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ABSTRACT

Introduction: The aim of this work is to eval-
uate the accuracy of the Barrett Universal II (BU
II), Emmetropia verifying optical (EVO) 2.0,
Haigis, Hoffer Q, Hoffer QST (Savini/Taroni)
(HQST), Holladay 1, Kane, Ladas Super, San-
ders–Retzlaff–Kraff/theoretical (SRK/T), and T2
intraocular lens (IOL) power formulas for cal-
culating spherical equivalent (SE) of toric IOL.
Methods: This study enrolled consecutive
patients who underwent phacoemulsification
and toric IOL implantation at the Eye Hospital

of Wenzhou Medical University in Hangzhou
from 2015 to 2022. We compared the new-
generation formulas with Gaussian optics-based
standard formulas, and calculated the mean
absolute error (MAE), median absolute error
(MedAE), and percentage of eyes within ± 0.25
diopter (D), ± 0.50 D, ± 0.75 D and ± 1.00 D
of the target refraction. Subgroup analyses were
conducted based on the anterior chamber depth
(ACD), keratometry (K), and toricity (T).
Results: A total of 207 eyes of 207 patients were
included in this study. Overall, the Kane and
EVO2.0 formulas demonstrated the lowest
MedAEs. The EVO2.0 formula exhibited the
highest percentage of eyes
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within ± 0.50 D, ± 0.75 D, ± 1.00 D. More-
over, the EVO2.0 formula showed the lowest
MedAE for flat K subgroup, the highest per-
centage of eyes within ± 0.50 D, ± 1.00 D for
shallow ACD subgroup, the highest percentage
of eyes within ± 0.75 D for regular ACD, flat K,
T2–T3, T4–T5 subgroups. The Kane and formula
performed the lowest MedAE in the T4–T5
subgroup.
Conclusions: Application of the Kane and
EVO2.0 formulas significantly improved the
prediction of postoperative SE outcome for toric
IOL compared to the other formulas.

Keywords: Toric intraocular lens; Cataract;
Power calculation formulas; Sphere equivalent

Key Summary Points

Why carry out this study?

Previous studies focused on the
intraocular lens (IOL) power calculation
in predicting spherical equivalent (SE) for
non-toric IOLs.

This study aims to comprehensively assess
and compare the overall accuracy of new-
generation formulas against vergence-
based formulas for calculating SE after
toric IOL implantation.

What was learned from the study?

The Kane and Emmetropia verifying
optical 2.0 formulas demonstrated high
accuracy in predicting SE for toric IOLs.

Three improved IOL calculation formulas,
the Ladas Super, T2, and Hoffer
QST(Savini/Taroni) formula, performed
the superior outcome compared to
traditional third-generation formulas for
calculating SE after toric IOL
implantation.

INTRODUCTION

Cataract surgery is regarded as a combined
rehabilitative and refractive procedure. As
modern surgical techniques advance, patients’
expectations for optimal postoperative vision
continue to rise. The precision of the preoper-
ative intraocular lens (IOL) power formula
stands out as a key factor influencing postop-
erative refractive outcomes.

Various formulas for IOL power calculation
have evolved over time, aiming to enhance the
accuracy of predicting refractive results. The
third- and fourth-generation formulas, previ-
ously proposed, mostly employ vergence for-
mulas based on Gaussian optics, including the
Barrett Universal II (BU II) [1], Haigis [2], Hol-
laday 1 [3], Sanders–Retzlaff–Kraff/theoretical
(SRK/T) [4], and Hoffer Q [5] formulas. In con-
trast, the latest generation of IOL formulas use
artificial intelligence (AI) and regression equa-
tions for predictions, demonstrating com-
mendable performance. Notably, studies
suggest that the Kane formula [6] seems to be
one of the most accurate formulas available
[7, 8]. The Emmetropia verifying optical
(EVO)2.0 formulaC has also exhibited good
performance, ranking among the most accurate
formulas [8, 10]. Additionally, Sheard RM [11]
and Taroni L [12] have enhanced the SRK/T and
Hoffer Q formulas, resulting in the T2 [11] and
Hoffer QST (Savini/Taroni) (HQST) [13] formu-
las, respectively, indicating improved accuracy
for traditional formulas. Ladas JG [14] intro-
duced a super surface, incorporating the opti-
mal aspects from four out of the five third-
generation formulas to generate a super formula
[15].

