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Abstract Diabetes mellitus contributes to significant

morbidity and mortality worldwide. Translational medicine

and research facilitate the transition of in vitro and

experimental animal research to human applications.

Molecular imaging is one of the powerful tools for trans-

lational research in diabetes, which accelerates transition of

laboratory hypotheses into the clinic. These imaging tools

are also instrumental for furthering our understanding

about the causes that trigger diabetes and facilitate its

progression. Imaging of therapeutic response is yet another

avenue that can be explored in our attempt to find a cure for

this disease. In this review we briefly summarize molecular

imaging studies that show promise for clinical translation.

Emphasis is placed on imaging of endogenous and trans-

planted beta cell mass, including application of various

imaging modalities and approaches. Finally, the review

attempts to define the future role of these non-invasive

imaging techniques in diabetes research and clinical care.
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Introduction

Diabetes mellitus is hallmarked by high levels of blood

glucose caused by lack of insulin production, insulin

resistance in peripheral tissues, or both [1] and represents a

worldwide health problem. Studies show that approxi-

mately 280 million people or 6.4 % of the world population

suffer from this disease. These numbers could increase to

438 million by 2030 [2, 3] causing diabetes-related

healthcare costs to rise up to 40 % of the total healthcare

budget in high incidence countries. In addition, diabetes

increases a risk for cardiovascular disease, and is the

leading cause of kidney failure, lower limb amputations,

and adult onset blindness.

‘‘Translational medicine’’ is a research that aimed at

fast-tracking biomedical advances in pre-clinical research

for patient benefits [4, 5]. Molecular imaging, a rapidly

emerging biomedical research discipline, has a high

potential to provide insights into when, why, and how

diabetes occurs, as well as to devise new ways to treat the

disease. Imaging is one of the most valuable tools for

translational medicine of diabetes since it could provide

real time non-invasive data of various biological parame-

ters and their functions as they relate to diabetes progres-

sion and treatment.

The major aim of this review is to discuss current state-

of-the-art strategies for diabetes imaging. We focus on the

present status of the techniques for non-invasive imaging

and quantification of endogenous and transplanted beta cell

mass (BCM) since this parameter ultimately defines gly-

cemic status of the patient. We concentrate mainly on

magnetic resonance imaging (MRI) and nuclear imaging,

as these are the two modalities with the highest potential

for clinical translation as it relates to diabetes imaging.

While optical imaging offers excellent possibilities for

imaging beta cells and insulitis in vitro or in animal

models, translational potential of this approach is hampered

by deep location of the pancreas in the body and by the

difficulty of detecting fluorescence with the currently

available technology [6].
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In Vivo Imaging of Endogenous BCM

The loss of functional beta cells is seminal in the devel-

opment of both type 1 diabetes (T1D) and type 2 diabetes

(T2D). The T1D results from autoimmune destruction of

beta cells, while T2D leads to beta cell dysfunction due to

insulin resistance [7, 8]. Metabolic testing of pancreatic

islet by assaying plasma insulin or C-peptide combined

with more or less sophisticated calculations provides

information about the degree of insulin resistance or

secretory failure. It also provides certain correlations of

endocrine function with BCM. However, these indirect

measures of beta cell mass/function are not dynamic and

have the same limitations as histology studies [9, 10].

Results obtained from autopsy samples of the human

pancreas nicely correlate the percentage of beta-cell vol-

ume with fasting glucose levels even before the onset of

diabetes, supporting the idea that beta-cell mass loss occurs

early, and to a measurable extent, during diabetes pro-

gression, which points to the possibility for early diagnosis

of this disease [11]. Furthermore, with the development of

new drugs and modern protocols for islet transplantation,

the promise of preservation or even expansion of beta-cell

mass has become very attractive. In both cases tools for

longitudinal non-invasive assessment of beta-cells mass are

critically needed. From a clinical standpoint, the ability to

image BCM non-invasively would greatly aim in aiding

patient management and in designing individualized anti-

diabetic therapies [12].

Imaging of BCM is a major challenge due to the small

size of pancreatic islets, islet density throughout the pan-

creas, and lack of inherent contrast from the surrounding

tissues. Furthermore, the endogenous pancreatic islets are

dispersed throughout the pancreas and constitute only

2–3 % of the pancreatic volume [13–15]. Lack of specific

validated markers on beta-cell surface that could be tar-

geted by contrast agents add to the complexity of this

endeavor.

