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Abstract

Purpose of Review Deep Learning reconstruction (DLR) is

the current state-of-the-art method for CT image formation.

Comparisons to existing filter back-projection, iterative,

and model-based reconstructions are now available in the

literature. This review summarizes the prior reconstruction

methods, introduces DLR, and then reviews recent findings

from DLR from a physics and clinical perspective.

Recent Findings DLR has been shown to allow for noise

magnitude reductions relative to filtered back-projection

without suffering from ‘‘plastic’’ or ‘‘blotchy’’ noise texture

that was found objectionable with most iterative and

model-based solutions. Clinically, early reader studies have

reported increases in subjective quality scores and studies

have successfully implemented DLR-enabled dose

reductions.

Summary The future of CT image reconstruction is bright;

deep learning methods have only started to tackle problems

in this space via addressing noise reduction. Artifact mit-

igation and spectral applications likely be future candidates

for DLR applications.

Keywords CT reconstruction � Image quality � Noise
reduction � CT technology

Introduction

Turning raw CT projection data into volumetric maps (i.e.,

images) of patient attenuation has undergone multiple

changes from the beginnings of CT in the 1970s [1, 2]. One

way to understand the differences between CT recon-

struction methods is by what assumptions they make. The

first two methods used for CT image reconstruction were

algebraic reconstruction (ART) and FBP. Both methods

make no assumptions about the absolute value of attenua-

tion of a patient, nor on the frequency content of the

patient. In layman’s terms, these methods are incapable of

recognizing a relatively ‘‘flat’’ portion of patient anatomy

(e.g., a urine-filled bladder) and preferentially reducing

noise in this ‘‘flat’’ region. Similarly, ART and FBP cannot

recognize regions which should not undergo noise reduc-

tion and thereby possibly degrade spatial resolution over

patient anatomy with high frequency content (e.g., the

inner ear bony anatomy). While ART was used on the first

commercial CT scanner, it was quickly replaced by FBP as

reconstruction computer hardware and software improved.

As of today, FBP is still a standard option available on all

CT scanners.

In response to the increasing fear of ionizing radiation

due to scientifically debatable applications of the BIER VII

report to CT radiation [3, 4] and tissue effects from inap-

propriately performed brain perfusion exams [5, 6], CT

manufacturers developed commercial iterative reconstruc-

tion (IR) methods in 2009. IR methods assuaged fears over

radiation because they offset the noise increases usually
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encountered when lowering radiation dose. Today, all

major manufacturers and many 3rd-party companies have

IR offerings. IR makes assumptions on the imaging

object’s signal level and content. In layman’s terms, IR

methods can identify the regions of an image which likely

are smooth (i.e., a urine-filled bladder) and apply noise

reduction processing to those specific regions. Unfortu-

nately, noise reduction is commonly accompanied by

spatial resolution degradation and changes to image noise

texture. IR methods are therefore capable of identifying

regions of high spatial frequency content (i.e., the inner ear

bony anatomy) and minimizing the application of any

spatial resolution degradation (i.e., noise reduction pro-

cesses) to those regions. This ability to selectively recon-

struct different regions within an image makes IR

algorithms powerful noise-reducing methods, but their

behavior is highly dependent on CT ionizing radiation dose

[7], object size [8], object contrast level [7], and back-

ground patient anatomical noise [9]. Furthermore, the noise

reduction methods used by the majority of IR algorithms

results in suboptimal image texture, often referred to as

‘‘plastic’’ or ‘‘blotchy’’ in the literature [8, 10–13]. See

Fig. 1 for an example of such an objectionable image noise

texture.

More advanced forms of IR methods are often referred

to as ‘‘model-based,’’ albeit while their performance has

been shown to be superior to IR methods for some image

quality facets [14], they also suffer from nonlinearities in

their performance and noise texture issues [8, 15–17].

The latest advancement in the field of CT reconstruction

is the focus of this article. Deep learning (DL) approaches

also make assumptions about the patient, albeit their

assumptions have nothing to do with how or where to apply

denoising or edge preservation. DL methods assume the

patient is similar in size, attenuation, and frequency content

to the data used to train the DL model. If this assumption is

valid, then the DL method should produce an image similar

to the data used to train the DL model (Table 1).

