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Abstract

Purpose of Review In this paper, we prospectively review some artificial intelligence (Al) techniques and models used to enhance
clinical decisions for patients with corneal diseases and conditions.

Recent Findings Cornea subspeciality was a pioneer in aggregating technology to clinical practice. It provided the ability to early
diagnose diseases and improve treatments. Currently, we face the challenge of dealing with a tremendous amount of information
from complementary multimodal imaging devices. The analysis of such data for enhancing clinical decisions is perfectly suitable
for AL. While Al models are rapidly growing in various fields, some are already available and in use by clinicians, for instance to
help in refractive surgery screening.

Summary Al models represent a boundless method for helping to deal with and avoid the overload of an extraordinary amount of
information provided by advances in complementary diagnosis. It is currently ready to use in refractive surgery screening. The
challenge is to coordinate multicentre collaborations in order to build good quality and large data collection to train and improve

Al models. Al is an instrument to upturn clinical decision power with many possible applications for ophthalmologists.
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Introduction

The cornea subspecialty has continuously been a pioneer on
the use of technology to aid treatment and diagnosis in oph-
thalmic diseases. The first corneal surface characterisation
dates back to the early XVII when Scheiner did his first ex-
periments observing the image reflected on calibrated glass
spheres and the cornea [1]. During the 1900s, the keratometer
and the keratoscope were developed and used separately until
we had the computational power to effectively combine the
objective and subjective approach of both methods in the
1980s [2]. This made possible the diagnosis of early forms
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of progressive corneal diseases even before the vision was
affected. The slow advances of the last four centuries have
given way to a rapid transformation. In a few decades, several
new devices and technologies arouse. We can now evaluate
the corneal curvature and elevation of both surfaces along
with the pachymetric map [3]. It is possible to study the cor-
neal tissue anatomy by layers, to evaluate its histology and
biomechanical properties in vivo [4-8].

All these new technologies provide us with an unprece-
dented amount of information, which in one hand is vital to
early disease detection, but on the other, its excess can disrupt
sensible decision-making. Information and knowledge are not
synonyms. In fact, since the 1960s, it is proposed that infor-
mation overload could be a barrier to the formation of knowl-
edge [9]. There are some strategies to deal with this informa-
tion overload, but be it to keep up-to-date in the speciality or to
extract meaningful information from a complementary exam,
the use of machines seems to be the most efficient way of
doing it [10]. Artificial neural networks, deep learning, and
other machine learning (ML) techniques had become useful
tools in clinician’s arsenal to help to deliver the best quality of
care to their patients.

One of the earliest examples of its application in corneal
imaging was proposed by Maeda et al. in 1994 with the use of
a classification tree combined with a linear discriminant
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function to distinguish between a keratoconus and a non-
keratoconic pattern [11]. Throughout the 1990s, some other
techniques such as neural networks have been proposed to
identify the keratoconus pattern based on corneal topography
[12—14]. But the greatest push to improve disease susceptibil-
ity detection came with the first reported cases of post-Lasik
ectasia [15—-18]. Currently, refractive surgery screening is the
most prolific field for ML development in corneal disease, yet
research in other fields is growing, despite promising ML
techniques are full of dangerous pitfalls. A meticulous process
of developing the models should be followed in order to get
reliable information from it.

Overview of ML Techniques

In brief, we will discuss some of the ML techniques most
commonly used in corneal diagnosis, their benefits and limi-
tations, and how to avoid unexceptional problems and misin-
terpretation inherent to it.

Artificial intelligence (Al), introduced in the 1950s and
1960s, represents algorithms that through learning and think-
ing ability has enabled computers to become intelligent.
Learning is defined as the ability to update parameters and
coefficients of an algorithm upon the availability of data.
Historically, machine learning is built on three fundamental
branches of symbolic learning [19], statistics [20], and neural
networks [21]. These led to the development of advanced
approaches that include pattern and statistical recognition (k-
nearest neighbours, Bayesian classifiers, and Fisher’s linear
discriminants), symbolic learning (decision trees, logical
programmes, and decision rules) and artificial neural networks
(ANN) (deep learning, recurrent networks, and convolutional
neural networks) [22, 23].