MR Imaging of Beta-Cells

Contrast in MR images originates from local variations in

tissue water protons and the chemically bound state of

proton concentrations. Currently, there are two approaches

that have been developed for monitoring beta-cell function

using manganese-enhanced magnetic resonance imaging

(MEMRI) and a zinc-responsive T1 agent.

Imaging Islet Function by Manganese-Enhanced MR

Manganese is a longitudinal relaxation time (T1)-shorten-

ing MRI contrast agent that enters the pancreatic beta-cell

through voltage-gated calcium channels. It has been

demonstrated that in the presence of MnCl2, glucose-

activated pancreatic islets yield significant signal

enhancement in T1-weigheted MR images in vitro and in

animal models of diabetes [16–23]. This approach has also

been tested in preliminary studies in patients with T2D.

After reviewing 243 scans that included 41 examinations

run on 24 patients with T2D and 202 examinations run on

119 normoglycemic patients, the authors concluded that

MEMRI discriminated T2D from non-diabetic patients,

based on the difference of the signal enhancement of the

pancreas [24••].

While these studies opened the door for MRI visuali-

zation of the native islets in humans, there are several

outstanding issues that will likely limit future translation of

this approach to the clinically accepted routine method.

The major shortcoming of MEMRI is cellular toxicity of

manganese. Emphasis in the future studies should be given

to the experimental methodology aiming at delivering

significant, yet safe, amounts of manganese to the target

areas of interest [25]. With regard to resolution, the high

magnetic field that is presently required for MEMRI limits

this approach to research on animal models until safety

concerns have been adequately dealt with [21].

Imaging Beta-Cell Exocytosis Using a Zinc-Responsive T1

Agent

Zinc plays a critical role in biosynthesis, transport, matu-

ration through the Golgi apparatus, and secretion of insulin

by beta cells. Lubag et al. [26•] explored the possibility of

detecting divalent zinc ions co-released with insulin from

beta cells in response to high glucose by MRI using the Zn

(2 ?)-responsive T1 agent, GdDOTA-diBPEN. Image

contrast was significantly enhanced in the mouse pancreas

after the injection of glucose followed by a low dose of the

Zn sensor. The pancreas was not enhanced in mice not

subjected to glucose stimulation (Fig. 1) or treated with

streptozotocin (STZ) to induce beta-cell apoptosis. Images

of mice fed a high-fat diet over a 12-week period showed a

larger volume of Zn contrast-enhanced pancreatic tissue.

This MRI sensor offers the exciting potential for evaluation

of beta-cell function in vivo [27, 28]. Since the shortening

T1 effect of GdDOTA-diBPEN contrast agent used in this

study is substantially related to the presence of human

serum albumin [29], the in vivo sensitivity of the probe for

zinc detection still needs further evaluation.

Nuclear Imaging of BCM

The use of radiotracers includes two major imaging

modalities: positron emission tomography (PET) and sin-

gle-photon emission computed tomography (SPECT).

Nuclear imaging allows for non-invasive measurement of
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radioligand uptake and clearance. It is sensitive in the pico-

to nanomolar range and its results can be deconvoluted into

quantitation of ligand or receptor concentration. Several

targets have been tested so far for nuclear imaging of BCM

including the sulfonylurea receptor (SUR) [30–33],

somatostatin receptor type-2 (SSTR2) [34, 35], serotonin

receptor [36, 37], glucagon like peptide-1 receptor (GLP-

1R) [38–41], IC2 antigen [42], dopamine D-2 receptor

[43], type 2 vesicular monoamine transporter (VMAT2)

[44–49], and presynaptic vesicular acetylcholine trans-

porter [50•]. Among these targets, translational clinical

studies have been developed for imaging VMAT2 and the

presynaptic vesicular acetylcholine transporter.

