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Abstract
Purpose of Review Infants and young children with congenital heart disease and valvular lesions may require valve replace-
ment when a durable repair is unlikely. The fundamental problem with currently available valve substitutes in all positions 
is the lack of somatic growth potential. Young patients are therefore committed to multiple reoperations for successively 
larger valve replacements by the time they reach adulthood.
Recent Findings An emerging solution to this issue is allogeneic valve transplantation whereby the implanted valve is 
harvested from the heart of a deceased donor. The major advantage of this approach is the use of living tissue which grows 
adaptively with the child, thereby minimizing the number and additive risk of subsequent reoperations for valve exchange 
but incurring the risks of immunosuppression.
Summary Here, we review the advantages and disadvantages of currently available valve replacement options for each of the 
four valves. We also discuss the potential role and future directions for allogeneic valve transplantation in pediatric valve surgery.

Keywords Allogeneic Valve Transplant · Congenital Heart Disease · Partial Heart Transplant · Valve Disease · Valve 
Replacement · Transplantation

Introduction

Congenital heart disease is the leading cause of newborn 
death due to congenital anomalies in the USA [1]. Of those 
surviving the newborn period, approximately 25% require 
surgery within the first year of life [2, 3], often for valvular 

malformations and outflow tract lesions. Valves and valved 
conduits from bioprosthetic and synthetic materials are tra-
ditionally used when repair is not feasible, though no ideal 
substitute exists. Besides degenerative, thromboembolic, 
and bleeding complications, the primary disadvantage is 
lack of growth potential, necessitating serial reoperations 
to exchange nonviable prostheses for larger sizes [4]. This 
causes considerable morbidity and mortality, with signifi-
cant psychosocial impacts on children and families.

Allogeneic valve transplantation is an emerging therapy 
that involves the replacement of irreparable native valves 
with fresh, living allografts from a size-matched donor heart. 
Since valves are not cryopreserved or fixed, they can grow 
with the child. Despite the need for systemic immunosup-
pression to preserve allograft viability [5•], a handful of 
allogeneic valve transplants have been performed to date 
[6, 7•]. This review summarizes pediatric valve replace-
ment options and comments on the history and potential of 
allogeneic valve transplantation to deliver a valve that will 
grow with the patient. Historical and contemporary valve 
replacement options are summarized in Table 1.
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Aortic Valve Replacement (AVR)

Congenital aortic stenosis is present in approximately 5% of 
children with congenital heart disease [8] and often associ-
ated with a bicuspid valve and left ventricular outflow tract 
obstruction. While repairs are increasingly being performed 
with acceptable results [9–11], the optimal replacement 
option remains controversial. Contemporary AVR literature 
is summarized in Supplementary Table 1.

Ross Procedure

The Ross operation is an attractive option for children and 
young adults. The diseased valve is replaced with a pul-
monary autograft and the right ventricular outflow tract 
(RVOT) is reconstructed using a cryopreserved or decellu-
larized homograft. Advantages of the pediatric Ross opera-
tion include an excellent hemodynamic profile, avoidance 
of anticoagulation, and growth potential of the pulmonary 
autograft, though not the homograft [12, 13].

While technically complex, the Ross procedure is safe 
in children and adolescents, with operative mortality rates 
of approximately 1% [14•, 15•]. Several groups have also 

demonstrated excellent long-term survival and freedom 
from autograft reintervention in older children [16–28]. 
In a meta-analysis by Moroi and colleagues, late mortal-
ity was 0.04–1.83% per year, with annual reoperation rates 
for autograft failure of 0.37–2.81%. In neonates and infants, 
however, mortality and reintervention rates are much higher 
[15•]; a recent analysis of the Ross procedure using the Soci-
ety of Thoracic Surgeons Congenital Heart Surgery database 
revealed an operative mortality of 1.5% and 0.8% in children 
and adolescents, respectively, compared to 24.1% and 11.2% 
in neonates and infants [14•]. Long-term outcomes also dif-
fer—Donald and colleagues demonstrated a 10-year survival 
of 78.9% in neonates and infants and 96.2% in children older 
than 1 year. Overall, 10-year freedom from autograft reop-
eration was 86%, with age younger than 1 year at operation 
being a risk factor [16].

