
INNOVATIONS IN CLINICAL MRI (F SCHICK, SECTION EDITOR)

Examination of Tissue Perfusion by Arterial Spin Labeling (ASL)

Christina Schraml • N. F. Schwenzer •

C. D. Claussen • P. Martirosian

Published online: 26 January 2013

� Springer Science+Business Media New York 2013

Abstract Arterial spin labeling (ASL) is a non-invasive

magnetic resonance technique for tissue perfusion quanti-

fication working without contrast media application. The

method uses magnetically labeled blood protons as intrin-

sic tracer. Perfusion-weighted images are obtained by the

signal difference between an image with proximal labeling

of the arterial water protons and a control image. Initially

designed for cerebral perfusion measurement, the ASL

technique is increasingly being used for the evaluation of

extracranial organs which might be attributed to the

improvements in scanner, coil and sequence technology but

also to the elaboration of postprocessing tools. In this

review, the basic principles of ASL are explained. Tech-

nical difficulties in ASL sequence design are discussed. To

illustrate the potential role of ASL in clinical research and

diagnostics, comparison of ASL with other methods cur-

rently applied for perfusion assessment is performed.

Finally, a variety of clinical applications of ASL is pre-

sented with respect to the current literature.
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Introduction

Perfusion represents a characteristic parameter that can be

used to analyze vitality and function of tissue [1]. The

analysis of perfusion has markedly contributed to the

understanding of physiological and pathological processes

in the human body. As an example, perfusion measure-

ment allows to investigate the influence of metabolic and

endocrine factors on tissue perfusion. On the other hand,

analysis of tissue vascularization is important for the

diagnosis, characterization and monitoring of inflamma-

tory tissue changes. In malignant tumors, analysis of the

lesion’s perfusion pattern plays a crucial role as the degree

of vascularity may correlate with tumor invasiveness [2].

Thus, there is strong clinical need for sensitive and robust

techniques with the possibility of absolute quantification

in order to assess the degree of vascularity of different

tissues.

Definition of Perfusion

The term perfusion refers to the nutritive blood supply in

the capillary tissue. For quantitative description of perfu-

sion, different parameters have been introduced. In order to

describe the blood supply to an organ, the blood volume

flow in the feeding vessels per unit time can be given in

ml/min. This parameter describes the absolute perfusion of
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the organ. If the perfusion is referred to the cardiac output,

one obtains the relative perfusion. Finally, the perfusion

can be referred to the organ volume as the specific perfu-

sion rate given in ml/min/100 ml tissue.

MR-Based Perfusion Assessment

Among the MR perfusion imaging techniques, methods

with and without i.v. contrast media injection exist.

Contrast-enhanced perfusion MRI comprises dynamic

contrast-enhanced (DCE) and dynamic susceptibility

contrast (DSC) techniques. DSC is almost exclusively

used in cerebral perfusion studies. The sequences used in

contrast-enhanced MR perfusion imaging are either

designed to be sensitive to the presence of contrast med-

ium in the intra- and extracellular space (DCE; T1 or

relaxivity based methods) or to the vascular phase of

contrast medium delivery (DSC; T2* or susceptibility-

based methods) [3]. As opposed to CT perfusion imaging,

in DCE-MRI the relationship between the observed signal

changes and the contrast media concentration is non-lin-

ear. Therefore, correction algorithms are necessary to

convert the regional signal changes into contrast agent

concentration time curves [4••]. Most Gadolinium-based

contrast agents used for MR perfusion distribute in the

extracellular space and are renally eliminated. Thus,

compartment models can be used for the calculation of

perfusion parameters as done in nuclear medicine and

CT-based bolus techniques [5].

In MRI, perfusion assessment can also be performed

without contrast media administration, such as in intra-

voxel incoherent motion (IVIM) or arterial spin labeling

(ASL) approaches. The IVIM technique was first described

by Le Bihan et al. [6]. IVIM means the translational

microscopic motion of water molecules which is attributed

to the following two components: one is the Brownian

motion (diffusion) and the other is the blood flow in the

capillary bed (perfusion). The water molecule motion can

be assessed using diffusion-weighted imaging (DWI) and

can then be separated mathematically in the two compo-

nents of diffusion and perfusion. In the last years, this

technique has been investigated in different organs such as

liver, brain and placenta [7–11]. Extensive clinical appli-

cation, however, has not yet been reached, probably

because the method is relatively prone to artifacts and

provides only limited dynamic range of perfusion assess-

ment [12].

