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Abstract
Purpose of Review Traumatic optic neuropathy (TON) is a devasting disorder that can result in irreversible vision loss. 
Understanding the current research to promote neuroprotection and neuroregeneration of the optic nerve after injury may 
shed light on promising therapeutic avenues.
Recent Findings With evolving methods to model traumatic optic neuropathy, recent work manipulating signal transduction 
and cell damage response pathways reveals new clinical opportunities for patients with traumatic injury to the optic nerve.
Summary Despite years of basic science and clinical research, no treatment for TON exists. The absence of therapies high-
lights the importance of a comprehensive understanding of molecular pathways involved in retinal ganglion cell survival. 
Promising therapeutic opportunities may arise from a multi-pronged approach, targeting multiple pathways simultaneously 
in this complex disease.
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Introduction

Traumatic optic neuropathy (TON) can occur after head or 
face trauma. TON is relatively rare, with an estimated inci-
dence of 1 in 1 million individuals in a UK study [1]. The 
majority of injuries occur in men (~ 80%) with a median age 
of 31 years. Trauma most commonly occurs in the setting 
of motor vehicle accidents, falls, or assaults. Visual acuity 
at presentation is a strong predictor of visual outcome, and 
there is no improvement in final visual acuity in patients 
who have received corticosteroid therapy or underwent optic 
canal decompression [2•].

After a traumatic injury to the optic nerve, it has been sug-
gested that a combination of events ultimately leads to retinal 
ganglion cell (RGC) death. Deficits in axonal transportation, 
local inflammatory responses, excitotoxicity, oxidative stress, 
and DNA damage contribute to Wallerian degeneration, RGC 
dysfunction, and cell death [3–8]. With an inability to regener-
ate, apoptotic RGCs result in irreversible vision loss.

This review reviews the current state of optic nerve protec-
tion and regeneration research related to traumatic optic neu-
ropathy. We assess in vitro, ex vivo, and in vivo models for 
investigating traumatic optic neuropathy. We summarize inves-
tigations into the molecular mechanisms underlying traumatic 
optic neuropathy and discuss scientific and clinical challenges 
that make developing clinically meaningful therapies elusive.

Models of Traumatic Optic Neuropathy

In Vitro and Ex Vivo Models

In vitro models offer a faster and simpler way to investigate 
RGC death mechanisms in a controlled environment. Although 
primary and human-induced pluripotent stem cell (hiPSC)-
derived RGC cultures do not fully replicate the intricacies of 
optic neuropathies, they help screen potential neuroprotective 
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or regenerative factors and develop cell-based therapies [9–12]. 
Müller glia (MG) in some species reprogram to a progenitor 
state after injury to regenerate the retina, which has inspired 
research into reprogramming mammalian MG into RGCs for 
optic neuropathies [13–15]. However, a drawback of dissoci-
ated cell culture systems is the lack of cell–cell interactions and 
retinal laminar organization. Primary RGCs are also typically 
derived from early-born animals. hiPSC-derived retinal orga-
noids form three-dimensional laminar structures with all retinal 
cell types but lack full maturity, vasculature, and immune cells.

Organotypic retinal explants have been employed to study 
mature RGCs with conserved histotypic context to over-
come the limitations of in vitro models. Rodent and human 
organotypic retinal cultures have been described and used 
to study retinal development and disease. Explants of rodent 
retinas after optic nerve injury have been used to test neu-
roprotective and regenerative strategies [16–18]. However, 
the wide variety of culture methods employed can lead to 
variations in tissue behavior.

Direct Traumatic Optic Neuropathy Mouse Models

Crush and complete or partial transection of the optic nerve are 
invasive approaches used to investigate RGC axonal degenera-
tion, death, and survival [19–21]. These methods have been 
used to evaluate factors that can inhibit or delay RGC death or 
promote regeneration. Optic nerve crush (ONC) and transection 
closely mimic the clinical scenario of direct TON, which occurs 
when a foreign body or bone fragment directly damages the 
optic nerve. The intensity and speed of RGC degeneration vary 
depending on the force and duration applied by forceps in ONC, 
the location on the optic nerve, and the mouse strain used, lead-
ing to potential bias in experimental results [22, 23]. Calibrated 
ONC models have been developed to quantify the force applied 
with greater precision and reduce injury variability [24].

The controlled orbital impact (COI) model is a minimally 
invasive model of direct TON, where an incision is made 
at the medial canthus, and the eyeball is retracted from the 
orbital margin to expose the intraorbital portion of the optic 
nerve for controlled trauma by an automated blunt impac-
tor [25]. A specialized stereotaxic apparatus is required to 
control injury velocity, contusion depth, and dwell time. The 
contralateral optic nerve remains unaffected, and injury-
associated mortality and ocular comorbidity are rare.

