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Abstract

Purpose of Review To present recent literature regarding

the assessment and clinical implications of background

parenchymal enhancement on breast MRI.

Recent Findings The qualitative assessment of BPE

remains variable within the literature, as well as in clinical

practice. Several different quantitative approaches have

been investigated in recent years, most commonly region of

interest-based and segmentation-based assessments. How-

ever, quantitative assessment has not become standard in

clinical practice to date. Numerous studies have demon-

strated a clear association between higher BPE and future

breast cancer risk. While higher BPE does not appear to

significantly impact cancer detection, it may result in a

higher abnormal interpretation rate. BPE is also likely a

marker of pathologic complete response after neoadjuvant

chemotherapy, with decreases in BPE during and after

neoadjuvant chemotherapy correlated with pCR. In con-

trast, pre-treatment BPE does not appear to be predictive of

pCR. The association between BPE and prognosis is less

clear, with heterogeneous results in the literature.

Summary Assessment of BPE continues to evolve, with

heterogeneity in approaches to both qualitative and quan-

titative assessment. The level of BPE has important clinical

implications, with associations with future breast cancer

risk and treatment response. BPE may also be an imaging

marker of prognosis, but future research is needed on this

topic.
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Introduction

Although the normal enhancement of breast parenchyma

on breast MRI has been appreciated for many years, the

clinical implications of this enhancement have only

become evident more recently. Reporting of this normal

enhancement, termed ‘‘background parenchymal enhance-

ment’’ (BPE), was standardized in 2013 as part of the

American College of Radiology (ACR) Breast Imaging

Reporting and Data System (BI-RADS) Atlas (fifth edition)

when the original MRI lexicon was revised. Since that

time, there has been a substantial increase in publications

related to BPE. The purpose of this review is to update the

reader on the literature published in the last five years, with

a particular focus on the assessment and clinical implica-

tions of BPE.

Overview

BPE refers to the normal enhancement of the breast

fibroglandular tissue. According to the fifth edition of the

ACR BI-RADS Atlas, it should be assessed on the first

post-contrast image at approximately 90 s, as this is the

time point at which cancer detection is typically performed.

BPE is evaluated with respect to the amount of
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fibroglandular tissue (not breast volume) and is to be

reported as minimal, mild, moderate, or marked [1]

(Figs. 1, 2).

BPE will most commonly be diffuse and symmetric.

More peripheral enhancement, or ‘‘picture framing,’’ can

also be seen (Fig. 3) and has been attributed to the arterial

vascular supply of the breast, which enters the breast

peripherally [2]. Asymmetric BPE should be reported when

present, as is often seen after breast conservation therapy

with radiation therapy [3] (Fig. 4). While different distri-

butions and morphologies of enhancement have been

explored in the prior literature [4, 5], BPE assessment

currently is based on the volume and intensity of

enhancement only and does not account for distribution or

morphology [1].

Earlier studies suggested that BPE varied with the

menstrual cycle [4, 6, 7], leading to the recommendation

that non-urgent breast MRI be performed early in the

menstrual cycle (typically the second week) [1]. However,

a few recent studies, including studies by Lee et al. (1536

screening MRI examinations) and Dontchos et al. (320

screening MRI examinations), have demonstrated no sig-

nificant difference in screening MRI BPE by week of the

menstrual cycle [8, 9•, 10•]. More importantly, these

studies did not demonstrate a difference in performance

metrics (such as abnormal interpretation rate, cancer

detection rate, sensitivity, specificity) by week of the

menstrual cycle. As such, the timing of breast MRI

screening studies may not be as relevant as previously

thought.