Issues with Filtered Back-Projection

Filtered back-projection (FBP) makes no assumptions

about the imaged object and fails to account for several

realities of CT data acquisition [20]. FBP doesn’t account

for projection data containing noise, the polychromatic

nature of the imaging spectrum, the finite size of the x-ray

source, and the size and shape of the detector elements

[20–22]. A major limiting factor of FBP is that it also fails

to account for variable Poisson distributed photon count

statistics across an imaging plane, which, in light of these

simplifications, means FBP is quite susceptible to noise

[22]. Noise increases as the inverse square root of dose or

slice thickness with FBP [2, 23]. This fundamental property

of CT imaging means large dose increases are needed to

lower noise when employing FBP. For example, lowering

image noise by a factor of 2 requires 4 times more radiation

dose. This explains why dose levels will vary by hundreds

of percent over the same body region for the same patient

size for different clinical indications. For example, a CT

protocol for interpreting the bony detail of the lumbar spine

(i.e., an indication that requires relatively low noise) will

require several times the dose of a virtual colonoscopy (i.e.,

an indication that can tolerate a high amount of noise)

exam [18]. Clinically speaking, this means that FBP does

not allow for potentially meaningful dose reductions unless

Fig. 1 Axial slices of the

abdomen of the same patient at

the (left) highest and (right)

lowest level of iterative

denoising applied. The inset

images are zoomed-in views of

the kidneys and the surrounding

tissue. Note the ‘‘plastic’’ or

‘‘blotchy’’ texture of the image

on the left relative to the image

on the right. Image reproduced

with permission from Ref. [18]
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image noise significantly increases or spatial resolution is

degraded [24]. Similarly, photon starvation generated when

imaging a morbidly obese patient cannot be overcome

without markedly escalating radiation dose [25].

Another undesirable byproduct of FBP is loss of low-

contrast lesion detail [26]. Image noise degrades image

quality, all of which is accentuated at lower radiation doses

[26]. Noise can interfere with the detection of a low-con-

trast lesion (e.g., hypoenhancing liver metastases) [27, 28].

Unless a certain CT radiation dose threshold is met, low-

contrast lesions can be masked by image noise when

employing FBP [26].

Issues with Iterative and Model-Based
Reconstruction

Iterative (IR) and model-based reconstruction (MBR)

algorithms reduce image noise using nonlinear mathemat-

ical functions against variable signal intensities within a

defined region of interest [19]. The assumptions described

in the previous section are performed mathematically using

a regularization term. Regularization terms in IR or MBR

frameworks are needed to reduce noise and stabilize the

solution during iterative noise reduction or image

reconstruction. This stabilization essentially limits the

space of possible solutions to solutions that match certain

assumptions about the object to be reconstructed [29]. As

discussed in the introduction, they accomplish noise

reduction by assuming that ‘‘flat’’ regions of the patient can

be smoothed thereby reducing noise which introduces

nonlinearities into the reconstruction process. The degree

of ‘‘flatness’’ involves estimating local image value chan-

ges (i.e., gradients in CT number) which inherently depend

on contrast level and noise magnitude, making IR and

MBR method performance depend on contrast level and

noise/dose level [7–9, 15–17]. We can intuitively under-

stand that as dose level decreases noise increases. Increased

noise makes it more difficult for the IR and MBR methods

to identify uniform versus non-uniform regions; hence,

their performance changes for the worse at lower dose

levels. Another byproduct of the noise reduction methods

employed by IR and MBR methods is that their noise

textures tend to peak at lower spatial frequencies (i.e.,

leftward shift in the noise power spectrum (NPS)), a phe-

nomenon not observed with FBP. The leftward shift in NPS

visually translates to an artificially ‘‘cartoony’’ on ‘‘plastic’’

appearing noise texture which is displeasing characteristic

for some radiologists as shown in Fig. 1.

Table 1 List of CT reconstruction and or denoising methods categorized by type and assumptions made

Vendor Tradename Type Assumptions made

Standard vendor offering on all

systems

FBP FBP makes no assumptions about the imaging object contrast levels,

size, data collection geometry (focal spot or detector element size), or

beam spectra. FBP is therefore a powerful method because

predictable results may be obtained from scans of any imaging object

or patient condition

Canon AiDRTM, GE ASiRTM,

iDose4, Siemens SAFIRE,

Siemens IRIS

Iterative These methods assume there will be regions of the patient with low

spatial frequency content over which aggressive noise reduction may

be applied. This assumption means the noise reduction is higher in

uniform regions relative to highly textured regions. This assumption

means these methods are then nonlinear with object contrast, object

background texture, and dose level

GE AsiR-V, Canon FIRST, Siemens

ADMIRE, Philips IMR

Advanced Iterative (some

elements of model based

present)