Nonetheless, prior studies basically used
non-toric IOLs to assess prediction accuracy. In
fact, it is crucial to extend this evaluation to
toric IOLs, comparing the precision of various
formulas in predicting spherical equivalent (SE)
outcomes so as to further improve the refractive
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results. Therefore, our study aims to compre-
hensively assess and compare the overall accu-
racy of new-generation formulas against
vergence-based formulas for calculating SE after
toric IOL implantation. Subgroup analyses will
also be conducted for each anterior chamber
depth (ACD), keratometry (K), and toricity
(T) group. We hope the illustration of these
formulas can guide the selection of IOL power
formulas for patients with cataracts, promoting
the attainment of improved postoperative
refractive outcomes.

METHODS

Patients

This is a retrospective study, including consec-
utive patients who underwent clear cornea
temporal incision phacoemulsification and
intracapsular implantation of the AcrySof
SN6AT(2–9) IOL (Alcon Laboratories, Inc., Fort
Worth, TX, USA) during the period 2015–2022,
at the Eye Hospital of Wenzhou Medical
University in Hangzhou. All patients were

Table 1 Demographic and biometric data of patient

Parameter Mean – SD/n (%) Range

Male gender (%) 72 (34.7%)

Right eyes (%) 96 (46.4%)

IOL types (%)

T2–T3 54 (26.1%)

T4–T5 128 (61.8%)

T6–T9 25 (12.1%)

Age (years) 72.32 ± 11.10 24–89

AL (mm) 23.54 ± 0.88 22.06–25.94

ACD (mm) 3.01 ± 0.43 1.99–4.54

ACD B 3 mm (n = 107) 2.68 ± 0.02 1.99–3.00

3 mm\ACD\ 3.5 mm (n = 74) 3.22 ± 0.02 3.01–3.49

ACD C 3.5 mm (n = 26) 3.74 ± 0.05 3.50–4.54

K1 (D) 43.43 ± 1.32 39.95–47.27

K2 (D) 44.99 ± 1.37 41.72–49.06

K (D) 44.21 ± 1.31 41.070–48.165

K B 43D (n = 34) 42.25 ± 0.08 41.070–42.900

43D\K\ 45D (n = 117) 43.98 ± 0.05 43.015–44.945

K C 45D (n = 56) 45.87 ± 0.09 45.040–48.165

Corneal astigmatism (D) 1.56 ± 0.60 0.52–3.61

IOL power (D) 21.27 ± 2.43 13.5–27.5

Continuous data are expressed as mean ± standard deviation
ACD anterior chamber depth, AL axial length, D diopters, IOL intraocular lens, K keratometry, K1 keratometry flat axis, K2
keratometry steep axis, SD standard deviation
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successfully measured preoperatively with the
IOLMaster 500 or 700 (Carl Zeiss Meditec AG,
Jena, Germany). Subjective refraction was per-
formed 1 month post-operatively by three
experienced optometrists. According to the
recommendations of the editorials by Hoffer
et al., [16, 17] only one eye from each patient
was included at random, and only one single
toric IOL type was used. Exclusion criteria were:
(1) age below 18 or above 90; (2) axial length
(AL) less than 22 mm and more than 26 mm; (3)
preoperative corneal astigmatism greater than 4
diopters (D); (4) other previous ophthalmic
diseases, previous ophthalmic trauma, previous
ophthalmic surgeries; (5) any intraoperative or
postoperative complication and (6) postopera-
tive Snellen best-corrected distance visual acuity
(BCVA) worse than 20/40. Subgroup analysis
was performed based on preoperative ACD, K
and T: shallow ACD group—ACD B 3.00 mm,
regular ACD group—
3.00 mm\ACD\ 3.50 mm, deep ACD
group—ACD C 3.50 mm; flat K group—K B 43
D, regular K group—43D\K\45D, steep K