The major shortcoming of the pediatric Ross operation is 
the need for reintervention on either outflow tract. Pathologic 
autograft dilation may occur at the level of the annulus, 
sinuses, or sinotubular junction, possibly from failure of the 
pulmonary autograft to adapt to higher systemic pressures 
[26, 28, 29]. Despite technical modifications to mitigate 
this risk [30, 31], these may inhibit somatic growth and 

Table 1  Classification of historical and currently available valve substitutes and their advantages/disadvantages

Valve substitute Advantages Disadvantages

Mechanical • Durability • Lacks growth potential
• Long-term anticoagulation
• Size limitation — smallest valve (16 mm) too big for neonate/

infant
Bioprosthetic/biologic
Xenograft • Excellent hemodynamic profile

• No anticoagulation required
• Limitless supply

• Nonviable — lacks growth potential
• Low durability due to structural degeneration
• Likely requires multiple reoperations when implanted in young 

patients
• Increased risk of endocarditis

Homograft • Excellent hemodynamic profile
• No anticoagulation required
• Easy handling

• Nonviable — lacks growth potential
• Low durability due to structural degeneration
• Likely requires multiple reoperations when implanted in young 

patients
• Limited supply, especially in smaller sizes

Pulmonary autograft (Ross procedure) • Living tissue with growth potential
• Excellent hemodynamic profile
• No anticoagulation required
• Low risk of endocarditis

• Technically demanding operation
• Converts single valve disease into double valve disease
• Likely requires reoperation for homograft deterioration and/or 

autograft dilation
Fresh, wet-stored/homovital valves • Contains some viable cells at the 

time of harvest
• Excellent hemodynamic profile
• No anticoagulation required
• Low risk of endocarditis

• Limited availability (brain-dead donors or explanted native 
heart of transplant recipients)

• Essentially nonviable shortly after implant without immuno-
suppression

Allogeneic valve transplant • Living tissue (minimal ischemic 
time) with growth potential

• Excellent hemodynamics
• No anticoagulation required

• Presumably requires immunosuppression to maintain cell 
viability and growth potential

• Limited donor pool
• Lack of supporting preclinical data
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are therefore not feasible in infants and young children. 
Reintervention on the right ventricle to pulmonary artery 
homograft is also common. Nelson and colleagues reported 
an overall 15-year freedom from homograft reintervention 
of 53%; younger age was significantly associated with 
homograft reintervention, with a 15-year freedom from 
reintervention of only 19% in neonates and infants [19]. As 
such, many argue that the Ross operation converts single 
valve disease into double valve surveillance. Nonetheless, 
the Ross operation is our preferred approach for AVRs 
in children and young adults given excellent survival, 
hemodynamic profile, and quality of life, with few valve-
related adverse events [32•].

Mechanical Aortic Valve Replacement

Mechanical aortic valves are reserved for older children who 
are not Ross candidates due to connective tissue disorders or 
abnormal (or absent) pulmonary valves [33]. In the largest 
pediatric series, Myers and colleagues reported 5.5% opera-
tive mortality and 82% 10-year survival. Ten-year freedom 
from reoperation was 78%, with the most common reinter-
vention reasons being pannus ingrowth and valve thrombosis 
and risk factors being younger age and implantation of the 
smallest prosthesis (16 mm) [34]. In a contemporary meta-
analysis, the annual pooled mechanical AVR reoperation rate 
was 1.0% [35].