A comprehensive discussion of other patient character-

istics influencing BPE is beyond the scope of this review,

but a few factors warrant mention, given that they are

routinely encountered in clinical practice. Younger age and

premenopausal status have both been shown to be associ-

ated with higher BPE [11–13], as has a higher body mass

index (BMI) [11, 14]. BPE is also affected by exogenous

hormone therapies. Hormone replacement therapy has been

shown to increase BPE, while the anti-estrogen effects of

aromatase inhibitors and selective estrogen receptor mod-

ulators used in endocrine therapy for breast cancer have

been shown to decrease BPE. The cessation of tamoxifen (a

selective estrogen receptor modulator) can result in focal or

global ‘‘rebound’’ in BPE [2], which may lead to a diag-

nostic dilemma if this history is not known. Focal rebound

in BPE can be particularly challenging to interpret. Adju-

vant chemotherapy has also been shown to decrease BPE

[15]. Finally, it has been shown that radiation therapy after

breast conservation surgery and prophylactic breast irra-

diation in high risk populations reduce BPE [16, 17].

However, this reduction may not be seen in all patients

with a history of breast radiation exposure, as Zeng et al.

reported that patient’s with a history of chest radiation for

childhood or early adulthood Hodgkin’s lymphoma had

Fig. 1 a Axial unenhanced T1-weighted fat-suppressed, b axial

contrast-enhanced T1-weighted fat-suppressed, c axial contrast-

enhanced T1-weighted fat-suppressed subtraction, and d axial

contrast-enhanced T1-weighted fat-suppressed subtraction MIP MR

images demonstrating an example of mild BPE
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higher BPE than age-matched controls when undergoing

screening breast MRI years later [18].

Qualitative Assessment

Despite standardization of BPE reporting in the BI-RADS

lexicon, there is variability in the methods used by radi-

ologists to qualitatively assess BPE. In a 2017 systematic

review by Bignotti et al., 16 of 39 studies qualitatively

assessed BPE using a combination of unenhanced and

contrast-enhanced fat-suppressed T1-weighted and sub-

traction images, 5 of 39 added maximum intensity

projection (MIP) images to this assessment, 14 of 39 used a

combination of post-contrast fat-suppressed T1 weighted

and/or subtraction images, and 1 of 39 used only MIP

images (3 of 39 did not clearly state the assessment tech-

nique used) [19].

Separately, one study demonstrated that the combination

of the initial contrast-enhanced fat-suppressed T1-weighted

images, initial contrast-enhanced subtraction images, and

initial contrast-enhanced MIP image has the highest relia-

bility for assessing BPE (Gwet’s AC1 value 0.80 [95%

confidence interval 0.77–0.84] and absolute agreement of

91.8% among three readers) (62). However, using the MIP

image alone showed similar reliability (Gwet’s AC1 value

Fig. 2 a Minimal, b mild, c moderate, and d marked BPE on axial contrast-enhanced T1-weighted fat-suppressed subtraction MIP MR images

Fig. 3 Axial contrast-enhanced T1-weighted fat-suppressed subtrac-

tion MR image demonstrating a peripheral ‘‘picture framing’’ BPE

pattern

Fig. 4 Axial contrast-enhanced T1-weighted fat-suppressed subtrac-

tion MIP MR image demonstrating asymmetric BPE in a patient with

history of breast conservation surgery status post radiation therapy
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0.80 [95% confidence interval 0.76–0.83] and absolute

agreement of 92.4%) and lower reading time (4 s for MIP

alone versus 38 s) [20]. Despite being an uncommon

methodology in the literature, using the MIP image alone

for BPE assessment may be a useful time-saving step in

clinical practice.

The subjective nature of qualitative assessment also

results in intra-reader and inter-reader variability. Kappa

values for intra-reader agreement range from moderate to

almost perfect in prior literature, while Kappa values for

inter-reader agreement range from fair to almost perfect

[19].

Quantitative Assessment

The fifth edition of the BI-RADS Atlas recommends a

visual estimation of BPE, stating ‘‘categorizing based on

percentages (and specifically into quartiles) is not recom-

mended. Quantification of BPE volume and intensity on

MRI may be feasible in the future, but we await publication

of robust data on that topic before endorsing percentage

recommendations’’ [1]. Several different quantitative

approaches have been investigated since the publication of

the fifth edition of the BI-RADS Atlas, with numerous

studies in the past five years [21–34].