Table 2 Optimized IOL constants used for each formula

Formula Measure Optimized IOL constant

BU II A-constant 119.39

EVO2.0 A-constant 119.31

Haigis a0 (a1, a2) - 0.290 (0.213, 0.208)

Hoffer Q pACD 5.80

HQST pACD 5.78

Holladay 1 Surgeon factor 1.99

Kane A-constant 119.29

Ladas super A-constant 119.31

SRK/T A-constant 119.24

T2 A-constant 119.27

BU II Barrett Universal II, EVO Emmetropia Verifying
Optical, HQST Hoffer QST (Savini/Taroni), IOL
intraocular lens, pACD personalized anterior chamber
depth, SRK/T Sanders–Retzlaff–Kraff/theoretical

Table 3 PE of ten IOL power calculation formulas in overall study cohort (N = 207)

Formula ME
(D)

SD
(D)

Min
(D)

Max
(D)

MAE
(D)

MedAE
(D)

Percentage of eyes within different PE ranges
(%)

– 0.25 D – 0.50 D – 0.75 D – 1.00 D

BU II 0.00 0.38 - 1.21 1.22 0.30 0.25 51.2 83.6 93.7 98.1

EVO 2.0 0.00 0.34 - 0.97 0.86 0.27 0.25 52.2 87.0 98.1 100.0

Haigis 0.00 0.38 - 1.18 0.88 0.30 0.28 45.9 84.1 94.7 99.5

Hoffer Q 0.00 0.38 - 1.22 1.03 0.31 0.27 46.4 80.2 94.7 99.0

HQST 0.00 0.37 - 1.15 0.95 0.29 0.25 50.2 85.0 95.1 99.0

Holladay 1 0.00 0.38 - 1.31 0.96 0.30 0.26 47.8 84.0 95.7 98.6

Kane 0.00 0.37 - 1.12 0.93 0.29 0.24 52.7 83.6 95.2 99.5

Ladas super 0.00 0.37 - 1.20 0.99 0.30 0.26 48.3 82.6 97.1 98.6

SRK/T 0.00 0.42 - 1.37 1.08 0.32 0.28 46.4 79.2 91.8 97.6

T2 0.00 0.38 - 1.30 0.97 0.30 0.25 50.7 84.5 95.7 98.6

BU II Barrett Universal II, D diopters, EVO Emmetropia Verifying Optical, HQST Hoffer QST (Savini/Taroni), IOL
intraocular lens, K keratometry, MAE mean absolute error, Max maximum, MedAE median absolute error, ME mean error,
Min minimum, PE prediction error, SD standard deviation, SRK/T Sanders–Retzlaff–Kraff/theoretical
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group—K C 45D; low-toricity group—T2–T3,
medium-toricity group—T4–T5, high-toricity
group—T6–T9. This study was performed in
accordance with the Declaration of Helsinki of
1964 and its subsequent amendments. This
study was approved by the Ethics Committee of
Wenzhou Medical University (2021-036-K-29-
01).

Formula Calculation and Constant
Optimization

IOL constant optimization was carried out by
varying the constant used by trial and error
until the mean prediction error (ME) for each
formula was 0.00 D, following Wang et al.’s
recommendations [18]. Published IOL power
formulas (e.g., the Haigis, Hoffer Q, Holladay 1,
SRK/T, and T2 formulas) were optimized using
Excel spreadsheets and validated against IOL-
Master 500 or 700. We can achieve the opti-
mized value of the predicted anterior chamber
depth (pACD; Hoffer Q), surgeon factor (Holla-
day 1), and A constant (SRK/T and T2), and so
forth. Outcomes for the single lens constant
(a0) optimization with the Haigis formula were
used to compare the formulas on a more equal
basis [19]. The a1 and a2 constants we used were
the already optimized values for the
SN6AT(2–9) IOLs as listed on the User Group for

Laser Interference Biometry (ULIB) website [20].
Unpublished formulas (e.g., the BU II, EVO2.0,
Kane, Ladas Super and HQST formulas) were
optimized using specific computer program-
ming languages (e.g., Python Software Founda-
tion, Wilmington, DE, USA) through respective
online calculator.