Type 2 vesicular monoamine transporter (VMAT2),

firstly found in the brain, is also expressed on the surface of

beta cells in the pancreas in the form of a monoamine

transporting integral membrane protein. Tetrabenazine

(TBZ) and Dihydrotetrabenazine (DTBZ) specifically bind

to the synaptic VMAT2 [51, 52] and are approved for

clinical use. Several groups showed the utility of these

agents for targeting VMAT2 for BCM imaging in animal

models [44–49]. Encouraged by these promising initial

results in animal models, Freeby et al. [53•] performed the

first clinical translational study that showed a reduction in

pancreatic uptake of 11C-DTBZ in long-standing T1D

patients compared to the uptake in the pancreas of healthy

control subjects by PET. Quantification of 11C-DTBZ

uptake in the pancreas was identified as an indirect mea-

surements of BCM.

In another clinical study carried out by Goland et al., in

2009 [54], 11C-DTBZ PET was performed on six long-

standing T1D patients and nine healthy subjects. The

VMAT2 binding potential was estimated by using the renal

cortex as reference tissue. The results suggested that 11C-

DTBZ PET allowed for quantification of VMAT2 binding

in the human pancreas. However, the functional binding

capacity appeared to overestimate BCM given the near-

complete depletion of BCM in long-standing T1D patients,

which might be due to higher non-specific binding in the

pancreas than in the renal cortex.

Eriksson et al. [55] tested 18F-fluoroethyl-dihydrote-

trabenazine (18F-FE-DTBZ) PET imaging for quantifying

BCM in clinically relevant large animal models and

humans in 2010. Three pigs were intravenously adminis-

tered 18F-FE-DTBZ and examined by PET/CT. The uptake

of the agent in human pancreatic tissue obtained from the

patients with T1D, T2D and healthy controls was assessed

in vitro by autoradiography. The results show that 18F-FE-

DTBZ bind to VMAT2 with high specificity in pure islet

tissue in vitro. However, there was a high non-displaceable

binding to exocrine tissue. In addition, in vivo tracer

metabolism and dehalogenation result in severe underesti-

mation of porcine pancreatic VMAT2 expression and

BCM. The authors concluded that the results did not sup-

port the use of 18F-FE-DTBZ as a suitable tracer for

in vivo BCM imaging.

Lin et al. [56•] investigated biodistribution and radiation

dosimetry of 18F-fluoropropyl-dihydrotetrabenzazine (18F-

AV-133)(18F-FP-DTBZ) in humans. The whole-body PET

scan proved that the radioactivity uptake in the brain was the

highest at 10 min after injection. High-absorbed doses were

found in the pancreas, liver, and upper large intestine wall.

Among them, the highest uptake was found to occur in the

pancreas. The authors concluded that 18F-AV-133 was safe

and had the appropriate biodistribution and radiation

dosimetry for imaging VMAT2 sites in humans. A clinical

trial sponsored by Avid Radiopharmaceuticals is currently

on the way to test quantitative PET imaging of pancreatic

Fig. 1 Representative grayscale T1-weighted MR images of a single

slice through the abdomen that contains a portion of pancreatic tissue

(1 mm slice without fat saturation) of 12-week-old control animals

after injection of either saline (a) or glucose (b) followed by

GdDOTA-diBPEN. The colored overlays represent a 3D composite of

those pixels in each of the 14 slices where the water image intensity

increased by threefold or more over the average noise (N) after

injection of saline plus agent or glucose plus agent. Reprinted from

Proc Natl Acad Sci U S A. 2011, 108:18400-5, National Academy of

Sciences publication, with permission (Color figure online)
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BCM in T2D patients with 18F-AV-133 (clinicaltrials.gov

Identifier: NCT01710371).

Aimed at increasing the stability against defluorination,

which was previously observed for 18F-FE-DTBZ, Jahan

et al. [57•] synthesized and tested a novel deuterated

radioligand 18F-FE-DTBZ-d4. The in vivo pharmacoki-

netics and pharmacodynamics of this probe were studied in

a porcine model by PET/CT imaging. The authors con-

cluded that 18F-FE-DTBZ-d4 was a promising candidate

for preclinical and clinical studies for imaging focal clus-

ters of beta cells, such as in intramuscular islet grafts. More

recently, Normandin et al. [58••] evaluated 18F-AV-133

for quantitative PET imaging of BCM in healthy control

subjects and T1D patients. Standardized uptake values

were calculated as the net tracer uptake in the pancreas

normalized by injected dose and body weight. The total

volume of distribution, the equilibrium ratio of tracer

concentration in tissue relative to plasma, was estimated by

kinetic modeling with arterial input functions. Binding

potential, the steady-state ratio of specific binding to non-

displaceable uptake, was calculated using the renal cortex

as a reference tissue devoid of specific VMAT2 binding.