Though a reliable option for select patients [34, 
36], a disadvantage of mechanical prostheses is 
the thromboembolism risk, necessitating lifelong 
anticoagulation. This can be challenging in children due 
to activity restraints, medication compliance, and use of 
anticoagulation in women of child-bearing age. In a recent 
meta-analysis, pooled annual rates of thromboembolism 
and major bleeding were 0.76% and 0.39%, respectively 
[35]. Furthermore, a root enlargement may be required to 
accommodate even the smallest mechanical prosthesis in 
neonates or infants. Finally, despite excellent durability, 
reoperation following mechanical AVR in children is still 
common—ranging from 55 to 90% at 15 years [12, 36–38]—
with the main indications being patient-prosthesis mismatch, 
along with pannus formation causing subvalvar obstruction 
and endocarditis.

Bioprosthetic Aortic Valve Replacement

Tissue prostheses are commonly used in adults and allow for 
avoidance of chronic anticoagulation, though applications 
are limited in pediatrics. Prostheses are unavailable in sizes 
smaller than 19 mm and longevity is decreased in younger 
patients, in whom structural valve degeneration is typically 
accelerated [39–43]. Indeed, valve deterioration is 6–9 times 
more rapid in young adults compared to older patients, 

with an incidence of 30–50% at 10–20 years [44]. Saleeb 
and colleagues published a series of 73 pediatric patients 
(median age 18.8 years [range, 3.8–29.2]) who received a 
bioprosthetic AVR over a 15-year period. The authors noted 
significantly accelerated degeneration of the Mitroflow valve 
(Sorin Group Italia, Vercelli, Italy) compared to other tissue 
valves, with freedom from valve failure (explant or death) of 
only 20% versus 87.6% at 4 years. All explanted Mitroflows 
had heavy leaflet calcification and immobilization [45]. 
Finally, children receiving a bioprosthetic AVR will likely 
require multiple reoperations for patient-prosthesis mismatch 
due to fixed valve size.

Homograft Aortic Valve Replacement

Homografts are obtained from deceased donors and cryo-
preserved for prolonged storage. Though associated with 
excellent early hemodynamic profiles, homografts can 
exhibit rapid structural degeneration and failure. In pedi-
atric patients undergoing homograft AVR, Fukushima and 
colleagues observed a 10-year freedom from structural valve 
degeneration of only 55%. Younger age was associated with 
structural failure [46], presumably due to higher cardiac out-
put and a more active immune response in children [47–49]. 
Other groups reported similar rates of reintervention for 
homograft structural degeneration in young patients [18, 36, 
48–52]. Wider use of aortic homografts is also restricted by 
the limited number of grafts in small sizes; homografts are 
thus generally utilized when the Ross is not feasible or when 
a mechanical AVR is not advisable [18].

Aortic Valve Neocuspidization (Ozaki Procedure)

The Ozaki procedure involves the replacement of diseased 
aortic valve cusps with tailored neocusps of autologous peri-
cardium or synthetic patch material. Ozaki and colleagues 
first published on this technique in adults, with 10-year sur-
vival and freedom from reoperation of 86% and 95%, respec-
tively [53]. The procedure has since been performed with 
acceptable short-term outcomes in children: Baird and col-
leagues reported a 2-year freedom from moderate or greater 
aortic regurgitation or stenosis of 88% and freedom from 
reoperation of 91% at 1.5 years in a cohort with a median 
age of 12.4 years [54].

Despite promising short- to mid-term outcomes in older 
children [54, 55], the long-term durability and eventual mode 
of failure remain unknown. Importantly, synthetic patch 
material clearly reduces durability [56], and observations of 
reduced leaflet motion have led to nearly half of Ozaki neo-
cuspidization recipients requiring coumadin. Applications in 
younger children may thus be limited by this poor durability 
and lack of growth potential of synthetic material.
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Pulmonary Valve Replacement (PVR)

The pulmonary valve is often replaced in congenital patients, 
with an increasing need for PVR as more survive to adult-
hood. Contemporary PVR literature is summarized in Sup-
plementary Table 2.