Primary Outcomes

According to the previous protocol, the refrac-
tive prediction error (PE) for each eye was
defined as the difference between the SE of the
1-month postoperative subjective refraction
and the predicted postoperative refraction for
each IOL power formula. A negative PE indi-
cated a myopic result, while a positive PE rep-
resented a hyperopic outcome. The median
absolute error (MedAE) and mean absolute error
(MAE) were defined as the median absolute
value and mean absolute value of the refractive
PE, respectively. The percentage of eyes within
different PE ranges (± 0.25 D, ± 0.50 D,
± 0.75 D and ± 1.00 D) were calculated. The
impact of ACD, K and T on ME, MAE, MedAE
and the percentage of eyes within different PE
ranges, were also investigated.

Fig. 1 Box plot graph of the absolute prediction errors
and stacked bars comparing the percentage of eyes within a
given diopter (D) range of predicted spherical equivalent
(SE) refraction outcome. BU II Barrett Universal II,

D diopters, EVO Emmetropia Verifying Optical, HQST
Hoffer QST (Savini/Taroni), SRK/T Sanders–Ret-
zlaff–Kraff/theoretica
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Table 4 PE of ten IOL power calculation formulas in ACD subgroups

Formula ME
(D)

SD
(D)

Min
(D)

Max
(D)

MAE
(D)

MedAE
(D)

Percentage of eyes within different PE ranges
(%)