Region of interest-based and segmentation-based

assessments are the two most common approaches in the

recent literature. Generally, region of interest-based

approaches still rely on user input, leading to potential

reader variability. Segmentation-based assessments attempt

to address this issue by isolating the fibroglandular tissue

from the remaining tissues and assessing the entire

fibroglandular volume rather than a region of interest.

Various semi-automated and automated segmentation

models have been created [27–30]. BPE assessment tools

using machine learning have also been developed [31–34].

Overall, many of these approaches have correlated well

with qualitative BPE assessment. However, despite this

progress, quantitative assessment has not become standard

in clinical practice to date.

BPE on Emerging MRI Protocols

Ultrafast MRI protocols consist of multiple high temporal

resolution images after contrast injection, acquiring

enhancement data prior to the first post-contrast sequence

in standard protocols. One of the potential benefits of

ultrafast MRI protocols is less prominent BPE at these

early time points. Tomida et al. showed that there is almost

no BPE during the ‘‘super early phase’’ (20 s after contrast

injection) [35]. Honda et al. found that BPE was lower on

the twelfth and twentieth phases of a 75 s ultrafast protocol

compared to the first post-contrast phase of conventional

dynamic contrast-enhanced MRI, with higher lesion

detectability at the ultrafast protocol time points in patients

with higher BPE at the conventional MRI time point [36].

Other studies have also demonstrated higher lesion con-

spicuity in cases with moderate or marked BPE [37, 38].

Abbreviated protocol MRIs have also been a focus in

recent years due to their potential benefits of lower

acquisition time, interpretation time, and cost. Abbreviated

protocols vary but usually include at least an unenhanced

and first post-contrast sequence, providing only morpho-

logic information without kinetic assessment. While these

protocols are promising, one study showed moderate or

marked BPE lowered the rate of concordance between MRI

measurements and pathology measurements for the maxi-

mum extent of ductal carcinoma in situ (DCIS) [39]. More

research is needed to determine the impact of BPE on

abbreviated protocols.

Clinical Implications

Breast Cancer Risk

Numerous studies have now identified an association

between BPE and breast cancer risk. The Imaging and

Epidemiology (IMAGINE) case–control study with 835

breast cancer cases and 963 controls demonstrated an

association between moderate or marked BPE and pre-

menopausal cancer after adjusting for breast density and

other risk factors and confounders (OR 1.49); a similar but

non-significant association was seen between mild, mod-

erate, or marked BPE and postmenopausal cancer (OR

1.45) [40•]. A retrospective study by Arasu et al. assessed

4247 women imaged at one of 46 radiology facilities

within the Breast Cancer Surveillance Consortium. 176

developed breast cancer, with increasing BPE levels

associated with increased cancer risk. This association was

independent of breast density. Mild, moderate, or marked

BPE also demonstrated a significant increased risk of

invasive cancer (hazard ratio 2.73) [41•]. These results are

corroborated by a recent meta-analysis of 13 studies

(13,788 patients with 4,046 breast cancer cases) showing

that moderate BPE and marked BPE were associated with

an elevated risk of breast cancer (OR 2.66 and 2.51,

respectively) [42]; a separate meta-analysis of 12 studies

(9541 patients with 3870 breast cancer cases) showed

similar results (moderate BPE OR 2.93 and marked BPE

OR 2.89) [43]. Studies have demonstrated this association

using both qualitative and quantitative BPE assessments.

Saha et al. demonstrated that quantitative BPE assessment

using machine learning models can be predictive of the
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subsequent development of breast cancer independent of

qualitative BPE assessment [44].