Bioprosthetic Pulmonary Valve Replacement

Few have evaluated the optimal bioprosthetic PVR in 
pediatric patients [57–62], with modern understandings 
often extrapolated from the adult AVR experience. We 
analyzed the Inspiris Resilia valve (Edwards Lifsciences, 
Irvine, CA)—a prosthesis commonly used for AVR in 
adults—in the pulmonic position in children and young 
adults with congenital heart disease. Among propensity-
matched patients, 2-year freedom from valve failure was 
lower in the Inspiris group compared to those who did 
not receive an Inspiris valve (53.5% vs. 78.5%, p = 0.03), 
with prosthetic regurgitation being the main mechanism 
of failure. Inspiris durability was also poorer when 
implanted in the native RVOT compared to as a conduit, 
with 18-month freedom from valve failure of 59.0% vs. 
85.9% (p = 0.03) [57]. In another large, single-center 
study, Nomoto and colleagues showed good short-term 
outcomes among all studied bioprosthetic PVR options, 
though younger patients had almost fivefold greater risk 
of reintervention than adults (independent of valve type). 
This risk decreased by 10% for each increasing year of 
age at surgery [58]. Calderone and colleagues reported 
a 5-year freedom from valve replacement of 81%, with 
younger age associated with early prosthetic failure [59]. 
While the current bioprosthetic PVR strategy is oversizing 
to facilitate future valve-in-valve procedures, this is 
associated with structural valve deterioration and should 
be performed with caution [60].

Mechanical Pulmonary Valve Replacement

Mechanical valves are rarely used in the pulmonary 
position due to thrombosis concerns in the low pressure, 
right-sided system. Still, the risk profile is relatively 
favorable [61–66]. A multicenter retrospective analysis of 
364 patients reported a freedom from valve thrombosis of 
91% and 86% at 5 and 10 years, respectively. The annual 
incidence of valve thrombosis was 1.7%. Major bleeding 
complications were not reported. Durability was excellent, 
with 97% and 91% freedom from reintervention at 5 and 
10 years, respectively [61]. As PVR patients have often had 
multiple prior sternotomies, a mechanical prosthesis may 
thus be reasonable to limit further interventions, though 
requires systemic anticoagulation.

Transcatheter Pulmonary Valve Replacement (TPVR)

Transcatheter pulmonary valve implantation is used to 
treat failing RVOT conduits or bioprosthetic pulmonary 
valves and is standard of care provided anatomy is favora-
ble [67–71]. Available balloon-expandable valves include 
the Melody valve (Medtronic, Minneapolis, MN) made 
from stented bovine jugular vein and SAPIEN transcatheter 
bovine pericardial valve (Edwards Lifesciences, Irvine, CA). 
The Melody Investigational Device Exemption trial demon-
strated an estimated 10-year survival of 90%, along with 79% 
freedom from RVOT reoperation and 60% freedom from any 
valve reintervention. Ten-year freedom from valve dysfunc-
tion was 53% and significantly lower in children than adults 
[68]. While this trial affirmed the role of TPVR technolo-
gies in the lifetime management of patients with repaired 
congenital heart disease and a dysfunctional RVOT conduit 
or pulmonary valve prosthesis, young patients inevitably 
outgrow the implant. Additionally, the risk of endocarditis 
appears to be higher with these devices.

Right Ventricle‑to‑Pulmonary Artery 
Conduits

Reconstruction of right ventricle-to-pulmonary artery (RV-
PA) continuity is integral to congenital cardiac surgery 
repairs. Factors influencing the choice of conduit include 
original pathology, age, and availability. All conduits, how-
ever, do not grow, making serial reoperations unavoidable 
[72]. Contemporary RV-PA conduit literature is summarized 
in Supplementary Table 2.

Homografts

Pulmonary and aortic homografts have favorable handling 
properties, are available in sizes small enough for infants, 
and have low infection risk. Disadvantages, however, are 
lack of growth potential, risk of structural degeneration and 
calcification, high cost, short shelf-life (~ 2 years), and lim-
ited availability in sizes small enough for neonates or large 
enough for younger children. Furthermore, some patients 
may develop human leukocyte antibodies after homograft 
implantation and this sensitization may increase the risk for 
antibody-mediated rejection and graft dysfunction should 
the patient require a future heart transplant.