ONC and transection are also widely used methods to 
study glaucoma, although these models only partially mimic 
the pathophysiology of the disease. Glaucoma is a group of 
chronic, progressive eye diseases characterized by RGC axon 
degeneration and death, leading to irreversible visual impair-
ment or blindness. Like TON, glaucoma is an axonal damage-
mediated process, although the injury likely occurs at the optic 
nerve head itself [26]. ONC and transection are reliable injury 
methods for inducing rapid RGC degeneration and death. 

However, caution should be exercised when extrapolating find-
ings from these acute models to the more insidious process of 
glaucomatous degeneration. In addition, these models inflict a 
more severe insult than chronic glaucoma models [22]. Given 
that elevated intraocular pressure is a significant glaucoma risk 
factor, other animal models have been developed to induce 
ocular hypertension, such as microbead injection, silicone oil-
induced, and genetic (DBA/2 J) models [27, 28]. Although 
TON and glaucoma lead to RGC axon degeneration and death, 
the underlying pathophysiology likely differs significantly.

Indirect Traumatic Optic Neuropathy Mouse Models

Indirect TON often follows non-penetrating (blunt) trau-
matic brain injury or primary ocular trauma, likely due to the 
transmission of compressive forces to the orbital apex and 
optical canal that results in ischemia, edema, or RGC axon 
shearing [29, 30]. Mouse models using blunt skull trauma, 
ocular blast injury, and focal sonication-induced injury have 
been developed to investigate indirect TON.

The closed-head, single-impact weight-drop model of 
traumatic brain injury (TBI) creates reproducible optic nerve 
trauma with associated microglial activation, astrogliosis, 
and axonal degeneration [31]. Approximately a 10% mor-
tality rate occurred immediately after injury. The repetitive 
mild traumatic brain injury (r-mTBI) model uses an electro-
magnetic coil-based device to deliver a controlled injury to 
the central mouse skull, causing RGC degeneration across 
the entire retina and functional decline in both eyes equally 
and simultaneously within three weeks [32, 33]. This model 
requires a specialized stereotaxic setup to control strike 
velocity, depth, and dwell time, allowing for a broad and 
reproducible range of injuries. Motor and cognitive impair-
ments are observed in both TBI models [34, 35].

The ocular blast model delivers controlled injury directly 
to an exposed eye via a paintball gun while the rest of the 
mouse is protected in a rigid tube[36]. This model provides 
simple and easily modifiable injury without direct contact. 
However, this model carries risks of severe anterior and pos-
terior segment ocular injuries and a high mortality rate of 
24–46%, which is likely due to blast wave-induced brain dam-
age. Proper animal positioning in the protective tube mitigates 
ocular comorbidities that confound optic nerve findings.

The sonication-induced TON (SI-TON) model utilizes 
a sonifer to deliver a tunable and focal ultrasonic pulse 
through the supraorbital ridge to the optic nerve without 
invasive surgery [37]. Trials at 60 and 80 Joules revealed 
no orbital fractures, globe injuries, or mortalities. SI-TON 
leads to significantly reduced RGC numbers in the central 
and middle retina and a significantly reduced RGC function 
in the affected eye after one week. However, the scatter of 
ultrasound energy from the primary injury site results in 
delayed neuropathic progression in the contralateral optic 
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nerve, making it an unsuitable control. Proper positioning 
of the sonifer is vital to avoid inconsistent injuries or ocular 
comorbidities.

Large Animal Models

Nonrodent mammalian species are essential for facilitating 
clinical translation. Rhesus macaques are genetically similar 
to humans and have a similar visual system as well [38, 39]. 
Studies involving complete or partial optic nerve transec-
tion in rabbits and monkeys and ONC in squirrels, goats, 
and monkeys mirror the histopathological and functional 
changes seen after direct TON [40–43]. Large animal mod-
els also enable trials of potential therapeutic interventions 
otherwise unfeasible in rodent models, such as trans-nasal 
endoscopy approaches [44].

Molecular Investigation 
into the Pathophysiology of Traumatic Optic 
Neuropathy

As part of the central nervous system, mature RGCs possess 
reduced capacity to regenerate their axons after traumatic 
injury, resulting in irreversible vision loss. The mainstay 
of research has been to find interventions to boost neuron 
intrinsic regulators of survival and regeneration as well as 
extrinsic factors to provide a permissive environment for 
regrowth.