Same as above, except more advanced modeling of system noise

properties and sampling geometry (see ‘‘Model Based’’ below)

usually allow for increased performance in noise reduction and or

spatial resolution

Canon FIRST, GE VeoTM Model based A true model-based method does not assume: (1) a point source for focal

spot, (2) a point source for individual detector elements, (3) a

monochromatic x-ray spectra. A model-based method also (4)

accurately models photon statistics using raw projection data. See

Thibault et al. for a description of one vendor’s model-based method

[19]

Canon AiCE,

GE, TrueFidelity

Clari.Pi, AlgoMedica Pixelshine

Deep learning based The methods assume the scan data share feature characteristics with the

data used to train the model. These methods assume one desires the

output of the reconstruction to match the data used to train the model.

Therefore, images reconstructed using DL will have image quality

characteristics matching those of the training data
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The nonlinear behavior of IR and MBR with respect to

noise texture is a primary reason why these reconstruction

methods exhibit contrast-dependent spatial resolution [26].

Contrast-dependent spatial resolution means that a lesion’s

spatial resolution is a function of its contrast with neigh-

boring background tissue [30]. For many low-attenuation

diagnostic tasks scanned at clinical doses (e.g., low-atten-

uation hypovascular metastases), contrast-dependent spa-

tial resolution is not deleterious to a radiologist’s

diagnostic accuracy [31]. However, overaggressive dose

reductions have shown to be detrimental to the diagnostic

accuracy of low-contrast lesion detection tasks [32–34].

This effect has been studied in numerous phantom-based

and human observer models [32, 33, 35]. Most recent lit-

erature shows that IR allows for only modest reductions

(e.g., * 25%) in radiation dose to preserve low-contrast

lesion detection accuracy.

In addition to noise texture changes when IR and MBR

methods are applied, the spatial resolution may also change

relative to FBP. Several studies have demonstrated the

dose/noise and contrast-level dependencies of IR and MBR

algorithms. For the majority of IR and MBR methods to

date, their performance is better at high-contrast levels and

higher doses. This unfortunately is exactly the opposite

behavior that is clinically desired. This was demonstrated

by Baker et al. who used a liver phantom with lesions

decreasing in size and contrast, imaged at decreasing

radiation dose, and reconstructed with a variety of IR

strengths/techniques [31]. The Baker et al. study showed

that at low radiation doses, small low-contrast objects can

be invisible regardless of reconstruction technique. Multi-

ple other phantom studies demonstrated similar findings,

and these were confirmed in prospective human studies

[31, 32, 36, 37]. For example, Pooler et al. showed that

very aggressive dose reduction (70% range) led to

decreased diagnostic accuracy and confidence in identify-

ing and characterizing metastatic liver lesions regardless of

image reconstruction algorithm used [33]. A review of this

literature was conducted by Mileto et al. who concluded

‘‘Radiologists need to be aware that use of IR can result in

a decline of spatial resolution for low-contrast structures

and degradation of low-contrast detectability when radia-

tion dose reductions exceed approximately 25%’’ [35]. We

can intuitively understand the degradation of spatial reso-

lution with lower contrast levels as being due to IR and

MBR methods being better able to identify higher contrast

edges relative to lower contrast edges. Since IR and MBR

methods seek to actively preserve edges by not filtering

orthogonally to the edge gradients, the higher the edge

contrast, the more likely that edge is to receive less noise

reduction (i.e., spatial resolution blurring) and therefore a

preserved edge detail.

Introduction to Deep Learning CT Image
Reconstruction

The known shortcomings of iterative reconstruction dis-

cussed above have motivated alternative methods for noise

reduction in CT. This section will introduce artificial

intelligence (AI)-based methods, built with the goal of

preserving the noise reduction features of IR and MBR

methods, and mitigating the negative image texture, and

nonlinear spatial resolution properties of IR and MBR

methods.

While progress was being made in IR for CT, there were

parallel efforts which have improved the power AI and its

application to an ever-growing set of practical problems.

AI most commonly uses neural networks that crudely

model the neurons within the brain and the synaptic con-

nections of these neurons [38]. Machine learning (ML)

algorithms are a subset of artificial intelligence wherein the

algorithm developer must specify a set of features to be

included as part of the learning process. Deep learning

(DL) offers a framework wherein the algorithm can learn

the features throughout the training process. Specifically,

one type of deep learning employs convolutional neural

networks (CNNs).