In addition, a meta-analysis by Thompson et al. ana-

lyzing 18 studies (1910 breast cancer cases and 2541

controls) found that higher levels of BPE were associated

with the presence of breast cancer in women with an ele-

vated lifetime risk of breast cancer, but not in women with

average lifetime risk of breast cancer [45•]. It is important

to note that data on women considered to be at average

lifetime risk is somewhat limited, as screening MRI is not

typically performed in this patient population (and there-

fore most available data is in the setting of symptoms,

suspicious imaging findings, or known malignancy). For

women with an elevated lifetime risk, this increased risk

may be present even for mild BPE [45, 46]. This future risk

of breast cancer relative to lower BPE levels has also been

shown to persist in women with elevated lifetime risk after

risk-reducing salpingo-oophorectomy, suggesting BPE is

not merely a surrogate marker for endogenous hormone

levels [47, 48]. Moderate to marked BPE has also been

associated with the development of interval cancers in

patients with a personal history of breast cancer [49].

Further evidence of the association between BPE and

breast cancer may come from its link to obesity. There is

evidence that higher BMI is a risk factor for at least

postmenopausal breast cancer [50], and, as discussed ear-

lier, higher BMI has been shown to be associated with

higher BPE [11, 14]. More specifically, visceral adipose

tissue has been identified as a risk factor for numerous

disease processes, including breast cancer, and has had

many of its endocrine functions and pro-inflammatory roles

linked to disease pathogenesis [51]. Brown et al. demon-

strated that, while several body composition measures

including BMI correlated with BPE prior to an exercise

intervention, only reductions in visceral adipose tissue

correlated with a decrease in BPE after exercise interven-

tion [52]. This association between visceral adipose tissue

and BPE further supports the available data suggesting

BPE may serve as an imaging marker of future breast

cancer risk.

BPE has also been associated with breast metabolic

activity, correlating with FDG uptake on PET [53–56].

Mema et al. hypothesized that the increased breast cancer

risk associated with higher BPE could be due to this ele-

vated basal metabolic activity, resulting in an environment

for tumor growth [54].

Cancer Detection, Extent of Disease Assessment,

and Margin Status

Several recent studies have shown that BPE does not

influence cancer detection rate [57•, 58, 59•], although

moderate or marked BPE may be associated with higher

abnormal interpretation rates [57•, 59•]. Higher biopsy

rates and lower specificity have also been noted [59•, 60].

Similarly, studies have shown that BPE in the lactating

breast, which is often moderate or marked, does not pre-

vent cancer detection [61, 62].

Recent data regarding the impact of BPE on extent of

disease measurements and margin status is more hetero-

geneous. Two studies have shown no association between

BPE and positive margins or need for repeat surgeries for

invasive lobular carcinoma [63, 64]. However, other stud-

ies have reported an association between higher BPE and

positive or close (\2 mm) margins in breast conserving

surgeries for invasive ductal carcinoma [65, 66]. BPE also

has been reported to negatively influence diagnostic per-

formance in the evaluation for residual malignancy after

excisional biopsy for microcalcifications [67]. In addition,

two recent studies have shown that tumor size measure-

ment may be more accurate in cases with minimal or mild

BPE [68, 69], although a third study assessing pure DCIS

cases found that BPE did not influence size measurements

[58]. Further research is needed to determine whether BPE

does in fact impact tumor size measurements in a clinically

significant way.

Treatment Response

Several studies have investigated BPE as a potential pre-

dictor of neoadjuvant chemotherapy (NAC) response. A

systemic review of 22 articles found that a greater decrease

in BPE in the disease-free contralateral breast during and

after NAC was associated with pathologic complete

response (pCR) [70•]. In individual studies, a low lesion-to-

background parenchymal signal enhancement ratio (SER)

post-NAC has also been associated with pCR [71, 72]. This

association between a reduction in BPE and pCR has been

seen for both human epidermal growth factor receptor 2

(HER2) positive and HER2 negative cancers [73–75]. You

et al. assessed BPE at multiple treatment time points (after

the second, fourth, and sixth cycles of NAC) and showed

that the decrease in BPE from baseline after the second

cycle of NAC had the most diagnostic value in predicting

pCR [75].