The results showed that the mean pancreatic standardized

uptake value, total volume of distribution, and binding

potential were reduced by 38, 20, and 40 %, respectively,

in T1D patients compared with healthy control. These

studies concluded that quantitative evaluation of islet

density and aggregate BCM could be performed clinically

with 18F-AV-133 (Fig. 2).

The above-mentioned clinical studies encouragingly

concluded that BCM quantification is feasible in T1D

patients and in healthy controls, despite an ongoing debate

regarding VMAT2 imaging of BCM [59–62]. Further

investigations and discussions will definitely continue

addressing these and other issues before these radiotracers

are utilized for routine noninvasive quantification of BCM

in vivo in the native pancreas in clinical setting.

Presynaptic vesicular acetylcholine transporter is yet

another target that has been tested in the clinic for BCM

imaging. Clark, et al. [50•] utilized 18F-fluorobenzyl-

trozamicol (18F-FBT), which binds to presynaptic vesicu-

lar acetylcholine transporter, for PET scanning in two adult

rhesus monkeys and one human subject. In both monkeys

and a human subject, the pancreas was intensely FBT avid,

with uptake greater than in any other organ at 30, 60, and

90 min. These data suggested that 18F-FBT was feasible

for neuroreceptor imaging of the pancreas in animal

models and in humans. This method could allow

researchers to interrogate functions under the control of the

autonomic nervous system in the pancreas, with applica-

tions possible for endogenous and transplanted islets. Also,

the authors believed that as beta-cell function was inti-

mately related to parasympathetic cholinergic input, FBT

activity detected in the pancreas might correlate with the

Fig. 2 Representative 18F-FP-

(1)-DTBZ PET images. a Image

acquired for healthy control

subject showed high uptake of

tracer in pancreas. b Pancreas

uptake was reduced in type 1

diabetes patient. Both images

represent PET data summed

from 0 to 90 min after injection

and are displayed on common

scale (0–20 SUV—that is,

radioactivity normalized by

injected dose and body weight).

GI 5 gastrointestinal tract; K 5

kidney; L 5 liver; M 5

myocardium; PB 5 pancreas

body; PH 5 pancreas head; PT 5

pancreas tail; S 5 spleen; V 5

vertebrae. Reprinted from J

Nucl Med 2012; 53:908–916, an

ANMMI publication, with

permission
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mass of insulin-producing beta-cells. However, a signifi-

cant uptake of 18F-FBT was also observed in salivary

gland, liver, and gallbladder. This study showed consider-

able promise pending further validation in clinic.

Translational Imaging of Transplanted Islets

Clinical islet transplantation has progressed over the past

12 years with over 750 patients with T1D receiving islet

transplants internationally [63]. However, the promise of

allogeneic islet transplantation has been hindered by

immunologic damage and death from hypoxia, the

requirement for post-transplant immunosuppression, and

limited supply of pancreatic islets [64]. Even with

improved protocols, long-term survival of the grafts is

bleak, with most recipients requiring additional exogenous

insulin therapy or a second transplant within a short time to

meet their metabolic needs [65]. Developing strategies to

image transplanted human islets can solve technical bar-

riers toward using this technology for monitoring clinical

islet transplantation [66].

MRI Tracking of Transplanted Islets

Transplanted islets have been labeled with superparamag-

netic iron oxide (SPIO) nanoparticles [67–70] or paramag-

netic gadolinium based agents for negative (hypointense)

and positive (hyperintense) [71] contrast 1H MRI, respec-

tively. In addition, transplanted islets have been monitored

with 19F MRI in animal models [72, 73]. Potential trans-

lation of these findings to the clinical settings requires val-

idation of these methodologies in clinically relevant large

animal models. The first study in large animals was reported

by the group from Johns Hopkins University (Prof. Jeff

Bulte’s Laboratory) in 2007. Human islets labeled with

immunoprotective iron oxide-loaded magnetic capsules

were detected with real-time MRI [74•]. In 2009, our group

from Massachusetts General Hospital, demonstrated the

possibility of longitudinal MRI monitoring of pancreatic

islets after transplantation in baboons (Papio hamadryas)