– 0.25 D – 0.50 D – 0.75 D – 1.00 D

Shallow ACD group

BU II 0.01 0.38 - 1.21 1.22 0.30 0.23 52.3 86.9 95.3 97.2

EVO 2.0 - 0.01 0.33 - 0.97 0.71 0.27 0.25 50.5 92.5 97.2 100.0

Haigis - 0.02 0.38 - 1.18 0.83 0.31 0.27 44.9 83.2 95.3 99.1

Hoffer Q - 0.12 0.37 - 1.22 0.78 0.32 0.28 42.1 81.3 94.4 99.1

HQST - 0.05 0.36 - 1.15 0.85 0.29 0.27 47.7 89.7 95.3 98.1

Holladay 1 - 0.08 0.36 - 1.31 0.81 0.30 0.26 45.8 87.9 96.3 98.1

Kane - 0.03 0.36 - 1.12 0.85 0.28 0.24 51.4 88.8 95.3 99.1

Ladas super - 0.01 0.36 - 1.20 0.99 0.30 0.26 46.7 90.7 96.3 98.1

SRK/T - 0.06 0.40 - 1.37 1.08 0.31 0.27 48.6 81.3 94.4 96.3

T2 - 0.07 0.37 - 1.30 0.90 0.30 0.26 48.6 87.9 96.3 98.1

Regular ACD
group

BU II 0.04 0.39 - 1.15 0.85 0.31 0.26 48.6 82.4 91.9 98.6

EVO 2.0 0.06 0.34 - 0.75 0.86 0.27 0.21 52.7 85.1 98.6 100.0

Haigis 0.06 0.37 - 0.86 0.88 0.30 0.30 48.6 83.8 93.2 100.0

Hoffer Q 0.14 0.37 - 0.85 1.03 0.30 0.22 54.1 77.0 93.2 98.6

HQST 0.09 0.36 - 0.98 0.95 0.29 0.22 51.4 79.7 94.6 100.0

Holladay 1 0.10 0.38 - 1.07 0.96 0.30 0.25 50.0 77.0 95.9 98.6

Kane 0.10 0.37 - 1.00 0.93 0.29 0.22 52.7 78.4 94.6 100.0

Ladas super 0.07 0.37 - 1.11 0.75 0.30 0.26 48.6 74.3 98.6 98.6

SRK/T 0.09 0.43 - 1.35 0.96 0.34 0.29 44.6 77.0 89.2 98.6

T2 0.11 0.38 - 1.07 0.97 0.30 0.22 51.4 78.4 94.6 98.6

Deep ACD
group

BU II - 0.13 0.36 - 0.80 0.55 0.30 0.24 53.8 73.1 92.3 100.0

EVO 2.0 - 0.14 0.33 - 0.66 0.52 0.28 0.21 57.7 69.2 100.0 100.0

Haigis - 0.12 0.34 - 0.87 0.39 0.29 0.29 42.3 88.5 96.2 100.0

Hoffer Q 0.10 0.31 - 0.60 0.57 0.29 0.27 42.3 84.6 100.0 100.0

HQST - 0.07 0.36 - 0.82 0.52 0.28 0.24 57.7 80.8 96.2 100.0

Holladay 1 0.01 0.35 - 0.88 0.64 0.29 0.25 50.0 88.5 92.3 100.0
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Statistical Analysis

The data were presented using Microsoft Office
Excel (Microsoft, Redmond, WA, USA), and
statistical analysis was performed using SPSS
(version 26.0, IBM, Armonk, NY, USA). The
Shapiro–Wilk test was used to verify the nor-
mality of data distribution. The non-parametric
Friedman M test (with Bonferroni correction for

multiple comparisons) was used to compare the
differences in absolute prediction error (AE)
between formulas. The Cochran’s Q test was
utilized to compare percentage of eyes between
formulas within different PE groups. The one-
sample t test was conducted to evaluate whether
the ME of each formula in subgroups differed
significantly from zero. A P value less than 0.05

Table 4 continued

Formula ME
(D)

SD
(D)

Min
(D)

Max
(D)

MAE
(D)

MedAE
(D)

Percentage of eyes within different PE ranges
(%)

– 0.25 D – 0.50 D – 0.75 D – 1.00 D

Kane - 0.13 0.36 - 0.80 0.51 0.30 0.23 57.7 76.9 96.2 100.0

Ladas super - 0.15 0.35 - 0.78 0.56 0.29 0.23 53.8 73.1 96.2 100.0

SRK/T - 0.03 0.43 - 0.99 0.89 0.34 0.32 42.3 76.9 88.5 100.0

T2 0.02 0.33 - 0.76 0.67 0.27 0.23 57.7 88.5 96.2 100.0

ACD anterior chamber depth, BU II Barrett Universal II, ACD anterior chamber depth, D diopters, EVO Emmetropia
Verifying Optical, HQST Hoffer QST (Savini/Taroni), IOL intraocular lens, K keratometry, MAE mean absolute error,
Max maximum, MedAE median absolute error, ME mean error, Min minimum, PE prediction error, SD standard deviation,
SRK/T Sanders–Retzlaff–Kraff/theoretical

Fig. 2 Mean prediction error (ME) of each formula,
distributed by anterior chamber depth (ACD) group. ACD
anterior chamber depth; BU II Barrett Universal II,

D diopters, EVO Emmetropia Verifying Optical, HQST
Hoffer QST (Savini/Taroni), SRK/T Sanders–Ret-
zlaff–Kraff/theoretica
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was considered statistically significant. All
reported P values were two-sided.

The sample size was calculated using PASS
(version 15.0.5, NCSS LLC, Kaysville, UT, USA)
based on MedAE, which was the primary
parameter of interest in this study. We consid-
ered a two-sided 5% significance level and
power of 95%. The calculation indicated that
the total sample size should consist of 113 eyes.

RESULTS

Baseline

The study included 207 eyes of 207 patients.
Patients’ demographics and biometric data are
presented at Table 1. Optimized IOL constants
are shown in Table 2.

Fig. 3 Median absolute error (MedAE) plotted against
anterior chamber depth (ACD) groups for each formula.
ACD anterior chamber depth, BU II Barrett Universal II,

EVO Emmetropia Verifying Optical, HQST Hoffer QST
(Savini/Taroni), MedAE median absolute error, SRK/T
Sanders–Retzlaff–Kraff/theoretica
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Fig. 4 Stacked bars comparing the percentage of cases
within a given diopter (D) range of predicted spherical
equivalent (SE) refraction outcome of each subgroup of
anterior chamber depth (ACD). A Shallow ACD group,