There are various types of machine learning and they can
mainly be categorised into unsupervised (data are not la-
belled), supervised (data are labelled), and reinforcement
learning [24]. For both supervised and unsupervised learning,
if the data are continuous, it demands a regression analysis and
in case of discrete data, a classification method is required.
Regression analysis is a statistical method that reveals the
relationships between two or more variables. An example of
regression analysis can be the correlation of visual acuity im-
provement after a surgical intervention based on the preoper-
ative status of the patient. On the other hand, an example of a
classification problem is disease diagnosis using complemen-
tary exams’ data. Reinforcement learning is a very new type of
machine learning algorithms that rewards are provided for the
actions taken by the machine. A good example is the software
packages that learn to play computer games. It has three com-
ponents that are an agent (the decision maker that functions in
an environment), environment (leads to making a decision),
and actions (what agent can do based on the decision made).

Artificial neural networks are designed on the concept of
biological neurons. A single perceptron, that is a building
block for a neural network, can be mathematically described
as shown in Fig. 1. Features (individual measurable character-
istic or property) from the input provide information about the
problem under consideration. A randomly allocated weight
will be multiplied by the input and passed into the activation
function. The activation function is a simple equation that
defines the output; for instance, it can be if the inputs are
positive, print 1 otherwise print 0. The problem will arise
when the input is zero in some cases, which would make the
output zero no matter what the activation function is. Hence,
to overcome this problem, scientist included a bias term into
each perceptron calculations.

This process can be described mathematically using Eq. 1:

i Wi Xi + b (1)
i=0

where 7 is the number of inputs, w is the weight of the input, x
is the input, and b is the bias term. Multiple perceptrons that
connect the input to the outputs are called middle layer or
hidden layer. Any neural network is constructed from three
layers of input, output, and hidden layer. If the number of
hidden layers is more than three, it is called deep learning.
Deep learning enables the network to gain a deeper under-
standing of the inputs and outputs. Hence, in a deep neural
network, the function above is applied through multiple layers
as below:

Hidden layer 1: Z() = w'x; + »°
Hidden layer 2 : Z® =w'z, + b
Hidden layer 3 : 7% = Wz, + (2)

Hidden layer » : ZW =z, 4+ b

where Z is the output of each layer. A neural network always
goes through a process, Fig. 2. The mathematical complexity
of'this process is out of the scope of this paper and will not be

Input 0

Activation

Function Output 1

Bias
Fig. 1 A demonstration of the perceptron model that shows two inputs

and a bias term that multiplied by random weights and fed into an
activation function which numerically predicted the output
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Fig. 2 Process for building a machine learning software starts with data
acquisition and cleaning. Then, the dataset should be split into training
and test set. This will be followed by training the model, evaluating the

discussed here. However, readers are encouraged to read
about it at [25].

There are a few important points regarding the training of
any ANN that enables supervision of Al-related projects. This
include the following:

* Cleaning of input data in an organised manner

*  Choosing one appropriate cross-validation method (in the
order of extrapolation accuracy and computational cost
from lower to higher)

— Hold-out: Splitting the data into a randomly selected
training set (normally 70-90% of the data) and test set

—  K-fold: Splitting the data in & folds, normally 10, separat-
ing 9 of the folds for training and 1 for testing. Repeating
the process 10 times, we can get the average accuracy and
its standard deviation.

— Leave-one-out: Use all data set but one case to train the
data and test the accuracy in this remaining case.
Repeating the process n times (size of the dataset) will
get a robust estimation of the generalisation ability of the
model.

* The normalisation of training data to achieve consistency

* Optimising the architecture of the network, pre-set param-
eters and selecting a suitable NN through trials and errors

» Evaluating the performance of the network through the
cost function (minimising the error between predictions
and expected data)

The advantage of using ANN is that the algorithm is able to
deal with noisy and missed clinical data and understanding
complex patterns in the data in a way that is not possible with
linear and non-linear equations [26].