The ASL approach has first been described by Williams

et al. and Detre et al. in the early 1990s [13, 14]. It has

obtained broad experimental and partly clinical acceptance

as a non-invasive technique in the assessment of cerebral

blood flow. However, the technique can also be adapted for

the application in extracranial organs.

ASL Perfusion Imaging and Quantification

The ASL method is based on the use of magnetically

labeled blood protons serving as an intrinsic tracer. Volume

selective labeling is performed by a radiofrequency pulse

in a region proximal to the imaging slice (Fig. 1). Image

acquisition is performed in a slice in which the inflowing,

labeled blood protons cause a change in magnetization.

The extent of magnetization change is measured by com-

paring a control image recorded without prior labeling and

the labeled image [15]. The signal difference in the sub-

traction image reflects the amount of blood that has flown

into the imaging slice and is related to the local blood flow.

In practice, the signal difference depends on several addi-

tional factors such as the T1 relaxation time of blood and

tissue, the efficiency of blood proton labeling, the transit

time of blood that passes from the labeling to the imaging

slice and the blood tissue partition coefficient k (defined as

the quantity of water per gram of tissue divided by the

quantity of water per milliliter of blood) [16]. Therefore,

for perfusion quantification, a model is required that con-

siders all these parameters.

The quantification models described in the literature are

based on the indicator dilution method proposed by Kety

and Schmidt [17]. This method was adapted for ASL per-

fusion quantification by Detre and Williams [1, 14]. In the

original model, one assumes that the blood protons are

freely diffusible and immediately exchange with the water

protons in the tissue. Therefore, the perfusion calculation

can be performed based on a one-compartment kinetic

model [18••]. This simplified model has been repeatedly

modified: Calamante et al. [19] elaborated an approach that

considered flow effects. Buxton et al. [20••] proposed a

kinetic model in which transit time and bolus width could

be taken into account.

There are two main approaches of ASL perfusion

imaging which differ in the type of the applied labeling

radiofrequency pulse: continuous ASL (CASL) and pulsed

(PASL). In the following sections these two types are

briefly described and both their advantages and shortcom-

ings are explained.

CASL (Continuous ASL)

CASL was the first ASL method described for perfusion

quantification [14]. In CASL, the blood is continuously

labeled while it flows through a thin labeling slice by a

relatively long (1–5 s) labeling pulse of low intensity.

Because of continuous spin labeling, the signal in the

imaging slice reaches equilibrium state. The signal in the

image slice is recorded after the end of the labeling pulse.

Perfusion signal is obtained by subtracting the perfusion-

weighted image recorded after labeling from a control
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image without labeling. The obtained perfusion signal is

proportional to the local blood flow [1, 14, 15].

PASL (Pulsed ASL)

The first scheme for a pulsed ASL sequence was proposed

by Edelman et al. in 1994 [21]. In PASL, blood in a large

blood volume (10–15 cm slab thickness) is labeled by a

short (10 ms) radiofrequency pulse. The signal is recorded

in the imaging slice after a defined time, which is termed

the inversion time (TI). As in CASL, the perfusion signal is

obtained by subtracting the perfusion-weighted image

recorded after labeling from a control image. The sub-

traction image represents the amount of labeled blood

flown into the target volume during the inversion time and

is proportional to the local blood flow [15]. PASL tech-

niques can be differentiated into two categories depending

on the symmetry or asymmetry of the labeling localization

in relation to the imaging region [18•, 22]. In PASL, the

shape of the labeling pulse is very important and should be

rectangular with no space between the imaging and the

labeling region. However, due to the finite duration of the

radiofrequency pulse, this is not feasible in practice. Thus,

contamination can occur in the imaging slice due to

proximity of the labeling region. To reduce this, imaging

and labeling region are positioned apart with a certain gap

in between. In CASL labeling, the pulse profile of the

radiofrequency pulse is positioned at a greater distance

from the imaging slice, so that the pulse profile is less of a

concern [18••].

