,
continued monitoring of the nasopharyngeal microflora and
causes of AOM will be important in the future in various parts
of the world.

Although the total effect on pneumococcal AOM has not been
as promising as for invasive disease, a major benefit with the
current vaccines is that a 10-26% reduction in recurrent AOM
and a 24-32% reduction in severe and complicated AOM, in-
cluding a reduction of ventilation tube insertion, have been ob-
served [19ee, 105]. This is a positive result, albeit not completely
surprising, as S. pneumoniae is most often associated with in-
creased recurrence and severity of infection [20e, 106].

Future Vaccine Strategies

Based on the incomplete protection against S. pneumoniae-
induced AOM conferred by the conjugate vaccines, and the
fact that the evolutionary pressure and other causes will make
the current vaccines less efficacious over time, several inves-
tigators have indicated that novel approaches, alone and in
combination with current vaccine strategies, need to be imple-
mented in the near future [94, 107¢, 108]. The fact that natural
protection against pneumococcal colonization is dependent on
antibodies to pneumococcal proteins, rather than capsular
polysaccharide, suggests that an approach involving protein
vaccine candidates may be most fruitful [109]. Whole-cell
vaccines and protein vaccines with broad coverage across the
over 95 serotypes are two approaches that have been suggested
and investigated [94, 107+¢]. AOM-specific antigen targets
have been identified in clinical studies of convalescent sera
from AOM patients. Alpha-enolase, streptococcal lipoprotein
rotamase A, putative proteinase maturation protein, histidine
triad protein D, pneumolysin, pneumococcal surface adhesin
A (PsaA), and pneumococcal surface protein A (PspA) are
potential proteins that could be used for AOM-specific vaccine
protection in the future [110-113].

Experiments with PspA have shown that the presence of
anti-PspA antibodies in children reduces the risk of AOM
[114]. Furthermore, mucosal immunization can protect mice
against virus-induced AOM and reduces colonization burden
of pneumococci [115, 116]. In studies by Xu et al., PsaA was
shown to protect mice from AOM [117]. Similarly, a study by
Tuomanen and coworkers has shown that a fusion protein of
pneumolysin and choline binding protein A (CbpA, PspC)
protected against OM in mice [118]. It will be interesting to
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follow the development of these strategies as and if they prog-
ress towards finished vaccines.

Potential Disease-Specific Vaccines Against AOM

Each of the antigens mentioned above resulted in that the
colonization burden was reduced concomitant to AOM pro-
tection. The advantage of eliminating pneumococcal coloni-
zation is that it will have a higher efficacy on the population as
a whole, even with more targeted immunization policies, due
to herd immunity. On the other hand, S. pneumoniae has
evolved to become a harmless commensal organism in the
nasopharyngeal microflora that inhibits the expansion of po-
tentially more harmful organisms such as S. pyogenes and
S. aureus through competitive exclusion [119, 120]. The elim-
ination of S. pneumoniae from this niche may therefore
change the nasopharyngeal microbiome in a way that may
or may not be detrimental in the future.

As an alternative, we have recently used the information
gained from our studies regarding the transition from coloni-
zation to infection by choosing antigens that are conserved
and highly upregulated on the surface of disease-causing or-
ganisms (i.e., the biofilm-dispersed pneumococci described
above) [83]. In two studies, we have used either PspA [113]
or eight antigens chosen for their upregulation in disease-
causing organisms [121] and immunized mice systemically
rather than mucosally, to avoid effects on asymptomatic col-
onization. In both studies, we could protect mice from AOM
with several antigens and against a panel of strains of different
serotypes present and absent in the current vaccines, without
affecting NP colonization [113, 121]. This approach may pro-
vide one avenue towards disease-specific pneumococcal vac-
cines that avoid affecting the delicate balance between micro-
organisms in the nasopharynx.

Concluding Remarks

The fact that pneumococci grow as biofilms in the murine NP
during asymptomatic carriage [54¢] has changed the way we
consider both colonization and potential transition to infection.
Bacteria within biofilms formed during NP colonization must
balance attachment, growth, and eventual dispersion processes
within a dynamic NP environment. Of these three critical steps,
biofilm dispersal is by far the least understood. For
S. pneumoniae, this is particularly troubling as biofilm dispersion
represents the main step associated with clinical infections in
susceptible patients: it is precisely these detached cells that are
primed for dissemination to normally uninfected sites and are the
causative agents of OM. Future studies are needed to better un-
derstand the exact mechanism of transition from asymptomatic
colonization to infection and the molecules involved in patho-
genesis in the disseminated and virulent population. Results from

such studies have the potential to result in novel approaches to
interfere with disease induction to prevent AOM and could be
especially important for otitis-prone children.

The conjugate vaccines have had an enormous impact on
IPD, for which the vaccines were designed, but have had a
much lower efficacy against pneumonia and OM. The re-
sponse to some of the serotypes, including 23F and 6B, is
known to be lower based on poorer immunogenicity [122],
and vaccine escape is casily observable for the vaccine-
serotypes 19F, 23F, and 6B in AOM cases [101, 123, 124].
As new formulations of the conjugate vaccines have been
introduced, it is becoming clearer that to provide better pro-
tection against AOM in the future, we will need to add to the
current vaccine regimen using protein vaccines with broader
and more AOM-specific activities. An understanding of the
pathogenesis of AOM and the bacterial changes associated
with virulence has great potential to provide clues to future
effective vaccine targets.
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