[75•]. In this model autologous islet grafts obtained after

partial pancreatectomy were transplanted in the liver and

under the kidney capsule. The Food and Drug Administra-

tion (FDA) approved SPIO preparation Feridex�, was used

for islet labeling. T2*-weighted MR images generated on a

1.5 T clinical scanner revealed the renal subcapsular islet

graft as a pocket of signal loss disrupting the contour of the

kidney at the transplantation site. Islets transplanted in the

liver appeared as distinct signal voids dispersed throughout

the liver parenchyma (Fig. 3) [75]. This study established a

method for the noninvasive, longitudinal detection of

pancreatic islets transplanted into non-human primates using

a low-field clinical MRI system [14].

The first MR imaging study in humans was performed

by the Geneva group in 2008 [76]. Islets labeled with SPIO

nanoparticles were transplanted into four patients with

T1D. All patients discontinued insulin therapy after trans-

plantation. Three out of four patients had normal liver

intensity on pre-transplant images. Iron-loaded islets could

be identified after transplantation as hyperintense spots

within the liver. The study showed the overall safety of

transplanted islets labeled with iron oxide based contrast

agent. However, the number of infused islets did not cor-

relate with the number of signal voids on MR imaging

raising questions regarding labeling efficiency and image

analysis.

Later, Saudek et al. [77•] reported their results of a

clinical study that tested the feasibility and safety of MR

imaging of transplanted islets in humans. Islets were

labeled with the SPIO-based formulation Ferucarbotran�

and transplanted into the liver of eight T1D patients

through the portal vein. The liver area was examined the

next day and 1, 4, and 24 weeks posttransplant using a 3T

MR scanner. In all recipients, significant C-peptide levels

and near-normal HbA1c values were achieved with

50–80 % insulin dose reduction. No side effects related to

the labeling procedure were documented. A significant islet

spot number decrease (on average 60 %) was detected

1 week post transplantation with a subsequent slight

decrease for up to 24 weeks. These data showed that MR

detection of Ferucarbotran-labeled islets enabled their

long-term noninvasive visualization, which correlated with

sustained C-peptide production. While the presented tech-

nique shows promise for clinical evaluation of initial islet

engraftment and survival, the question regarding correla-

tion between the infused and detected islets remains open.

As new transplantation sites with beneficial vasculari-

zation are being investigated, in vivo imaging plays an

increasing role in evaluating the outcome of these grafts.

Christoffersson et al. [78, 79] evaluated vascularization of

islet grafts implanted in striated muscle of mice and

humans as an angiogenic site. Intra-islet vascular density

and blood flow in these grafts were visualized with intra-

vital and confocal microscopy in mice and by MRI in three

autotransplanted pancreatectomized patients. Contrary to

the liver-engrafted islets, islets transplanted to mouse

muscle were revascularized with vessel densities and blood

flow entirely comparable with those of islets within intact

pancreas in both mice and humans. The experimental data

were confirmed in autotransplanted patients where higher

blood perfusion of the grafts compared to adjacent muscle

was found using high-resolution MRI. This study showed

that the striated muscle could be a promising site for islet

transplantation that promotes full revascularization of
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implanted grafts. Besides the forearm muscle, several other

islet transplantation sites including the gastric submucosal

space [80, 81] and adrenal glands [82] have also been

investigated. Clearly, non-invasive imaging could greatly

assist in evaluating these sites and in monitoring islet

survival aiding to clinical translation of these new

approaches.