Identifying imaging markers predictive of treatment

response prior to the start of therapy would be even more

beneficial. Unfortunately, most studies have found no

correlation between pre-treatment BPE and pCR

[74, 76–78], with a minority suggesting a link between pre-

treatment BPE and pCR [79].

Prognosis

There is some heterogeneity in the recent literature with

respect to the relationship between BPE and prognosis.
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BPE in the contralateral breast has been associated with the

tumor Oncotype Dx recurrence score [80]. BPE has been

correlated with locoregional recurrence [81], and moderate

or marked BPE correlated with late recurrence ([2.5 years

after surgery) [82]. Lesion peak SER and mean BPE have

also been correlated with DCIS recurrence [83]. In addi-

tion, Choi et al. showed moderate or marked BPE on pre-

NAC MRI was independently associated with worse

recurrence-free survival [84], while Lim et al. showed an

association between non-minimal BPE and worse recur-

rence-free survival in postmenopausal women [66]. In

contrast, two recent studies have shown no correlation with

recurrence [85, 86]. Another study evaluated BPE quali-

tatively and quantitatively before and after NAC and found

that only post-therapeutic quantitative BPE predicted

recurrence [77]. In a systemic review by Rella et al., no

significant association was found between BPE and inva-

siveness, histological cancer type, T- and N-stage, multi-

focality, lymphatic and vascular invasion, and histological

tumor grade [70•].

This variability in the literature may in part be explained

by the heterogeneous nature of breast cancer. Molecular

subtypes of breast cancer play an important role in prog-

nosis [87], but the interrelationships between BPE,

molecular subtype, and prognosis are unclear. Studies have

suggested that moderate or marked BPE is associated with

an increased rate of estrogen receptor (ER) positive and

progesterone receptor (PR) positive cancers [88, 89], while

minimal or mild BPE may be more frequently associated

with triple negative breast cancers [90]. Quantitative image

features of BPE have also shown some promise in differ-

entiating molecular subtypes [91]. One recent study by Xu

et al. demonstrated that, while pre-operative BPE in the

disease-free contralateral breast did not correlate with

overall survival or invasive disease-free survival for the

overall cohort of 467 patients, moderate or marked BPE

correlated with overall survival and invasive disease-free

survival in a subset of 127 triple negative breast cancer

cases who received adjuvant chemotherapy [92]. Park et al.

demonstrated that higher SER around the tumor on pre-

operative MRI independently predicted recurrence in triple

negative breast cancer patients [93]. With respect to ER

positive HER2 negative invasive cancers, one study

showed no association with survival outcome in 289

patients with ER positive HER2 negative node negative

invasive cancers [94], while another including 398 patients

ER positive HER2 negative invasive cancers showed

improved overall survival [95].

Conclusions

There has been considerable interest in BPE in the recent

literature, and it is now evident that BPE has diverse

clinical implications. Numerous studies have demonstrated

a clear association between higher BPE and future breast

cancer risk, and BPE may be an important imaging marker

for risk stratification in the era of personalized medicine.

While higher BPE does not appear to significantly impact

cancer detection, it may result in a higher abnormal inter-

pretation rate. BPE is also likely predictive of treatment

response, with reductions in BPE during and after NAC

correlated with pCR. However, most studies have found no

correlation between BPE before NAC and pCR. The

association between BPE and prognosis is less clear. Given

the heterogeneous nature of breast cancer, BPE is unlikely

to be a one-size-fits-all prognostic imaging marker. As

such, further research is needed on BPE in breast cancer

subtypes and population subsets, including women who are

otherwise considered to be at average lifetime risk of breast

cancer.

Progress has been made in the quantitative assessment

of BPE, a topic specifically mentioned as one for further

research in the fifth edition of the BI-RADS Atlas, although

this has yet to make its way into routine clinical practice.

However, although the BPE lexicon is standardized in the

BI-RADS Atlas, variability remains in the approaches to

both qualitative and quantitative BPE assessment, ham-

pering the comparison of studies. Future research would

benefit from standardized methodologies.
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