In regard to homograft durability, freedom from 
reintervention ranges widely—30 to over 80% at 10 years 
[73–80]—with smaller conduit size, younger age at 
operation, and a non-Ross operation being risk factors 
for conduit failure [75, 81, 82]. Several series have also 
demonstrated superior durability of pulmonary over 
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aortic homografts [73, 81, 82]. Lewis and colleagues 
reported a series of 455 consecutive pediatric patients 
(mean age 6.4 ± 5.8 years) who underwent RV-PA conduit 
reconstruction with either a pulmonary homograft, aortic 
homograft, or bovine jugular vein graft and demonstrated 
a 10- and 28-year freedom from conduit replacement of 
79.6% and 66.0%, respectively, for pulmonary homografts, 
compared to 49.8% and 23.0%, at 10 and 30  years, 
respectively, for aortic homografts [73]. Pseudoaneurysms 
and conduit dilation, however, are more common with 
pulmonary homografts [83].

Xenografts

Xenografts of bovine or porcine origin may be stented 
or non-stented. Advantages include abundant supply, 
availability in small sizes, favorable handling characteristics, 
and low cost compared to homografts [84]. One of the most 
used, the Contegra xenograft (Medtronic, Minneapolis, 
MN), is made from valved bovine jugular vein and small 
enough for infant RVOT reconstruction. Durability is at 
least comparable to pulmonary homografts [85–89], though 
younger age at implantation is a risk factor for reintervention 
and distal conduit stenosis [90]. Importantly, the Contegra 
homograft is associated with increased risk of endocarditis 
compared to other biological conduits [86].

Synthetic Valved Conduits

Composite valved conduits made of synthetic tube grafts 
with bioprosthetic or mechanical valves are available 
commercially or can be manually constructed [91]. 
Commercially available conduits include the Hancock 
(Medtronic, Minneapolis, MN), consisting of a porcine valve 
within a Dacron tube [92]. Advantages include prolonged 
shelf-life, widespread availability, and a rigid pericardial 
valve annulus resistant to sternal compression. Size 
limitations, however, limit use in neonates and small infants.

Mitral Valve Replacement (MVR)

Rheumatic heart disease, endocarditis, mitral stenosis, 
and failed atrioventricular septal defect repair are the 
most common indications for MVR in pediatric patients. 
Unfortunately, MVR carries the highest operative and 
long-term mortality risk of all pediatric valve replacements 
[93–95]. Contemporary MVR literature is summarized in 
Supplementary Table 3.

Mechanical and Bioprosthetic MVR

Surgical MVR operative mortality in infants and young chil-
dren is 10 to 36% [94–97]. In a multi-institutional study of 
139 patients under 5 years old, Calderone and colleagues 
reported 74% 10-year survival. Most deaths occurred shortly 
after initial MVR and 5-year freedom from reoperation was 
81% among survivors. An increased ratio of valve size to 
patient weight was an age-adjusted predictor of death [94]. 
This is notable as valves are often oversized and implanted 
in a supra-annular position in infants and small children, 
leading to leaflet entrapment, left ventricular outflow tract 
obstruction, and atrioventricular block [94–96]. Other stud-
ies have also found both of these techniques to be associated 
with increased mortality [93, 98–100].

Despite oversizing, prosthetic valves must be replaced 
given lack of growth potential. Choi and colleagues reported 
freedom from redo MVR of 76% and 44% at 5 and 10 years, 
respectively; time to reoperation was associated with pros-
thesis type, with porcine and pericardial valves at greatest 
risk. Prosthesis type was also associated with time to death or 
transplant, with porcine valves at greater risk than mechani-
cal valves [101•]. Still, mandatory anticoagulation and size 
limitations remain a disadvantage of mechanical valves.