Deep learning reconstruction (DLR) has been imple-

mented by multiple CT vendors and third-party software

providers [39–41]. In each case, the DL neural networks

have been trained to reduce noise. In theory, DLR can be

used to solve a variety of image reconstruction problems

including cone-beam artifacts, motion artifacts, truncation

artifacts, and so on. However, the currently available

commercial solutions focus on reducing the image noise.

As with any learning process, the network architecture

(i.e., the connection of the neurons in the network) is

important but even more crucial is the training data used to

model the network. Typically, ground truth training data

are used to teach the network the properties of a CT image.

Then noise is introduced into the data through simulation

for instance. In this manner, the network has paired

examples of noisy data and clean data and the aim of the

network is to learn a method to remove the noise from the

data. It has also been shown that denoising can be achieved

by training the network with multiple realizations of the

same noise pattern in so-called noise2noise training [42].

However, to our knowledge, this method has not yet been

implemented clinically.

FBP, IR, and MBIR reconstruction methods require a

back-projection operation which maps from the detector

space to the image space. The analogous term with DLR is

back-propagation. Back-propagation describes the methods

used to update the network coefficients during the learning

process. The back-propagation step is shown in Fig. 2.
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Importantly, this step is where the image quality charac-

teristics of the ground truth image are encoded into the

network, allowing future sinogram data to pass through the

network and inherent the characteristics of the ground truth

images used to train the network.

In practice, there are choices that can be made for the

selection of the ‘‘clean’’ or ‘‘target’’ training data which

affect the output of the network. If relatively high-dose

FBP images are input to the network, the network output

will have noise texture which more closely resembles FBP.

On the other hand, if IR is used as the ‘‘clean’’ training

data, the noise texture in the images may more closely

resemble that of IR [43, 44].

Each CT vendor or third-party denoising vendor per-

forms validation, testing, and quality assurance to ensure

their denoising solutions will perform well in practice.

After the networks have been tested and ready for clinical

implementation, their architecture is saved as a static

software instance. Therefore, the networks provide repro-

ducible and stable results when used in the field. Two

different workflows for implementation of DLR in the

clinic are shown in Fig. 3. The process of using a DL

network to reconstruct noisy data is referred to as infer-

ence—because we are inferring what the clean data should

be from the noisy data. In the future, it may be possible for

networks to learn in real time or to make network param-

eter adjustments tailored to specific patients. But all cur-

rently FDA cleared methods use networks with locked

weights.

The inferencing step takes advantage of modern

graphical processing unit (GPU) hardware solutions which

are typically much faster than traditional IR algorithm

designs as the inferencing operation does not require any

iterations. The major computational hurdle to DLR net-

work design (i.e., defining hyperparameters and network

node weights) is cleared during the training stage. This

contrasts with computational challenges invoked with

MBIR algorithms which are present for every reconstruc-

tion. As with IR, DLR typically offers multiple levels of

denoising strength to suited to user preferences [39–41].

Technical Review of Deep Learning Performance

DLR promises to be fast and produce high-quality images

(i.e., lower noise and higher spatial resolution) at lower

doses [45]. As with previous generations of nonlinear

reconstruction algorithms, the performance of DLR is not

adequately quantified using classical image quality metrics

such as noise, contrast-to-noise ratio, and signal-to-noise

ratio. More advanced metrics such as the noise power

spectrum (NPS), the task-based modulation transfer func-

tion, and model observer metrics are required [46]. Further,

subjective image quality has been essential for character-

izing the preferences of radiologists. However, this labor-

intensive assessment is now routinely automated with

model observer studies and more recently artificial intel-

ligence models have also been proposed toward this goal

[47].

The NPSs of DLR images have been shown to be similar

to that of FBP [48–51]. Measuring the mean frequency of

DLR images using GE Healthcare’s TrueFidelity (i.e.,

Fig. 2 An overview of how a deep neural network is trained to take

noisy CT projection data and reconstruct high quality images. In this

example, scan data is generated in two pathways, one leading to a

‘‘low quality noisy sinogram’’ and one leading to a ‘‘high quality

sinogram’’. Traditional image reconstruction (i.e., non-DL based)

methods are shown here to turn the high quality sinogram data into a

ground truth image. This ground truth image is backpropagated

through the network to train the network to transform the low quality

sinogram data into the high-quality image
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DLIR reconstruction), a marginal shift was observed across

the range of diagnostic dose levels, and only at relatively

low-dose levels was a meaningful shift measured for DL

relative to FBP [48, 50]. The DLR solution from Canon

Medical System, termed Advanced intelligent Clear-IQ

Engine (AiCE), showed similar NPS behavior to MBIR

[44], but recent changes to the AiCE method have made the

texture more FBP like [49]. There is evidence that the

strength (or weight) of DLR processing impacts noise

texture, with a shift to lower frequencies at high DLR

strengths for both on-scanner algorithms currently avail-

able [52], albeit that work of Hasegawa et al. that

demonstrated this did so at phantom sizes and dose levels

not representative of clinical reality. However, there is

evidence that this shift is alleviated with newer versions of

DLR [46]. In clinical use, DLR images are described as

producing a more ‘‘natural’’ image appearance [45, 46, 53].