Although PASL and CASL are based on the same

method, both approaches have their advantages and dis-

advantages. PASL has the important advantage of shorter

measuring time. CASL, however, is easier to implement

and provides higher signal gain as compared to PASL

[18••]. On the other hand, in CASL, perfusion quantifica-

tion can be falsified by magnetization transfer effects that

occur due to the longer duration of the labeling pulse.

Moreover, CASL is suffering from loss of spin labeling

during the blood protons’ transit from the labeling to the

imaging slice [22]. Furthermore, the continuous high fre-

quency pulse can transfer marked radiofrequency power to

the patient exceeding the safety level of the specific

absorption rate at higher field strengths [23••].

Technical Developments and Future Challenges

ASL has been developed in the early 1990s for cerebral

perfusion quantification [13]. Since then, experimental and

Fig. 1 Principle of ASL perfusion imaging. The ASL method is

based on the use of magnetically labeled blood protons as an intrinsic

tracer. Labeling is performed by a radiofrequency pulse proximal to

the imaging slice. Image acquisition is performed in a slice in which

the inflowing, labeled blood protons cause a change in magnetization.

The extent of magnetization change is measured by comparing the

control image without labeling and the labeled image. The signal

difference reflects the amount of blood that has flown into the imaging

slice and is related to the local blood flow
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clinical application of ASL has gained increasing impor-

tance. As the perfusion signal in the subtraction image is

rather low due to the relatively low signal difference

between labeled and control image, the main goal in

technical ASL research was to improve the signal to noise

ratio [24]. This could be achieved by the introduction of

high field scanners [25], the implementation of background

suppression techniques [26, 27] and the design of dedicated

surface coils with parallel imaging technique [28]. The

increase in perfusion signal has allowed improving of

the spatial resolution of ASL to a certain degree. However,

the spatial resolution of ASL, especially for extracranial

purposes, still remains to be improved.

In the past several years, so-called velocity-selective

ASL (VS-ASL) has been introduced [29••]. VS-ASL is

a pulsed ASL sequence in which the flowing spins are

tagged based on flow velocity and not on spatial location

[29••, 30]. The technique allows for improved perfusion

measurement in scenarios with low blood flow.

Another promising development in ASL is the so-called

selective ASL perfusion imaging, in which protons in

defined blood vessels are labeled selectively, so that it is

possible to measure perfusion components of primary ter-

ritories or collaterals [31]. However, all of these approa-

ches have to deal with a reduction of signal intensity.

An important step towards clinical application of ASL is

the development of dedicated postprocessing software

tools. Today, suitable software is commercially available

for cerebral diagnostic applications, which allows for fast

evaluation and reading of the perfusion data. Moreover, the

introduction of the evaluation software has also facilitated

data archiving. However, the development and official

licensing of adapted software also for extracranial appli-

cations is a prerequisite to further integrate the ASL per-

fusion approach in routine scan protocols in the near future.

Technical Problems and Solutions in ASL

In the following section, technical limitations of the ASL

approach and solutions to overcome remaining problems

will be discussed.

Sensitivity to Motion

ASL as a subtraction method is sensitive to motion arti-

facts. Organ movement might be misinterpreted as perfu-

sion and leads to overestimation of blood flow. The

implication of registration or navigator techniques could

reduce this problem, such as proposed by Wang et al. [32]

for the assessment of myocardium perfusion. However,

navigator techniques unfortunately lead to relatively low

signal gain per measuring time.

Influence of Transit Effects

In ASL perfusion quantification systematic errors due to

transit effects can occur. Transit effects arise because it

takes a certain amount of time until the labeled blood flows

from the labeling region to the imaging slice. Given the

regional differences in blood flow velocity the transit time

can vary so that the subtraction signal in the imaging slice

can be altered independently from the perfusion rate. In

pulsed ASL techniques, this effect is less prominent

because in this sequence design the labeling volume and

the imaging slice are positioned closer to each other.

Pulsed ASL techniques which are insensitive for the vari-

ation in transit time have been developed, such as QUIPPS

(Quantitative Imaging of Perfusion using a Single Sub-

traction). However, these techniques provide much lower

signal gain per measuring time [33].