Transcatheter MVR

Given poor outcomes and size limitations, stented bovine 
jugular vein valves (Melody valve, Medtronic, Minneapolis, 
MN), originally approved for TPVR, have been implanted in 
the mitral position as an off-label use [102]. Valves are initially 
surgically implanted into a small mitral annulus and serially 
balloon-dilated to accommodate somatic growth [103]—this 
technique has been employed as a bridge to a future fixed-diam-
eter valve replacement with acceptable short- and mid-term 
outcomes [104, 105]. Choi and colleagues demonstrated that 
stented bovine jugular vein valves may exhibit greater durability 
than conventional xenograft prostheses in small children. All 
balloon dilations performed on Melody valves were successful 
in resolving or significantly decreasing the transmitral gradi-
ent, with only 11.8% of patients developing mitral regurgita-
tion [101•]. While paravalvular leaks are common, this is likely 
related to surgical implantation technique and device design.

Tricuspid Valve Replacement (TVR)

TVR is rarely performed in young children, most often for irrepa-
rable Ebstein’s anomaly and tricuspid valve dysplasia. Reports 
on pediatric TVR consist of small series from single institutions, 
with early mortality of 9–36% [106–109]. Contemporary TVR 
literature is summarized in Supplementary Table 4.
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Bioprosthetic and Mechanical Tricuspid Valve 
Replacement

Several adult studies have demonstrated acceptable tricuspid 
bioprosthesis durability [110–112], though few have been per-
formed in children. Boyd and colleagues recently reported dis-
appointing results with bioprosthetic TVR for Ebstein’s anom-
aly: compared to cone repair, the valve replacement group had a 
lower freedom from reoperation at 6 years (cone: 91% vs. TVR: 
68%, p = 0.02) and worse right ventricular function at mean 
follow-up of 4 years [113]. In an older series, however, Kiziltan 
and colleagues reported favorable long-term outcomes in 158 
patients with Ebstein’s anomaly or an Ebsteinoid valve under-
going TVR with a porcine bioprosthesis: 15-year survival and 
freedom from reoperation was 92.5% and 80.6%, respectively. 
Of note, bioprostheses demonstrated higher freedom from rein-
tervention than mechanical prostheses [109]. Similarly, Bart-
lett and colleagues saw improved survival and lower rates of 
pacemaker requirements in children who received bioprostheses 
compared to mechanical TVR. Implantation of a large valve 
relative to the patient’s weight was a predictor of postoperative 
mortality, indicating that oversizing to delay replacement may 
impair ventricular dynamics and restrict leaflet mobility [107].

Overall, mechanical prostheses are rarely used in the tri-
cuspid position due to valve thrombosis risk, with reported 
incidence of 3–18% [110, 114]. As such, anticoagulation with 
a higher International Normalized Ratio goal is required, sig-
nificantly increasing the risk of bleeding complications.

Historical Use and Development of Viable 
Allograft/Homograft Valves

The initial orthotopic implantation of aortic valve allografts 
was reported in 1962 by Ross [115] and Barrett-Boyes [116]. 
Valves were collected at autopsy, minimally treated, and 
implanted within hours to days. Outcomes were favorable, 
with the New Zealand group reporting 79% survival and 
13% incidence of valve failure at 6 years [117]. Over the next 
decades, multiple centers published their experience with 
fresh homograft valve replacements [118–125].

Initial procedures were performed utilizing freshly har-
vested valves from brain-dead donors or explanted hearts of 
transplant recipients. Valves were antibiotic-sterilized, stored 
in nutrient media at 4 °C for up to 6 weeks, and implanted at 
first opportunity. Such “fresh, wet-stored” homograft valves 
contained viable cells and were called “homovital” valves. 
Stanford published on 83 patients who received fresh aortic 
homografts between 1967 and 1971 and demonstrated a 5-, 
10-, and 15-year freedom from valve failure of 83%, 62%, and 
43%, respectively. Freedom from reoperation was 88%, 67%, 
and 45% at 5, 10, and 15 years, respectively [119]. Yacoub’s 
group also reported their 14-year experience with 275 

homovital aortic valve replacements. Freedom from degen-
erative valve failure was 94% at 5 years and 89% at 10 years 
[126]. This experience supported that fresh, wet-stored homo-
grafts were valuable valve substitutes with good performance 
data. Donor availability, however, limited widespread use and 
led to development of current preservation techniques.