Nuclear Imaging of Transplanted Islets

18F-Fludeoxyglucose (18F-FDG) PET Imaging

of Transplanted Islets

Clinically used 18F-FDG as a glucose analog is taken up

by high-glucose-using cells forming a trapped 18F-FDG-6-

phosphate derivative. As a result, the distribution of 18F-

FDG could be used for correlation with glucose uptake by

cells in the body including pancreatic islets. PET-18F-FDG

imaging has been tested for detection of transplanted islets

in an animal model [83]. Following that, clinical feasibility

of detecting transplanted islets labeled with 18F-FDG was

demonstrated for the first time in 2007. Eich et al. [84•]

labeled porcine islets in vitro with 18F-FDG and infused

them intraportally into the liver of anesthetized pigs. PET/

CT scanning showed heterogeneous distribution of the

radioactivity in the liver with the peak percentage of

infused radioactivity of 54 ± 5.1 %. There was no accu-

mulation in the lungs or brain; extrahepatic radioactivity

was evenly distributed in the animal body except for uri-

nary excretion. The authors concluded that almost 50 % of

the islets were damaged to the extent that the FDG was

released within minutes after intraportal transplantation.

The distribution of radioactivity without accumulation in

the brain indicated that the activity released from lysed

islet cells was in the form of 18F-FDG-6-phosphate rather

than native 18F-FDG. In 2009, the same group [85••]

reported on the clinical study using islets labeled with 18F-

FDG and transplanted to T1D patients. A fraction of the

islets (23 %) were labeled with 18F-FDG and carefully

mixed with unlabeled islets just prior to intraportal

Fig. 3 Magnetic resonance image segmentation for assessment of

relative transplanted islet mass in the kidney (a) and liver (b) transplan-

tation models. A region of interest (ROI) was drawn manually around

the kidney or liver. An automated algorithm was used to segment the

ROI into kidney/liver parenchyma (green) and islet graft (red) based on

T2* values. Representative images (top) and the corresponding T2*

values_SD (bottom) are shown. The differential between the two labels

was sufficiently large to reliably identify the graft (P \ 0.05). Reprinted

from Transplantation, 2009, 87: 1659–1666, Wolters Kluwer Health

publication, with permission (Color figure online)
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transplantation. A PET/CT scan was performed for 1 h

during islet transplantation in five patients receiving six

transplants. The peak radioactivity concentration in the

liver was found at 19 min after the beginning of islet

infusion and corresponded to only 75 % of what was

expected, probably indicating that islets were damaged

during the transplantation procedure. Distribution of

radioactivity in the liver was heterogeneous with wide

variations in location and concentration. A peak of

C-peptide was found in plasma during and immediately

after transplantation in all subjects. The clinical outcome in

all patients was comparable to that previously observed

indicating that the 18F-FDG labeling procedure did not

harm the islets. Beyond this, the short radioactive half-life

and retention within the islets limit the use of this method.

GLP-1R SPECT Imaging of Transplanted Islets

The GLP-1R, which belongs to G protein-coupled receptor

family, is highly expressed on the beta cell cellular mem-

brane. Glucagon-like peptide-1 (GLP-1) is a potent anti-

hyperglycemic hormone that induces glucose-dependent

insulin secretion. The GLP-1 has a short half-life of less

than 2 min in vivo due to degradation by the dipeptidyl

peptidase-IV. GLP-l analogues, such as exendin-4 and

exendin-3, have similar biological activity but a longer

in vivo half-life. Several GLP-1 analogue based molecular

imaging probes targeting GLP-1R have been used for

imaging endogenous beta cell [38–41, 86], insulinoma cell

[87–90] and transplanted islets [91, 92] in animal models.

For translational studies, Christ et al. [93] tested 111In-

labeled GLP-1R agonist 111In-DOTA-exendin-4 for local-

izing insulinomas in six patients using SPECT/CT. After

the injection of 111In-DOTA-exendin-4 (90 MBq, 30 lg of

peptide), SPECT/CT of the abdomen was performed at

20 min, 4 h, 23 h, 96 h, and up to 168 h post injection. In

all six cases, insulinomas were successfully detected,

which permitted a successful surgical removal of the

tumors in all patients.

Encouraged by these studies, clinical testing of GLP-1R

has been applied for imaging of transplanted islets in patient

muscle [94••]. In this clinical translational case report, a

48-year-old woman underwent the resection of the pancreas

to remove insulinoma. Healthy islets (97,000 islet equiva-

lents) isolated from the surgical specimen after ex vivo

tumor resection were transplanted into the left brachioradi-

alis muscle. Islet survival was justified by the limited

response to intravenous glucose tolerance test at 48 h after

surgery. One year after transplantation, a whole-body planar

scan was performed after intravenous administration of

96 MBq of 111In-DTPA-exendin-4. As expected, focal

accumulation of the radiolabeled GLP-1 analogue was vis-

ible in the left forearm at the site of islet transplantation.