The problem with ANN is that they require extremely
large clinical datasets for training. For achieving a glob-
ally accepted performance, these clinical data should be
collected from different ethnicities. This is not always
easy to obtain considering patient data is often expensive,
highly regulated, and time-consuming to collect in the
desired manner. On the other hand, what is going on in
the network is more like a black box as it does not
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results, and adjusting the parameters through an iterative process. Finally,
the model can be deployed to utilise new inputs for predictions

provide any explanation to the clinician of why a decision
has been made. Hence, abnormalities may be misd
iagnosed which is a major concern. This problem can be
overcome by refining the algorithm over time by compar-
ing its decisions with the clinicians.

Other commonly used techniques that share some of
the same advantages and limitations of the above-
described artificial neural networks are the random forests
and the support vector machines [27, 28]. The random
forest uses the concept of the decision tree (DT) models.
In these models, a flowchart-like structure is built. In each
node, there is a test using one of the independent variables
that will split the data in two mutual subgroups (bran
ches). This process is repeated several times until the final
decision of class assignment (leaves) is reached.

The random forest combine several trees. Each DT in this
method is built based on a random subset of the data that is
generated by a bootstrap resampling technique and for each
split, the best variable is chosen from a subset composed of a
pre-defined number of randomly selected variables.
Accordingly, to its final decision, each tree gets a “vote” and
the mode is used in classification problems while the mean is
used in regression. Figure 3 exemplifies this process. Some
advantages of the method are that it can model nonlinear class
boundaries and can give variable importance. On the down-
side, it is a slow method and it is hard to get insights into the
decision rules.

In support vector machine (SVM), a previously classified
dataset (supervised learning) is used to train the model. The
algorithm will search for an #-dimensional hyperplane able to
separate the group with the largest margin. In many cases, in
ophthalmology, a linear solution (two-dimensional) is not pos-
sible, so finding the solution in a higher dimensional space is
needed as observed in Fig. 4. The SVM looks for this solu-
tions with a relatively less computational cost using the kernel
trick. The kernel trick is a function used to obtain nonlinear
variants of a selected algorithm with an ability to be casted in
dot products’ formation [29]. However, choosing a suitable
kernel is rather easy and an inappropriate kernel could lead
to overfitting [30].

The applications of these methods will be discussed below
in clinical scenarios.
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Fig. 3 Example of a random forest model. a The patients included in the
train and test sets, for exemplification purposes, different characteristics
of height, age, and weight are graphically expressed with geometrical
shapes (triangle, square, and circle, respectively). b A very simple

Keratoconus Diagnosis and Refractive
Surgery Screening

The progressive character of the ecstatic corneal disease has
always stimulated the search for a means of early diagnosis.
With the introduction of corneal cross-linking, the disease
progression could be halted, and with an accurate early diag-
nosis of the disease, the vision of patients could be preserved.
But the increasing number of refractive surgeries and the re-
port of iatrogenic keratectasia in cases without anterior surface
alterations pushed the need to screen for susceptible cases
[31]. It means to identify those cases that could experience a
biomechanical failure after the procedure even before any
mild alteration is present in the anterior corneal surface. To
accomplish this task, a series of methods including risk scores,
linear models, and more recently artificial intelligence models
have been proposed with a progressive accuracy increase eval-
uating data from different devices [32, 33e¢]. Data from 4
different tomographers were analysed with 4 different artifi-
cial intelligence techniques and it made possible the
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random forest model composed of 3 trees trained with the three
characteristics to separate healthy (H) and diseased (D) and the
classification path (in green) of a new patient

identification of these very early forms of the disease with
high accuracy [33e°, 34-36].

The pentacam random forest index (PRFI) is a random
forest model built using data from the tomographer
Pentacam HR (Oculus, Wetzlar, Germany). It was the only
model trained with the preoperative exam of patients that have
developed ectasia. It was trained using a large data set of
patients from 3 different continents to better assess the pa-
tient’s normal variability. While the index already available
on the device (BAD-D) presented 55.3% of sensitivity, the
PRFI was able to correctly identify 80% of the cases. In the
external validation set, 85% of accuracy was found in detect-
ing the normal topographic eye of very asymmetric cases
(VAE-NT) maintaining specificity of 96.6% [33¢¢].