Intravascular Signal Contribution

Intravascular signal contribution in the imaged slice can

lead to overestimation of tissue perfusion [33]. Different

approaches have been proposed to reduce this effect. One is

to increase the inversion time so that labeled blood in

vessels with high flow velocity has already passed the

imaging slice at the time of image acquisition. The increase

of inversion time, however, leads to a marked signal loss in

the perfusion image. A practical often used solution to the

problem is to visually exclude macroscopic vessels in the

analysis or to establish thresholds so that the contribution

of macroscopic blood flow in vessels is reduced. These

techniques, however, reduce the reproducibility of the

method. The improvement of suppression techniques for

the reduction of intravascular signal contribution seems to

provide a more robust solution for this problem. Pell et al.

[34] have reported on the implementation of a modified

TurboFLASH sequence for FAIR imaging in which intra-

vascular signal suppression was obtained by dephasing

of fast flow in large vessels. This was achieved by using

a modified preparation period with a combination of

90�–180�–90� radiofrequency pulses after the inversion

time. The pulses turn the perfusion-prepared magnetization

into the transverse plane where it experiences diffusion

gradients before being returned to the longitudinal direc-

tion. Pell and co-workers [34] found that most of the

intravascular signal could be suppressed using b values of

20–30 s/mm2.

Influence of Slice Orientation

Perfusion quantification using ASL techniques is sensitive

to the orientation of the imaging slice in relation to the

course of the feeding vessels. Saturation effects can occur
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if the feeding vessels run within the labeling plane. This

can lead to differences in perfusion values depending on

the slice position chosen for each measuring experiment

[35]. Therefore, slice orientation needs to be chosen with

respect to vessel anatomy when the perfusion imaging

study is planned.

Single- and Multi-Slice Techniques

Most of the initially presented ASL sequences were single

slice techniques which require multiple acquisitions to

cover a whole organ. In principal, all ASL sequences can

be upgraded to multi-slice technique, by recording multiple

image slices distal to the labeling volume. However, this

leads to different transit times for different slices to be

recorded and to a loss of labeling effectiveness which is

linked to a loss of signal [33]. Further elaboration of multi-

slice ASL techniques will be a primary step towards

broader clinical acceptance of the ASL approach.

Comparison of ASL to Other Perfusion Imaging

Methods

In comparative studies, ASL techniques led to results for

cerebral blood flow according to oxygen 15 water positron

emission tomography (PET) [36]. The advantage of ASL in

contrast to the nuclear medicine and CT-based perfusion

measurement approaches is obvious: First, ASL is com-

pletely non-invasive and works without contrast injection or

radiation exposure. Second, in contrast to dynamic CT or

MRI studies, ASL has the advantage of providing quanti-

tative perfusion data. The bolus techniques available allow

a more qualitative analysis with relative changes in blood

flow or mean transit time and, therefore, may have diffi-

culties to detect global hypo- or hyperperfusion [37••].

Third, the ASL approach comes closest to physiological

perfusion of tissue because it measures the distribution of

blood water protons and is not based on the observation of

an extrinsic tracer or contrast agent. On the other hand,

contrast-enhanced (CE) perfusion MRI provides perfusion

assessment with higher spatial and temporal resolution and

is working more robustly in organs with low perfusion rates.

In CE MR perfusion imaging, exact timing of the mea-

surement is mandatory which requires expertise of the

examiner. In ASL, care has to be taken in order to position

the imaging slice with respect to the feeding vessel anat-

omy. The most important advantage of ASL lies in the fact

that this method provides quantitative perfusion data using a

completely non-invasive approach that works without the

need of contrast media application and therefore can be

applied repetitively in patients with impaired renal function,

especially with regard to the potential risk of nephrogenic

systemic fibrosis (NSF) [38].

Clinical Applications of ASL

Neuroradiology

The most frequent clinical ASL application is the evalua-

tion of cerebral perfusion patterns. It could be shown by

ASL studies that perfusion values of the gray matter

physiologically peak in the age of 5–15 years and then

decrease until the age of 30 years. After then, a slow

progressive decline is observed [37••].