In summary, DLIR does not suffer from the ‘‘plastic’’ noise

texture shown in Fig. 1 given a NPS which does not skew

toward low-frequency data.

In the assessment of absolute image noise, DLR

achieves the same or higher levels of noise reduction

compared to MBIR, with the relative noise increase as dose

is lowered muted relative to FBP [48, 49]. Performance

evaluation of one commercial product shows DL outper-

forming all other reconstruction methods at low doses,

while it is outperformed only by MBR at higher doses

[44, 49]. The noise reduction capabilities of DLIR enables

exploring new spatial resolution limits such as deploying

detectors with smaller pixels and utilizing shaper kernels

with larger image matrices without suffering a noise pen-

alty [44].

DLR similarly exhibits high-contrast spatial resolution

that is comparable to MBR methods yielding similar results

at the 50% and 10% modulation transfer function (MTF)

points [44]. However, as previously reported, spatial res-

olution can be influenced by both the contrast level of

target and the dose levels. More appropriately, a task-based

MTF must be considered to fully characterize the perfor-

mance of a reconstruction algorithm [7]. While there are

slight variations in the task-based MTFs across varying

levels of tissue contrast with DLR, the variations measured

were comparable to measurement-to-measurement varia-

tions, and in general, DLR was found to have similar or

better MTF values relative to FBP [48]. This is a departure

from IR/MBR methods which have been shown across

multiple vendor implementations to exhibit lower MTF

values relative to FBP, especially for lower contrast tasks

[7, 17]. The task-based MTF for DLR was also observed to

be robust across a range of doses, with spatial resolution

preserved as dose was decreased [48], but with a tendency

for a drop off at very low doses and with lower contrast

tissues [49, 50]. This behavior is reported to be less of an

issue in newer versions of DLR [46]. Vendor neutral,

image denoising-based methods have also demonstrated

superiority over IR and MBR methods with respect to noise

texture performance. Pixelshine from Algomedica has been

characterized as providing less central frequency shift in

Fig. 3 Figure 2 depicts a generalized method for training a DL

network to transform noisy projection data into an image. In this

figure we depict how one of these networks would be used clinically.

In the top row, the network shown in Fig. 2 is used to transform low

quality noisy sinogram data into a high-quality image. The bottom

row depicts a slightly different network design where the input is a

noisy image and the output is higher quality image. The ‘‘lock’’

symbols denote that the networks are fixed, no changes to the weights

are performed in the reconstruction process once deployed in the

clinical setting
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NPS versus IR-based methods from multiple other scanner

vendors [51]. In summary, DLR methods characterized to

date using phantom data do not appear to suffer from the

same MTF degradation at low-contrast levels as do IR and

MBR methods.

Going a step further to the task-based detectability

index, the performance of all algorithms is related to both

tissue contrast and dose level as is expected, with MBR and

DLR algorithms significantly outperforming FBP at all

dose levels, and with DLR and MBR performance chang-

ing relative to each other and to FBP at very low doses

[49, 50]. However, the relative differences in performance

between DL and MBR as a function of dose and diagnostic

task should be considered in context of vendor-specific

implementations, and not as indication of the inherent

performance of DLR vs. MBR.

CT number accuracy is well preserved with DLR as a

function of contrast and dose levels. At routine dose levels,

CT numbers of phantom inserts at 340 HU, 120 HU, and -

35 HU are within 4 HU of the CT numbers measured at

FBP at the same dose level. Even at 25% of the routine

dose level, measured CT numbers on DLR images are still

within 4 HU of those measured at FBP at routine dose

levels [44]. These results are consistent with another study

[48] that also evaluated CT number accuracy and found no

statistical difference between reconstruction algorithms or

reconstructed slice thickness. Additionally, multiple papers

looking at nonphantom, (i.e., in vivo) CT number mea-

surements have demonstrated no clinically significant

change in CT number with DLR versus FBP and IR/MBR

methods [54, 55,56, 57, 58, 59, 60•, 61, 62, 63].