Here, we will overview experimental research targeting 
RGC intrinsic mediators of neuroprotection and regenera-
tion. Neuroprotection encompasses administering thera-
pies to halt the progression of vision loss, and regeneration 
entails regrowing axons and forming new eye-brain connec-
tions to support vision restoration.

Manipulation of Signal Transduction Pathways

PI3K/Akt/mTOR Pathway

The PI3K/Akt/mTOR pathway has been the subject of intense 
study within the axon regeneration field for the past two decades. 
The highly conserved pathway activates the kinase mTOR to 
regulate cell cycling and growth. Genetic deletion of PTEN, a 
master regulator inhibiting the mTOR pathway, continues to be 
one of the most potent single interventions for stimulating RGC 
axon regrowth, with axons regenerating up to the optic chiasm 
after ONC [45•]. Modulation of downstream players within the 
mTOR pathway, including CNTF/LIF [46], IGF-1, and SPP1 
activation [47] as well as deletion of the negative inhibitor TSC1 
[45•], has also been found to increase RGC survival and axon 
regrowth, albeit not to the same extent as PTEN deletion.

JAK/STAT Pathway

The JAK/STAT pathway, another highly conserved signal-
ing cascade pathway, concludes with activation of the STAT 
transcription factor family, which binds to DNA sequences 
and modulates gene expression. Among the seven STAT pro-
teins in mammals, STAT3 activation is most important for 
axonal regeneration. Conditional deletion of SOCS3, a JAK/
STAT inhibitor, improves RGC survival and axon regenera-
tion and has been coupled with PTEN deletion and CNTF 
overexpression to induce more dramatic axon outgrowth past 
the optic chiasm following ONC [48]. Moreover, in a model 
of distal optic nerve injury, PTEN/SOCS3 co-deletion, as 
well as SPP1/IGF1/CNTF co-overexpression, were sufficient 
to induce RGC axon regrowth and functional synapse forma-
tion within the superior colliculus [49]. Subsequent studies 
leveraging high-throughput single-cell RNA sequencing 
have shed light on the transcriptional changes following 
each of these perturbations in isolation and in combination 
[50•, 51].

DLK/LZK Pathway

In RGCs, the kinase DLK and LZK are upregulated at the 
site of axonal injury and retrogradely transported to the 
soma, where they trigger cell death through activating tran-
scription factors, including JUN, KLF6, ATF3, and SOX11 
[11, 52]. While the DLK signaling cascade initiates cell 
death in RGCs, the pathway has been considered a “double-
edged sword” since it also mediates regenerative responses 
[52]. Co-deletion of DLK and LZK as well as DLK inhi-
bition by the small molecule sunitinib has been found to 
increase RGC survival [53, 54]; however, axon regrowth 
is substantially reduced and remains suppressed even with 
PTEN deletion. Therefore, the DLK/LZK pathway is more 
commonly thought to signal axonal injury rather than be 
responsible for neuronal survival or regeneration.

Interestingly, in an impact acceleration model of trau-
matic brain injury, which is more analogous to a TON of 
the eye, many RGCs were able to terminate activation of 
DLK/LZK signaling and survive following injury [54]. This 
stands in contrast to axotomy, in which RGCs cannot recover 
and require combined DLK and LZK inhibition to prevent 
cell death [54]. This finding underscores the importance of 
closely modeling the injury types seen in TON.

Cell Damage Response Pathways

Mitochondrial/Oxidative Phosphorylation Manipulation

Mitochondria synthesize energy in living cells through oxi-
dative phosphorylation and produce reactive oxygen spe-
cies (ROS) as a byproduct. Under cell stress conditions, 
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excess ROS levels accumulate to activate BAX-dependent 
pathways. Activation of BAX culminates in increased mito-
chondrial membrane permeability and release of mitochon-
drial components (such as cytochrome c) into the cytoplasm 
to initiate apoptosis. Models of traumatic optic injury have 
shown that ROS levels in RGCs significantly increase as 
much as over 50% in 2–4 weeks following blast injury 
[55]. As such, antioxidants and small molecules to improve 
mitochondrial health, reduce ROS formation, and prevent 
apoptosis signaling have seen significant interest as potential 
therapies. Erythropoietin [56], which possesses antioxidant 
properties, Vitamin E [55], and small molecules to reduce 
ROS formation, including elamipretide [5] and resveratrol 
[57], have demonstrated increased RGC survival. Ketogenic 
and antioxidant-rich diets have also been shown to promote 
modest neuroprotection following ONC [55, 58]. Further-
more, steroids, which have been historically used to stabilize 
vision following TON, have been thought to exert neuro-
protective effects through their antioxidant properties [59]. 
Another more recent approach under investigation has been 
to introduce exogenous healthy mitochondria into stressed 
RGCs, with the thought that these mitochondria will reduce 
oxidative dysfunction: transplantation of mitochondria 
isolated from the liver into RGCs was shown to modestly 
increase RGC survival and axon regeneration following 
ONC [60].