The method has been proven useful in ischemic and

neurodegenerative pathologies [39, 40]. In Alzheimer’s

disease, focal hypoperfusion was observed in certain cere-

bral areas [41]. In patients with temporal lobe epilepsy, ASL

studies revealed local areas of cerebral hypoperfusion in the

mesial temporal lobe [42]. In ASL studies of intra- and

extraaxial tumors [37••] strong evidence was found that the

perfusion characteristics of tumors can be correlated with the

histologic grading in the majority of lesions [43]. Yamashita

et al. [44] confirmed the usefulness of ASL imaging in dif-

ferentiating primary central nervous system lymphoma from

glioblastoma multiforme. Pollock et al. [37••] have reported

that ASL perfusion imaging is helpful in the discrimination

of toxoplasmosis versus lymphoma in immunocompromised

patients. When analyzing the tumor’s perfusion pattern by

means of ASL, one has to be aware, that ASL imaging can be

impaired in the presence of hemorrhage, metallic clips or

calcification [37••]. Pollock et al. [37••] have given an

excellent overview about neuroradiological ASL applica-

tions which is recommended to the interested reader.

Extracranial Applications

Initially designed to measure cerebral perfusion, the

extracranial application of ASL has to face several chal-

lenges. First, in the brain, the vessel anatomy is ideal for

ASL studies because all cervical vessels feeding the brain

are running caudo-cranially in one direction. This simpli-

fies slice positioning of the ASL experiment. Extracranial

organs may have a more complex vessel anatomy with

inflowing blood contributions coming from different

directions which makes the ASL method challenging.

Second, the brain is a relatively highly perfused organ and

is, therefore, providing sufficient signal for ASL studies

while extracranial organs may show lower primary signal

due to low proton density and susceptibility effects (e.g.

lung, neck) or may have markedly lower perfusion values

(e.g. muscle). Third, perfusion assessment of thoracic or

abdominal organs is difficult due to the inevitable organ
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movement in the cardiac or respiratory cycle. Therefore,

registration methods or navigator techniques need to be

adapted. However, one has to be aware that by applying

such techniques signal is generally reduced while the

measuring time is increased.

Kidney and Renal Transplants

Assessment of renal perfusion seems to be a promising

application of ASL, especially in patients with impaired

renal function in which the use of i.v. contrast media

should be avoided. Renal perfusion measurement by ASL

has been demonstrated by Martirosian et al. [45] in 2004

using a FAIR TrueFISP technique which combines a flow-

sensitive alternating inversion recovery (FAIR) perfusion

preparation and a true fast imaging with steady precession

(TrueFISP) data acquisition strategy. In Fig. 2, a coronal

ASL perfusion map of the kidneys obtained using the FAIR

TrueFISP sequence is shown. Pedrosa et al. [46] reported

the usefulness of ASL in the characterization of renal

masses in patients with impaired renal function. Their

results, based on the evaluation of 17 renal masses, indicate

that the detection of tumor vascularity in renal masses is

suggestive for the presence of neoplasia. Boss et al. [47]

have shown the value of ASL perfusion analysis in the

follow-up of patients after radiofrequency ablation of renal

tumors. ASL perfusion has also been investigated in the

monitoring of renal transplants and seems to be useful for

the assessment of transplant rejection [48].

Lung

The assessment of lung perfusion is of clinical importance

in the diagnosis of pulmonary pathologies such as

pulmonary embolism, pneumonia or bronchial carcinoma.

Pulmonary perfusion MR studies, particularly quantitative

methods, would be desirable to avoid the radiation dose

associated with classic radionuclide or CT perfusion studies

[49]. ASL techniques offer the possibility of reliable,

quantitative assessment of pulmonary perfusion as shown in

previous studies in healthy volunteers [50] as well as in

pulmonary embolism and lung transplantation patients [51].

The ASL method has also been proven helpful in the

characterization of the pulmonary involvement in pediatric

patients with cystic fibrosis [52].