Tracer uptake was visible in the duodenal region, most

likely corresponding to the islets in the pancreas remnant.

These results provided exciting clinical evidence that func-

tional transplanted islets could be imaged in vivo with a

tracer specific to GLP-1R. However, this method is associ-

ated with several disadvantages for the patients. Firstly,

image quality of the grafts had a relative low resolution. In

addition, in the clinical setting the grafts are usually trans-

planted into the liver.

Radiopharmaceuticals have to be cleared from the

background to achieve acceptable target-to-background

ratios, often requiring acquisition of late images, which

might decrease image quality even further. Furthermore,

injection of the probes must be repeated for long-term

monitoring resulting in a relatively high radiation burden.

Ultrasound Imaging for Islet Transplantation

Recently, Sakata et al. [95] reported on a clinical case of a

39-y-old man, who had an episode of pancreatic bleeding

due to chronic pancreatitis and who received total pan-

createctomy with islet autotransplantation. Intraoperative

ultrasound (US) examination was done to detect trans-

planted islets. Islet isolation from the resected total pan-

creas was performed and approximately 230,000 islet

equivalents were acquired (Fig. 4). A double lumen

Fig. 4 Intraoperative ultrasound findings of the portal vein. The

transplanted islets appeared as hyperechoic clusters in the portal vein

(arrows). Reprinted from Islets. 2012, 4:339–342, Landes Bioscience

publication, with permission
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catheter, used for transplantation and for monitoring the

portal vein pressure, was inserted into the portal vein via

the superior mesenteric vein, and the tip of the catheter was

positioned at the bifurcation of the anterior and posterior

branch of the portal vein to selectively infuse the islets into

the right lobe of the liver. Intraoperative US examination

revealed the transplanted islets as hyperechoic clusters that

flowed from the tip of the catheter to the periphery of the

portal vein. This was the first report of successful visual-

izing of human islets transplantation using US examina-

tion. Intraoperative US examination can be useful for

detecting islets during transplantation in a clinical setting

aiding to the evaluation of the safety of the procedure. This

clinical modality could also be useful for evaluating and

monitoring focal fatty infitration (steatosis) that could

accompany islet transplantation [6, 96].

Conclusions

Although the studies described above provide an excellent

proof of concepts for potential application of molecular

imaging in diabetes, several issues have to be considered for

clinical translation. Radioactive imaging agents, like diag-

nostic drugs generally, undergo a drug development process

that parallels that of therapeutic agents, with similar devel-

opment times but substantially smaller markets [97]. The

commercial development of imaging agents for small patient

populations is blocked by the limited revenues available with

current per-dose pricing and the relatively small numbers of

imaging procedures that would be performed [97]. In

November 2008, production of Feridex� (ferumoxides) [98],

which is a clinically approved contrast agent for the detection

of liver lesions by MRI from AMAG Pharmaceuticals, was

discontinued by the company. This contrast agent was one of

the most widely tested probes for in vivo cell tracking using

MRI. Therefore, a wide-ranging discussion on the best

approaches to allow new diagnostic imaging agents to be

developed as part of the health care system for patients’

benefits is needed [97]. The translation of novel contrast

agents from experimental studies to the clinical applications

will require a significant amount of preparation by the

investigators for successful evaluation of the agent in phase I

clinical trials including discussions with the FDA and prep-

aration of the investigative new drug (IND) submission [99].

All these factors have to be considered when designing

and testing new molecular imaging agents for beta cell

imaging. Although significant hurdles remain, recent

advances indicate that BCM evaluation and monitoring of

transplanted islet are becoming achievable goals. It is likely

that with the development of molecular imaging methods

and specific probes, clinicians will soon be able to obtain

valuable information regarding the course of the disease and

the success of therapy, which will offer new approaches for

stratifying patients to anti-diabetic therapies [12, 100].

Although the enormous step toward this goal has been taken,

significant work remains to be done before individualized

medicine becomes a reality for diabetes patients.
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