A single decision tree method was proposed based on the
data of a different tomographer, the Galilei Dual Scheimpflug
Analyzer (Ziemer Ophthalmic Systems AG, Port,
Switzerland). This index held sensitivity of 90% with speci-
ficity of 86% to detect the early forms [34]. Analysing the data
from the tomographer Sirius (CSO, Firenze, Italy), the
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identification of cases with first signs of the disease (a stage
slightly later than the VAE-NT) using an SVM model present-
ed sensitivity of 92% with 97.7% of specificity [35].
Discriminant linear models were also successfully used to
analyse the Orbscan II data (Technolas, Munich, Germany)
with 92% and 96% of sensitivity and specificity, respectively,
in a first validation set [36] and 70.8% and 98.1% of sensitiv-
ity and specificity, respectively, in a different ethnical back-
ground population [37].

The in vivo assessment of corneal biomechanics also pro-
vided a torrent of new and hard to interpret information.
Neural networks have been used to evaluate the waveform
signal of the Ocular Response Analyzer (Reichert
Ophthalmic Instruments, Buffalo, USA) and resulted in high
accuracy on the study validation sample composed of early
forms of keratoconus (AUC 0.978) [38]. However, these re-
sults had not been validated in independent samples. The data
from the other commercially available device the Corvis ST
(Oculus Optikgerdte GmbH, Wetzlar, Germany) has also been
analysed individually with logistic regression and high accu-
racy was found in keratoconus detection with 98.8% of the
cases correctly classified [39]. The relatively low accuracy in
detecting initial cases for the device used independently was
overcome with the integration with tomographic data using
Al The random forest model named the tomography and
biomechanical index (TBI) achieved 90.3% of sensitivity in
detecting the VAE-NT with 96% of specificity [40e¢]. The
tomographic and biomechanical combined parameter showed
to be superior to both methods used alone [41].

One of the main advantages of the Al-derived models is
their ability to eliminate the gap between research and clinical
application, by providing a simple output parameter that can
be directly used as a risk profiling tool. Different corneal im-
aging devices (tomographers and biomechanical analysers)
have already implemented on its software these Al-based in-
dices and made them available in daily clinical practice as
objective screening parameters.

In Vivo Corneal Morphology Exams

The in vivo corneal morphology evaluation has also benefitted
from the Al models. Neural networks have been used to au-
tomatically identify the healthy corneal layers on the confocal
microscopy exam with significant improvement over the pre-
vious methods and eliminating the need of the image process-
ing step of binarization, which is cumbersome and can often
lead to information loss [42]. Evaluating the ultra-high-
resolution OCT images with convolutional neural networks,
it was also possible to precisely identify the corneal layers in
keratoconic eyes. In these cases, a non-uniform thickness was
observed in at least one layer, and this result was also pro-
posed to be used for diagnosis [43, 44].
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Going further into the evaluation of more specific histolog-
ical features of the corneal tissue is possible to study in vivo
the endothelial cell and the subbasal nerve plexus characteris-
tics. The endothelial cell number and shape are calculated by
means of specular or corneal confocal microscopy exams. To
estimate cell density, pleomorphism, and polymegethism, the
images acquired are manually annotated. Although it seems a
trivial task to identify cell borders, due to frequent low image
quality with blurred regions, low contrast, and artefacts, this
automatization is often difficult. In order to fully automate the
process, increasing the speed and avoiding imprecisions of the
manual appraisal of the exam, several methods to delineate the
cell borders have been proposed. The machine learning
models have proven to be a fast and more accurate method
of characterising the endothelium [45, 46°].