Studies have also investigated blocking downstream 
apoptotic pathways: cell death can be dramatically blocked 
following optic nerve injury by either BAX deletion or Bcl-2 
overexpression, with nearly all RGCs surviving following 
ONC [61–63]. However, surviving RGCs enter a senescent 
state: RGC-specific gene markers are downregulated in these 
mice, and surviving cells cannot regenerate their axons and 
no longer functionally behave as RGCs [61, 62].

ER Stress

Following disease or injury, unfolded proteins accumulate in 
the ER, triggering the unfolded protein response and activat-
ing three main ER stress pathways initiated by the ER stress 
sensors: IRE1, PERK, and ATF6. Studies have shown that 
the PERK-eIF2α-ATF4-CHOP pathway is involved in RGC 
death and axon degeneration, while the IRE1α-XBP1 path-
way is neuroprotective [64]. Many small molecules targeting 
the ER stress response pathway with encouraging pre-clini-
cal data have been reported and are reviewed in greater detail 
elsewhere [65]. Perhaps most strikingly, the peIF2α inhibitor 
ISRIB has been shown to reverse aspects of memory deficits 
in a mouse model of traumatic brain injury [66] and possess 
blood–brain barrier penetrance [65]. Moreover, retrobulbar 
injection of ISRIB was demonstrated to promote RGC and 
axon survival in a mouse glaucoma model [51].

DNA Damage Response

The ATM-Chk2 and ATR-Chk1 protein kinase cascades 
are central to the DNA damage response. These pathways 
trigger apoptosis or senescence in mature post-mitotic neu-
rons in neurodegenerative disease [67]. Apart from chronic 
conditions, the DNA damage response has also more 
recently been implicated in responses to acute injury: Optic 
nerve crush has been shown to activate the DNA damage 
response, as reported by increases in the double-strand break 
marker γH2Ax both 1- and 24-days post-injury [7]. Fur-
thermore, inhibition of the ATM-Chk2 pathway with the 
small molecules KU-60019 and mirin delivered through 
twice weekly injections immediately following ONC in rats 
resulted in > 90% RGC survival and significant RGC axon 
regeneration [7]. These improved outcomes were similarly 
seen following weekly treatment with the Chk1, and to a 
lesser extent Chk2, inhibitor prexasertib, which also led to 
improved RGC function as measured by electroretinography 
(ERG) [8]. What specific players in the ATM-Chk2/ATR-
Chk1 pathways are activated following optic nerve injury to 
mediate RGC death remain incompletely understood and are 
the subject of increased research.

Reprogramming Factors

Recent studies employing gene therapy to revert RGCs 
to a youthful epigenetic state that is more permissive for 
regrowth have also shown encouraging preclinical results. 
Following optic nerve crush, ectopic expression of three of 
the four Yamanaka factors, OCT4, SOX2, and KLF4 (OSK), 
was shown to promote RGC survival and axon regrowth into 
the optic chiasm [68]. Moreover, partial recovery of visual 
acuity was seen in models of optic nerve crush, glaucoma, 
and aging [68]. A subsequent study applying the OSK fac-
tors to a nonhuman primate model of non-arteritic anterior 
ischemic optic neuropathy (NAION) has suggested that OSK 
treatment is translatable to primates as well: increased pat-
tern ERG responses were seen following OSK treatment 
compared to controls [69]. While reprogramming factors 
and anti-aging research as a whole have seen great biop-
harmaceutical interest, more work is needed to characterize 
their safety profile and conceptually integrate these findings 
into what is previously known regarding signal transduction 
pathways in optic nerve regeneration. For example, STAT3 
upregulation was seen following OSK treatment [68]; how-
ever, the degree to which other well-studied RGC-regen-
eration signaling pathways are affected remains unknown.