B Regular ACD group, C Deep ACD group. BU II Barrett
Universal II, EVO Emmetropia Verifying Optical, HQST
Hoffer QST (Savini/Taroni), SRK/T Sanders–Ret-
zlaff–Kraff/theoretica

Ophthalmol Ther (2024) 13:1321–1342 1329



Table 5 PE of ten IOL power calculation formulas in K subgroups

Formula ME
(D)

SD
(D)

Min
(D)

Max
(D)

MAE
(D)

MedAE
(D)

Percentage of eyes within different PE ranges
(%)

– 0.25 D – 0.50 D – 0.75 D – 1.00 D

Flat K group

BU II 0.15 0.39 - 0.67 1.22 0.30 0.22 55.9 76.5 91.2 97.1

EVO 2.0 0.06 0.29 - 0.67 0.71 0.22 0.17 61.8 88.2 100.0 100.0

Haigis - 0.07 0.38 - 0.86 0.74 0.32 0.27 50.0 82.4 94.1 100.0

Hoffer Q 0.00 0.38 - 0.80 0.68 0.31 0.27 47.1 73.5 97.1 100.0

HQST 0.09 0.37 - 0.74 0.85 0.29 0.23 52.9 76.5 94.1 100.0

Holladay 1 0.10 0.35 - 0.71 0.81 0.29 0.27 47.1 79.4 97.1 100.0

Kane 0.11 0.37 - 0.73 0.85 0.30 0.25 52.9 76.5 94.1 100.0

Ladas super 0.10 0.37 - 0.70 0.99 0.30 0.22 52.9 76.5 97.1 100.0

SRK/T 0.27 0.39 - 0.61 1.08 0.36 0.29 44.1 73.5 82.4 97.1

T2 0.13 0.36 - 0.69 0.90 0.29 0.20 58.8 79.4 94.1 100.0

Regular K group

BU II 0.03 0.34 - 1.21 0.85 0.28 0.23 53.0 88.0 96.6 99.1

EVO 2.0 0.03 0.32 - 0.97 0.86 0.26 0.24 52.1 89.7 98.3 100.0

Haigis - 0.01 0.35 - 1.18 0.88 0.28 0.26 47.9 89.7 95.7 99.1

Hoffer Q 0.00 0.38 - 1.22 1.03 0.30 0.25 51.3 82.1 94.9 98.3

HQST 0.02 0.33 - 1.15 0.95 0.26 0.23 53.8 89.7 97.4 99.1

Holladay 1 0.01 0.35 - 1.31 0.96 0.27 0.23 53.0 87.2 97.4 99.1

Kane 0.02 0.34 - 1.12 0.93 0.27 0.21 56.4 88.0 97.4 99.1

Ladas super 0.01 0.33 - 1.20 0.75 0.27 0.22 53.0 88.0 99.1 99.1

SRK/T 0.04 0.35 - 1.37 0.96 0.27 0.21 56.4 83.8 97.4 99.1

T2 0.02 0.35 - 1.30 0.97 0.27 0.23 53.0 87.2 97.4 99.1

Steep K group

BU II - 0.13 0.42 - 1.15 0.67 0.35 0.28 44.6 78.6 89.3 96.4

EVO 2.0 - 0.10 0.37 - 0.90 0.53 0.32 0.29 46.4 80.4 96.4 100.0

Haigis 0.06 0.41 - 0.92 0.83 0.34 0.31 39.3 73.2 92.9 100.0

Hoffer Q 0.00 0.41 - 0.99 0.78 0.34 0.31 35.7 80.4 92.9 100.0

HQST - 0.09 0.41 - 1.01 0.69 0.34 0.31 41.1 80.4 91.1 98.2

Holladay 1 - 0.09 0.42 - 1.07 0.70 0.35 0.30 37.5 80.4 91.1 96.4

Kane - 0.08 0.40 - 1.00 0.65 0.33 0.28 44.6 78.6 91.1 100.0

Ladas super - 0.01 0.42 - 1.11 0.74 0.36 0.32 35.7 75.0 92.9 96.4
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PE of the Overall Study Cohort

Table 3 and Fig. 1 summarize the MEs, standard
deviation (SD)s, minimum (Min)s, maximum
(Max)s, MAEs and MedAEs for the ten IOL for-
mulas, as well as the percentage of eyes
within ± 0.25 D, ± 0.50 D, ± 0.75 D,
and ± 1.00 D of the target refraction for each
formula.