The corneal subbasal nerve plexus is composed of short
nerve fibres that can be noninvasively studied with confocal
microscopy. It has gained a special interest in evaluating dia-
betic sensorimotor polyneuropathy (DSPN), a common long-
term complication of the disease affecting up to 50% of the
patients [47]. The promising results in identifying the DSPN
in cross-sectional studies face considerable difficulties in lon-
gitudinal evaluation since the images are manually analysed in
an imprecise and time-consuming process [48]. This gap was
filled with the introduction of neural network and random
forest models to fully automate the nerve segmentation and
morphology study, allowing the development of an objective
and precise method to early characterise the disease [49, 50].

Hyphae detection in corneal fungal infections and even the
image segmentation of corneal ulcers, difficult tasks for sub-
jective characterisation, have also had their accuracies im-
proved with the aid of artificial intelligence models [51, 52].

Corneal Surgery

Another growing field where machine learning techniques are
being used is corneal surgery. Automated objective quantifi-
cation of haze and the demarcation line post-cross-linking
surgery is achieved with a support vector machine model.
This method provides the clinician’s haze statistics along with
visual demarcation on the OCT images of the shape and loca-
tion of haze and the demarcation line [53, 54¢].

In corneal posterior lamellar transplant surgery, graft de-
tachment is one of the main complications, especially during
the initial part of the learning curve [55]. Intraoperative cor-
neal OCT can be used to evaluate the fluid in the graft-host
interface [56]. The identification of a larger residual interface
fluid volume by the automated graph searching approach is
associated with early graft dislocation [57]. On the postoper-
ative period, the graft dislocation can also be objectively quan-
tified using a convolutional neural network [58].
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Current Limitations and Future Perspectives

Al techniques have already shown its value for enhancing
clinical decisions for patients with corneal conditions, and its
application keeps growing. However, there are some consid-
erations and important limitations that preclude an even more
spread use of it. One big limitation of deep learning is that it
requires large training sets, on the order of tens of thousands to
be accurately trained and to be possible to generalise the re-
sults. The very large datasets are also required to accurately
deal with the high amount of noise derived from biological
data. Successfully trained deep neural networks to classify
retinal funduscopic images utilised a dataset of more than
the 100,000 images [59, 60].

In corneal imagining, there are a few hurdles to build a very
large dataset making it an extremely hard task, if not impossible.
The high cost of devices such as the tomographers makes their
availability relatively lower than the retinographers. The techni-
cal challenges to acquire images with devices such as the confo-
cal microscope, that requires highly trained operators, is also a
challenge. Another limitation is the differences between devices,
even those that use the same technology. For instance, with
Scheimpflug imaging, the scans obtained from the same patients
with different devices are not easily interchangeable, which re-
stricts the datasets to usually a single device type. One change in
this scenario is the clever adaptations for smartphone cameras
that allow self-imaging of the cormnea and the anterior segment,
and even high-quality imaging at a sub-cellular resolution [61,
62]. With the relative low cost and wide spread of these portable
devices, a bigger dataset of corneal imaging are more likely to be
acquired and the Al applications are numerous with a high po-
tential to promote healthcare in remote areas [63].

With big datasets, there is also the need of high computational
power to evaluate the features in a reasonable time which com-
pels the participation of big high tech companies to make them
possible to be applied in real life. AI models also need to be
continuously trained and exposed to new data to be able to iden-
tify more subtle variations of the patterns and normal ethnical
differences. Considering patient data confidentialities, an effi-
cient data sharing system under strict privacy rules needs to be
implemented to facilitate Al advancements.

The participation of high tech companies to provide the
computational power needed, multicentric collaborations to
gather big datasets along with efficient data sharing systems
to constantly train the models is a vital step to improve the
accuracy of Al models applied to medicine in general and also
corneal diseases.

Conclusion

In conclusion, machines have been used to augment the clin-
ical ability of ophthalmologies, either to reveal characteristics

initially imperceptible to our senses in the typical clinical ex-
am or to aid in the interpretation of the amount of information
that they itself produce. Al models diagnostic indices are al-
ready available and widely used by clinicians in refractive
surgery screening, and several other application are under fast
development.
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