Therapeutic Hypothermia

The application of therapeutic hypothermia for neuroprotec-
tion stems from its use to improve neurological outcomes 
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following cardiac arrest; it is thought that slowing down met-
abolic processes through cooling reduces oxygen demands, 
thereby reducing hypoxic injury. While the use of thera-
peutic hypothermia for TBI remains less clear, preclinical 
studies applying therapeutic hypothermia for traumatic optic 
neuropathy have shown encouraging results: following ONC 
injury, hypothermic treatment given immediately afterward 
for 3 h increased visual acuity, RGC survival, and expression 
of pro-survival genes [70]. Recently, a hypothermia mimetic 
molecule (zr17-2) was also shown to improve RGC survival 
and electroretinography measures following ONC [71].

Clinical Considerations and Challenges

Though great strides have been made toward understand-
ing and developing therapies for traumatic optic neuropa-
thy, much work remains to be done. Regrowth of sufficient 
axons through the entire optic pathway to sustain meaningful 
visual recovery remains a major challenge. To date, long-
distance regeneration of RGC axons has only been achieved 
through combinatorial strategies targeting multiple genes or 
pathways; studies perturbing multiple independent pathways 
prior to optic nerve injury have shown that pro-survival/
pro-regenerative effects synergize and are more substantial 
than current single intervention manipulations. As such, 
while identifying new factors within novel signaling path-
ways remains important, exploring optimal combinations of 
interventions based on their regulatory mechanisms should 
be considered and will be essential to explore.

Advances in sequencing technologies have aided in this 
endeavor: studies leveraging single-cell sequencing to re-
explore the effects of previous interventions have led to the 
discovery of new mediators of neuronal survival and axon 
regeneration, as well as clarify the molecular effects of indi-
vidual versus combinatorial interventions [50•, 51]. Inte-
grating high-throughput CRISPR screens with multi-omics 
data has also uncovered what transcription factor networks 
regulate the RGC injury response [72]. With these large 
datasets, critical intricacies in how different RGC-types 
respond to injury and treatment has become more apparent. 
For instance, work profiling transcriptomic responses fol-
lowing ONC has demonstrated that RGC types differ in their 
innate resilience and regeneration potential. Furthermore, 
their responses to genetic manipulations greatly vary [50•].

Another challenge for translating interventions from 
the lab to the clinic has been that the most potent inter-
ventions have involved reactivating protooncogenes and 
perturbing master cell growth regulators. For example, a 
predominant strategy for boosting axon regeneration has 
been to combine PTEN deletion with additional growth-
inducing interventions. Safety concerns regarding the risk 
of cancer also exist with the use of Yamanaka factors for 

epigenetic reprogramming. As for cell survival, BAX dele-
tion resulted in nonfunctional RGC-like cells that survived 
but could not regenerate their axons and transmit visual 
information. Broadly reactivating these master regulator 
genes without regard to temporal control may be deleteri-
ous for retinal function and long-term health. Therefore, 
careful study of affected signaling pathways, functionality 
of RGCs after perturbation, and long-term health of the 
retina is warranted.

Timing

Next, the timing of each intervention requires further investi-
gation: studies to date, namely genetic perturbations, primed 
RGCs for regrowth before the injury is given, which does 
not realistically capitulate what is seen in real-world situ-
ations. Finding an intervention that may be administered 
after injury and remains effective for preserving sight and 
restoring vision would be needed for clinical applicability.

Delivery

Another practical consideration once therapies reach greater 
maturity is the mode of delivery, whether through intraocu-
lar, infraorbital, or systemic means. Challenges shared across 
developing therapies for retinal disease include the fact that 
the blood-retina barrier precludes the delivery of many sys-
temically delivered drugs. Furthermore, the inner limiting 
membrane is a barrier limiting the delivery of intravitreally 
injected drugs. The discovery of small molecules that may 
pass through these barriers or new modes of delivery would 
help circumvent this issue.

Presentation

Lastly, one consideration specific to studying traumatic optic 
neuropathy is its heterogeneous presentation. Unlike con-
trolled models of injury, the degree to which the optic nerve 
and supporting structures are damaged, and the location of 
the injury, varies. Injuries closer to the eye as opposed to the 
brain are harder to treat, as RGC axons will need to regrow 
greater distances to reconnect to their targets. Furthermore, 
damage to blood vessels supplying the retina can result in 
ischemic damage and a decreased permissive environment 
for regrowth. Carefully stratifying patients and understand-
ing to what degree the optic nerve has been damaged will 
be very important as therapies mature for use in the clinic. 
Furthermore, tailoring each experimental model of TON to 
clinical scenarios to determine therapy applicability will be 
essential.
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Conclusion

The past decade has seen significant advances in understand-
ing optic nerve injury. By better modeling the nuances of 
traumatic optic neuropathy and increasing understanding of 
the disease process, the field continues to advance and work 
toward therapies to address this unmet clinical need.
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