In 1975, O’Brien described the cryopreservation of fresh 
valves using a dimethylsulfoxide controlled-rate freezing 
technique with storage in liquid nitrogen at − 190 °C [127]. 
In a series of 192 cryopreserved aortic allografts, the Bris-
bane group demonstrated 100% freedom from reoperation 
for valve degeneration at 10 years. Moreover, cryopreserved 
valves recovered from patients dying of non-valve-related 
events up to 9.5 years later demonstrated preserved donor 
fibroblast viability [128]. In 2001, their follow-up series 
demonstrated that freedom from reoperation for structural 
deterioration of cryopreserved valves was recipient age-
dependent: at 15 years, freedom was 47% (0–20 years), 85% 
(21–40 years), 81% (41–60 years), and 94% (> 60 years) 
[129]. This reflects Yacoub’s findings—fresh allograft 
durability was worse in younger patients, possibly due to 
recognition of viable cells by a more active immune system.

The degree of cell viability at the time of cryopreserved valve 
implantation and the rate of cell loss over time is ultimately 
unknown. It is also unclear whether durability is related to viable 
donor fibroblasts, improved matrix preservation by cryopreser-
vation, or both. Notably, most early work did not utilize ABO 
or human leukocyte antigen tissue matching criteria or immu-
nosuppression. Given the overall success with cryopreserved 
valves and convenience of tissue banking, cryopreservation has 
become the standard preservation method in modern times. Loss 
of viability and age-dependent structural degeneration, however, 
remain the main limitations of cryopreserved homografts.

Delivery of a Living Valve Substitute: 
Allogeneic Valve Transplantation

There is a critical need for valves with growth potential. Engi-
neering valves capable of growth and regeneration is of great 
interest, though has failed to achieve clinical translation [130]. 
Recently, there has been renewed interest in fresh allografts 
with modifications to preserve viability. Termed “partial heart 
transplant” or “allogeneic valve transplant,” size-matched donor 
hearts from a brain-dead donor or explanted hearts of heart 
transplant recipients are procured [131•]. Semilunar (and pos-
sibly atrioventricular valves) are explanted and used to replace 
diseased recipient valves. This may eliminate the need for anti-
coagulation and serial reoperations since the allograft should 
grow with the patient. The major drawback, however, is the 
presumed need for immunosuppression and its attendant risks.

To date, our group and two others have performed a hand-
ful of allogeneic valve transplants in infants with truncus 
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arteriosus [6, 7•]; the common truncal root was replaced by 
donor aortic and pulmonary roots to create two outflows. 
Recipients are maintained on variable immunosuppression 
regimens (Fig. 1A), though most are less intense than those 
used for traditional orthotopic heart transplant. When the 
child reaches adulthood, the valve may be replaced by a 
larger prosthesis and immunosuppression discontinued.

Immunologic Considerations of Viable Valve 
Allografts

Data guiding long-term management are lacking. Some believe 
that a reduced dose of immunosuppression may be allowable 
since cardiac valves are less immunogenic than whole cardiac 
allografts and may even be immune-privileged tissue [131•, 
132•]. Mitchell and colleagues examined aortic valves from 
rejected transplanted hearts and found no evidence of immune 
injury and entirely preserved cellularity and architecture 
[133]. Mohri and colleagues orthotopically implanted fresh 
canine aortic valve allografts into pre-sensitized animals and 
found no evidence of immune infiltration in the transplanted 
leaflet at 3 months, but rather signs of re-endothelialization 
[134]. This concept is further supported by echocardiographic 
data, which show preserved semilunar valve function despite 
severe ventricular dysfunction in the setting of acute rejection 
[135•]. While the mechanism through which valves possess 
low immunogenicity is unknown, this may be due to the lack 
of valve tissue vascularity as cellular and antibody-mediated 
rejection typically occur at the level of the ventricular 
microvasculature [132•].