Clinical Review of Deep Learning Performance

Figures 4, 5, and 6 depict clinical DLR cases using three

different DLR commercial solutions.

Fig. 4 From top left clockwise, ASiR-V 20%, DLIR-low, DLIR-

medium, DLIR-High 1.25 mm axial slices (displayed at window

width = 380 HU level = 40 HU) reconstructed with a standard kernel.

70-year-old patient with history of cirrhosis presenting with abdom-

inal pain. Contrast enhanced CT of the abdomen and pelvis shows

marked cecal wall thickening, new compared to prior exam. Finding

was attributed to hepatic congestive colopathy, but a differential for

colitis was provided. Image noise standard deviation for these cases

(measured in a relatively uniform region of the bowel) was 19, 14, 12,

and 8 HU for the ASiR-V 20%, DLIR-low, DLIR-medium, and

DLIR-High images respectively

Fig. 5 From top left clockwise, FBP (i.e., ASiR-V 0%), PixelShine

‘‘S’’ applied to a FBP (ASiR-V 0%) image, DLIR-low, PixelShine

‘‘S’’ applied to a DLIR-low image. All images are 1.25 mm axial

slices (displayed at window width = 355 HU level = 50 HU)

reconstructed with a standard kernel. Image noise standard deviation

for these cases (measured in a relatively uniform region of the

stomach) was 24, 18, 16, and 12 HU for the clockwise from the top

left respectively. Note how the noise magnitude is reduced for all

images relative to the FBP image, and how the texture is not degraded

from a ‘‘FBP like’’ texture of any of the DLR based reconstructions
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Improvements in contrast-to-noise, noise texture, and

spatial resolution often correlate with improved subjec-

tively rated radiologist image quality [26]. This is a tried-

and-true pattern that typically follows the release of most

image reconstruction algorithm launches. However, DL

may provide unique opportunities as compared to the

generation of IR and MBR given that some phantom

studies suggest DLR circumnavigates the limitations of

contrast-dependent spatial resolution and overly smooth-

ened noise texture profiles associated with IR and MBR

algorithms [48–51, 54, 55]. Still, it is imperative to show

that figure-of-merit improvements augment clinical deci-

sion-making and diagnosis. Such findings could further

reductions in benchmark CT radiation doses, either by

improving or by maintaining diagnostic accuracy.

The majority of published clinical studies assess DLR

algorithm performance with subjective image quality

scores (IQ) typically assigned by radiologists and contrast-

to-noise measurements [54–57]. For instance, Bernard

et al. assessed the performance of AiCE against IR (AIDR

3D) in a CT angiography acute stroke imaging protocol

[55]. They concluded that a 40% reduced radiation dose

resulted in a 50% increase in IQ scores. Although timely IQ

study results are encouraging, their generalizability to

diagnostic accuracy is limited. A CT imaging practice

should be cautious in reducing exam doses when employ-

ing DRL solely based on IQ superiority alone.

Introducing a diagnostic task into the experimental

design increases external validity of using DLR in lieu of

currently accepted IR methods. For example, Jensen and

colleagues compared portal venous phase images recon-

structed with IR (ASiR-V 30%) compared to DL (True-

Fidelity at low, medium, and high weight) of patients

undergoing routine oncologic staging exam of the abdomen

[54]. A total of 193 lesions were identified in these patients.

Reader assigned lesion diagnostic confidence, conspicuity,

and artifact scores all were significantly improved with all

DLR weights as compared to IR. Again, such results are

encouraging. Another interesting example is a study per-

formed by Benz et al. in which coronary luminal narrowing

was evaluated on coronary CT angiography [58]. Images

were reconstructed with DLIR (TrueFidelity medium and

high strength) and IR (ASiR-V 70%) using standard and

high-definition (HD) kernels. They concluded no differ-

ences in sensitivity, specificity, or diagnostic accuracy

between ASiR-V HD and TrueFidelity high weighting. It

should be noted that coronary luminal narrowing is con-

sidered a high-contrast task—in which the reader measures

the diameter of a contrast-filled coronary artery. However,

neither of these examples tests diagnostic confidence at

reduced radiation doses.