The Kane and the EVO2.0 formulas were the
most accurate formulas (P = 0.012, 0.016,
respectively).

The Kane formula had the highest percent-
age of eyes within ± 0.25 D of the target
refraction (52.7%), while the EVO2.0 formula
had the highest percentage of eyes
within ± 0.50 D, ± 0.75 D and ± 1.00 D (87.0,
98.1, 100.0%, respectively) (P = 0.025, 0.000,
0.021, respectively). In addition, the Ladas

Table 5 continued

Formula ME
(D)

SD
(D)

Min
(D)

Max
(D)

MAE
(D)

MedAE
(D)

Percentage of eyes within different PE ranges
(%)

– 0.25 D – 0.50 D – 0.75 D – 1.00 D

SRK/T - 0.24 0.44 - 1.35 0.58 0.41 0.34 26.8 73.2 85.7 94.6

T2 - 0.11 0.41 - 1.07 0.68 0.35 0.33 41.1 82.1 92.9 96.4

BU II Barrett Universal II, D diopters, EVO Emmetropia Verifying Optical, HQST Hoffer QST (Savini/Taroni), IOL
intraocular lens, K keratometry,MAE mean absolute error, Max maximum, MedAE median absolute error, ME mean error,
Min minimum, PE prediction error, SD standard deviation, SRK/T Sanders–Retzlaff–Kraff/theoretical

Fig. 5 Mean prediction error (ME) of each formula,
distributed by keratometry (K) group. BU II Barrett
Universal II, D diopters, EVO Emmetropia Verifying

Optical, HQST Hoffer QST (Savini/Taroni), SRK/T
Sanders–Retzlaff–Kraff/theoretica
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super formula also had the second highest val-
ues (97.1%) for the ± 0.75 D endpoint
(P = 0.003). However, the BU II formula pre-
sented poor predictability (45.9%) in the per-
centage of eyes within ± 0.75 D, which was
significantly different from the EVO2.0 formula
(P = 0.048).

Subgroup Analysis with ACD

Table 4 and Figs. 2, 3, and 4 summarize the MEs,
SDs, Mins, Maxs, MAEs, and MedAEs for the ten
IOL formulas in ACD subgroups, as well as the
percentage of eyes within ± 0.25 D, ±
0.50 D, ± 0.75 D, and ± 1.00 D for each
formula.

Fig. 6 Median absolute error (MedAE) plotted against
keratometry (K) groups for each formula. BU II Barrett
Universal II, EVO Emmetropia Verifying Optical, HQST

Hoffer QST (Savini/Taroni), K keratometry, MedAE
median absolute error, SRK/T Sanders–Retzlaff–Kraff/
theoretica
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Fig. 7 Stacked bars comparing the percentage of cases
within a given diopter (D) range of predicted spherical
equivalent (SE) refraction outcome of each subgroup of
keratometry (K). A Flat K group, B Regular K group,

C Steep K group. BU II Barrett Universal II, EVO
Emmetropia Verifying Optical, HQST Hoffer QST
(Savini/Taroni), SRK/T Sanders–Retzlaff–Kraff/
theoretica
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Table 6 PE of ten IOL power calculation formulas in T subgroups

Formula ME
(D)

SD
(D)

Min
(D)

Max
(D)

MAE
(D)

MedAE
(D)

Percentage of eyes within different PE ranges
(%)