Glands

Ultrasound and gamma scintigraphy are the key imaging

modalities in the diagnosis of thyroid pathologies. However,

certain thyroid pathologies, for example several forms of

autoimmune thyroiditis, are known to be related with altered

thyroid perfusion which cannot be absolutely quantified by

the above named imaging modalities. In these cases, perfu-

sion assessment of ASL has allowed to identify significant

differences between Graves’ disease, Hashimoto thyroiditis

and normal glandular tissue [53]. In Fig. 3, an ASL perfusion

map of the thyroid gland in a patient with Graves’ disease

shows marked hyperperfusion of the gland. Moreover, sig-

nificant correlation between endocrine laboratory parame-

ters and thyroid perfusion could be demonstrated.

Schwenzer et al. [54] investigated ASL perfusion

imaging for the evaluation of functional changes in the

parotid gland following gustatory stimulation and found a

marked increase of parotid perfusion of 62 % after stimu-

lation. The ASL technique could be used for disease

monitoring in patients with affected saliva production (e.g.

after radiotherapy or Sjögren’s syndrome).

The feasibility of ASL perfusion imaging has been

demonstrated for the pancreas in a clinically applicable

measuring time of 15 min providing mean pancreatic per-

fusion values of 270 ml/min/100 g [55]. The assessment of

pancreatic perfusion disorders may be useful in the diag-

nosis of inflammatory pancreatic pathologies, endocrine

and exocrine pancreatic disorders, and in monitoring of

pancreatic transplants.

In a recent study, the ASL technique has been reported

to be feasible for the assessment of prostate perfusion by Li

et al. [56]. Prostate perfusion might serve as an important

pathophysiological marker for the disease monitoring or

the assessment of the therapeutic response of prostate

cancer.

Oncology

In several recent studies, the application of ASL techniques

has been described for the assessment of tumor perfusion,

Fig. 2 ASL perfusion map of the kidneys Coronal ASL perfusion

map of the kidneys obtained in a healthy young volunteer using a

FAIR TrueFISP technique which combines a flow-sensitive alternat-

ing inversion recovery (FAIR) perfusion preparation and a true fast

imaging with steady precession (TrueFISP) data acquisition strategy
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for example in renal cancer, breast cancer or multiple

myeloma [44, 46, 57, 58]. The ASL technique provides

important information for tumor characterization, such as

in the evaluation of the lesion’s vascularization pattern

which may contribute to the evaluation of the degree of

malignancy. Moreover, the ASL technique seems to be

ideal for response monitoring of oncological patients

especially in therapies targeting angiogenesis [59]. Fenchel

et al. [60] have investigated the value of ASL perfusion in

ten myeloma patients under anti-angiogenic therapy. They

found that ASL in conjunction with DWI yielded clinically

relevant information regarding tumor viability and could

predict response already early after therapy onset. This

underlines the potential benefit of ASL in the assessment of

targeted, mainly anti-angiogenic treatment because the

ASL method is completely non-invasive and offers the

possibility of reproducible, objective, quantitative method

of perfusion assessment.

Conclusion

Today, perfusion imaging using radiological techniques

plays an important role in various clinical settings. Perfu-

sion is used for characterizing neoplastic and inflammatory

tissue alterations, performing functional central nervous

system studies or monitoring treatment in oncology. ASL

as an MRI technique provides a sophisticated approach for

perfusion measurement working without the necessity of

contrast media application or radiation exposure. ASL

techniques were initially described and used exclusively

for cerebral application. However, their potential for

extracranial diagnostic applications has been recognized

and its application is continuously expanded. Although

ASL perfusion imaging has undergone considerable pro-

gress in the last years, the technique has not yet replaced

classical invasive methods of perfusion assessment such as

contrast-enhanced MR studies or PET. The reasons for this

may be attributed to the limited access to ASL techniques

on many clinical MR systems and to the lack of commer-

cially available postprocessing software. A methodical

disadvantage of ASL lies in the relatively low signal of the

perfusion-weighted images which requires repetitive mea-

surement and consecutively prolonged measuring time.

However, this disadvantage is compensated by the com-

plete non-invasiveness of the method in many applications.

An important benefit of the method is the possibility to

calculate absolute, quantitative perfusion values. This

opens up a broad clinical application for ASL in the near

future, especially in oncological research, where perfusion

patterns are increasingly used to characterize neoplasm and

to assess response to targeted treatment.
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