A more intricate approach to DLR algorithm testing

requires a specially tailored experimental design in which a

reduced dose CT exam is performed in tandem to a routine

clinical dose exam. The reduced dose exam can be

reconstructed with various DLR weights and then com-

pared to full-dose images reconstructed with FBP and

routine IR strengths. Instead of having radiologist

Fig. 6 Images of similar anatomical location reconstructed using

FBP (FC 18 kernel), AIDR3D (FC18 kernel, AIDRe Standard) and

AiCE (AiCE body sharp standard) from left to right respectively

(zoomed in images shown along the bottom row). Notice that the

noise texture of the AiCE is not plastic in appearance, while the noise

magnitude is markedly reduced compared to the FBP reconstruction.

The AIDR3D image does have a lower noise magnitude relative to

FBP, but a slightly ‘‘patchy’’ noise texture is apparent. All images at

0.5 mm slice thickness at window width = 380 HU, window level =

340 HU. Images courtesy of Canon Medical Systems USA
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Table 2 A review of CT reconstruction methods for iterative reconstruction (IR), model-based reconstruction (MBR), and deep learning (DLR)

Vendor

Tradename

Type Availability Example

References on

clinical

performance

Example

References on

physics-based

performance

Noise Power

Spectrum

(Relative to

FBP)

Noise Texture Contrast

Dependent

Spatial

Resolution

Canon AiDRTM IR Vendor

specific

Rodrigues,

2016 [66]

Schindera, 2013

[37]

Schindera 2014

[67]

Decreased

peak

Leftward shift

Smoother/More

plastic than

FBP

Present

Canon AiDR

3DTM
IR Vendor

specific

Singh, 2020

[63]

Juri, 2016 [68]

Maamoun,

2018 [69]

Greffier 2022 [70] Decreased

peak

Leftward shift

Smoother/More

plastic than

FBP

Present

Canon FIRST Advanced IR Vendor

specific

Singh, 2020

[63]

Morita, 2020

[71]

Greffier 2022 [70] Decreased

Peak

Leftward Shift

Smoother/More

plastic than

FBP

Present

Canon AiCE DL Vendor

specific

Singh, 2020

[62, 63]

Tanabe, 2022

[72]

Greffier, 2021

[46]

Decreased

peak

Leftward Shift

Less

smoothening

compared to

IR,

Little Data,—

Some

suggesting

absence

GE AsiRTM IR (projection

space focused

denoising)

Vendor

specific

Pooler, 2017

[33]

Pickhardt, 2012

[73]

McCollough,

2015 [73, 74]

Saiprasad, 2015

[75]

Mileto, 2018 [76]

Decreased

Peak

Leftward Shift

Smoother/More

plastic than

FBP

Present

GE ASiR-VTM Advanced IR Vendor

specific

Jensen 2019

[77]

Mileto 2018 [76] Decreased

Peak

Leftward Shift

Smoother/More

plastic than

FBP

Present

GE VeoTM MBR Vendor

specific

Pooler, 2017

[33]

Pickhardt, 2012

[73]

Jensen 2019

[77]

Braenne, 2016

[78]

Jensen, 2016 [79]

Decreased

Peak

Leftward Shift

Smoother/More

plastic than

FBP

Present

GE

TrueFidelityTM
DL Vendor

specific

Kim, 2021 [80]

Park, 2021 [81]

Franck, 2021 [82]

Szczykutowicz,

2021 [48]

Decreased

Peak

No Shift

Little data –

Some

suggesting

absence

Philips IMR Advanced IR Vendor

specific

Khawaja RD,

2014 [83]

Park, 2018 [84]

Pan, 2021 [85] Decreased

Peak

Leftward Shift

Smoother/More

plastic than

FBP

Present

Philips iDOSE4 IR Vendor

specific

Khawaja RD,

2014 [83]

Saiprasad, 2015

[75]

Pan, 2021 [85]

Decreased

Peak

Leftward Shift

Smoother/More

plastic than

FBP

Present

Siemens IRIS IR (image space

focused

denoising)

Vendor

specific

Bittencourt,

2011 [86]

Saiprasad, 2015

[75]

Decreased

Peak

Leftward Shift

Smoother/More

plastic than

FBP

Present

Siemens

ADMIRE

Advanced IR Vendor

specific

Agostini, 2021

[87]

Mileto, 2018 [76] Decreased

Peak

Leftward Shift

Smoother/More

plastic than

FBP

Present
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observers only grade image quality, the study design

should introduce some predefined diagnostic task such that

accuracy can be properly measured. An example task is

low-contrast lesion detection.