Others contend that valves can elicit an immune response 
[136–139], with immunogenicity attributed to surface anti-
gens on valve endothelial cells that may attract cytotoxic 
lymphocytes and induce lymphoproliferation [136]. Hogan 
and colleagues demonstrated increased recipient T-cell 

alloreactivity toward donor lymphocytes and persistence of 
human leukocyte antigen antibodies in patients who received 
fresh aortic valve allografts [138]. Heslop and colleagues 
implanted fresh aortic valve allografts into the abdominal 
aorta of rats and found that immune injury was limited to the 
rim of myocardium beneath the valve—the aortic wall dem-
onstrated mild antigenicity, but valve leaflets did not show 
inflammatory changes [139]. Ultimately, additional investi-
gations to determine the extent to which immunosuppression 
is required to maintain a functional valve are needed.

Future Directions

Though in its infancy, allogeneic valve transplantation is 
a promising strategy for delivery of a living, viable valve 
substitute to pediatric patients with irreparable valve dis-
ease. For wider incorporation into current practice, safety 
and efficacy must be further evaluated. The South Carolina 
group recently proposed a prospective, observational study 
evaluating safety, feasibility, growth, and function of alloge-
neic valves [5•]. As these valves are not amenable to biopsy, 
alternative methods to detect allograft rejection are needed, 
as are methods to determine the appropriate amount of 
immunosuppression required for long-term valve function.

We propose that donor hearts declined for conventional 
transplantation and explanted native hearts of transplant 
recipients be evaluated for valve donation (Fig. 1B). Addi-
tional investigations into valvular cell fate, as well as optimal 
preservation methods, are also required. Prolonged storage, 
while maintaining viability, will allow for an extended travel 
radius for procurement and may have a substantial economic 
and environmental impact if local procurement teams could 
obtain and deliver the valve to the recipient hospital by com-
mercial courier services, as is done for kidney transplants.

Fig. 1  Illustrative schematic demonstrating: A presumed role of 
systemic immunosuppression in preserving valve cell viability and 
growth potential after allogeneic valve transplant; B donor cardiac 

allografts deemed non-transplantable and explanted native hearts of 
transplant recipients—without valvulopathy—may be utilized as a 
source of fresh valve allografts for allogeneic valve transplantation
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While the major drawback of allogeneic valve transplant is 
the presumed need for immunosuppression, methods of induc-
ing graft tolerance under investigation include: (i) thymic co-
transplantation, wherein recipient T lymphocytes are educated 
within the transplanted donor thymus after recipient treatment 
with T cell–depleting antibodies, and (ii) mixed chimerism, 
wherein bone marrow-derived cells from both donor and 
recipient coexist [140, 141]. Most success with these tech-
niques has been in the realm of renal transplantation [142–146], 
though investigators recently induced donor-specific toler-
ance with thymic co-transplantation in cardiac allografts for 
up to 182 days [147]. Finally, advancing our understanding of 
immune principles in this domain may serve as a platform for 
future studies in xenogeneic valve transplantation, which could 
produce a nearly unlimited source of valves [140].

Conclusions

Pediatric valve disease remains a challenging problem in 
pediatric and congenital cardiac surgery. Currently avail-
able valve prostheses lack growth potential, and infants and 
young children require multiple reoperations. The theoreti-
cal growth potential, durability, and lack of anticoagulation 
of living valve allografts may mitigate the morbidity asso-
ciated with existing valve replacement options for infants 
and children. While the major limitation of allogeneic valve 
transplant is the presumed need for immunosuppression, 
additional preclinical studies may better reveal the extent to 
which immunosuppression is required to maintain a func-
tional valve. Still, allogeneic valve transplantation may soon 
shift the treatment strategy for pediatric valve disease.
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