Assessment of low-contrast metastases is a challenging

clinical task and becomes more difficult in the setting of

reduced radiation doses. A recent study by Jensen and

colleagues prospectively analyzed colorectal low-contrast

liver metastases detection, comparing benchmark radiation

dose to 65% dose reduction images reconstructed with

FBP, IR (ASiR-V 60%), and TrueFidelity medium strength

[60•]. They demonstrated that TrueFidelity improved sub-

jective reader image quality and preserved liver metastases

detection measuring[ 0.5 cm compared to benchmark

exposures (lesion accuracy 67.1% versus 80.1% for True-

Fidelity and FBP, respectively). All radiologist readers

subjectively rated reduced dose DLR images superior to

standard-dose FBP images (odds ratio, 1.6; P = 0.02). In a

similarly designed study, Singh et al. demonstrated

equivalent liver lesion and pulmonary nodule detection

using low-dose (83% reduced) AiCE when compared to

standard-dose IR (AIDR 3D) and superior detection com-

pared to low-dose FBP and IR (AIDR 3D and FIRST) [62].

The study’s low-dose protocol had a mean volume CT dose

index of 2.1 ± 0.8 mGy as compared to 13 ± 4.4 mGy in

the standard protocol. This translates to an 83% dose index

reduction.

In conclusion, these studies suggest 65–83% dose

reductions for low-contrast liver lesion detection; however,

only Jensen et al.’s study [60•] specifically evaluates low-

contrast liver metastases. More clinical work regarding

diagnostic accuracy is needed before radiologists start

lowering doses of routine exams.

Conclusion

In summary, the space of CT image reconstruction using

deep learning is an active area of research and producti-

zation. This chapter outlined the predecessors to DLR (i.e.,

FBP, IR, and MBR) and reviewed some of the currently

available DLR commercial solutions. We expect more

solutions to follow. At the time of this writing, Philips has a

press release that states they now have AI-enabled image

reconstruction on their Incisive platform. Siemens has a

product released for MR called ‘‘deep resolve,’’ but nothing

at the time of this writing for CT. Other facets of image

quality like artifact mitigation and spatial resolution

Table 2 continued

Vendor

Tradename

Type Availability Example

References on

clinical

performance

Example

References on

physics-based

performance

Noise Power

Spectrum

(Relative to

FBP)

Noise Texture Contrast

Dependent

Spatial

Resolution

Siemens SAFIRE IR Vendor

specific

Fletcher 2017

[88]

Fletcher 2018

[89]

Baker, 2012 [90]

McCollough 2015

[74]

Goenka, 2014

[91]

Goenka, 2016

[92]

Solomon, 2017

[93]

Mileto 2018 [76]

Decreased

Peak

Leftward Shift

Smoother/More

plastic than

FBP

Present

Clari.Pi

ClariCT.AI

Proprietary DL-

based noise

reduction

algorithm

Vendor

agnostic

Nam, 2021 [94]

Yeoh, 2021

[95]

Hong, 2020

[96]

Unknown Little data—

Improved

compared to

IR

Unknown

AlgoMedica

Pixelshine

Proprietary DL-

based noise

reduction

algorithm

Vendor

agnostic

Tian, 2019 [97]

Hata, 2020 [98]

Wissellink, 2020

[99]

Pan 2020 [51]

Decreased

Peak

No Shift

Little Data,

appears to

improve

compared to

FBP

Unknown

ADMIRE advanced modeled iterative reconstruction, AiCE advanced intelligent clear IQ engine, AIDR adaptive iterative dose reduction, AsiR
adaptive statistical iterative reconstruction, ASiR-V hybrid model-based adaptive statistical iterative reconstruction-V, FIRST forward projected

model-based iterative reconstruction solution, iDose4 iterative dose reduction technique 4, IRIS iterative reconstruction in image space, SAFIRE
sinogram-affirmed iterative reconstruction
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Fig. 7 Example of deep learning being used for extended field of

view reconstruction. In this example, the top row depicts external

patient contours, the bottom row axial CT slices. Images are

reconstructed out to 50 cm on the left, and 80 cm on the right. The

right column was reconstructed using a deep learning-based method

from GE Healthcare called ‘‘MaxFOV 2’’. Note the mitigation of

truncation artifacts (i.e., the bright edges) and the accurate patient

representation outside of the 50 cm field of view of the deep learning

method. Images provided courtesy GE Healthcare
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enhancement were not discussed in this chapter (Table 2).

They are being developed, however, as shown in Figs. 7

and 8. The future of CT image reconstruction seems bright

considering the positive comparisons of DLR to FBP, IR,

and MBR made in this chapter. The first photon counting

CT scanner release in 2021 [64] will likely also open new

avenues for DLR and remains an exciting future prospect

for DLR.
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