– 0.25 D – 0.50 D – 0.75 D – 1.00 D

Low-toricity group

BU II 0.02 0.42 - 1.15 0.85 0.33 0.29 48.1 79.6 90.7 96.3

EVO 2.0 0.01 0.35 - 0.90 0.86 0.29 0.26 48.1 85.2 96.3 100.0

Haigis 0.03 0.43 - 0.92 0.88 0.36 0.31 35.2 75.9 87.0 100.0

Hoffer Q 0.06 0.43 - 0.99 1.03 0.35 0.29 44.4 77.8 88.9 98.1

HQST 0.04 0.40 - 1.01 0.95 0.32 0.25 50.0 83.3 92.6 98.1

Holladay 1 0.04 0.42 - 1.07 0.96 0.33 0.29 48.1 81.5 92.6 96.3

Kane 0.06 0.40 - 1.00 0.93 0.32 0.25 51.9 77.8 92.6 100.0

Ladas super 0.01 0.41 - 1.11 0.75 0.33 0.32 46.3 77.8 96.3 96.3

SRK/T 0.04 0.44 - 1.35 0.96 0.33 0.26 50.0 79.6 90.7 96.3

T2 0.04 0.41 - 1.07 0.97 0.32 0.25 50.0 81.5 92.6 96.3

Medium-toricity group

BU II 0.01 0.37 - 1.21 1.22 0.29 0.24 52.3 85.2 94.5 98.4

EVO 2.0 0.01 0.33 - 0.97 0.71 0.26 0.23 55.5 86.7 99.2 100.0

Haigis 0.00 0.35 - 1.18 0.74 0.28 0.25 49.2 88.3 97.7 99.2

Hoffer Q 0.00 0.36 - 1.22 0.79 0.29 0.25 49.2 79.7 96.9 99.2

HQST 0.00 0.35 - 1.15 0.85 0.27 0.23 51.6 85.2 96.1 99.2

Holladay 1 0.00 0.36 - 1.31 0.81 0.28 0.25 50.0 85.2 96.9 99.2

Kane 0.00 0.36 - 1.12 0.85 0.27 0.22 53.1 85.9 96.1 99.2

Ladas super 0.01 0.35 - 1.20 0.99 0.28 0.24 51.6 85.9 97.7 99.2

SRK/T 0.01 0.41 - 1.37 1.08 0.32 0.29 43.8 78.9 93.0 98.4

T2 0.01 0.36 - 1.30 0.90 0.28 0.24 52.3 85.2 96.9 99.2

High-toricity group

BU II - 0.08 0.34 - 0.82 0.54 0.28 0.22 52.0 84.0 96.0 100.0

EVO 2.0 - 0.08 0.34 - 0.87 0.41 0.28 0.28 44.0 92.0 96.0 100.0

Haigis - 0.07 0.35 - 0.78 0.57 0.30 0.24 52.0 80.0 96.0 100.0

Hoffer Q - 0.12 0.36 - 0.82 0.56 0.33 0.36 36.0 88.0 96.0 100.0

HQST - 0.10 0.35 - 0.88 0.46 0.30 0.29 44.0 88.0 96.0 100.0

Holladay 1 - 0.10 0.34 - 0.86 0.53 0.30 0.28 36.0 84.0 96.0 100.0

Kane - 0.11 0.34 - 0.84 0.46 0.30 0.24 52.0 84.0 96.0 100.0
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Table 6 continued

Formula ME
(D)

SD
(D)

Min
(D)

Max
(D)

MAE
(D)

MedAE
(D)

Percentage of eyes within different PE ranges
(%)

– 0.25 D – 0.50 D – 0.75 D – 1.00 D

Ladas super - 0.09 0.36 - 0.83 0.57 0.31 0.30 36.0 76.0 96.0 100.0

SRK/T - 0.13 0.40 - 1.04 0.88 0.32 0.23 52.0 80.0 88.0 96.0

T2 - 0.11 0.36 - 0.93 0.68 0.31 0.29 44.0 88.0 96.0 100.0

BU II Barrett Universal II, D diopters, EVO Emmetropia Verifying Optical, HQST Hoffer QST (Savini/Taroni), IOL
intraocular lens, K keratometry, MAE mean absolute error, Max maximum, MedAE median absolute error, ME mean error,
Min minimum, PE prediction error, SD standard deviation, SRK/T Sanders–Retzlaff–Kraff/theoretical, T toricity

Fig. 8 Mean prediction error (ME) of each formula,
distributed by toricity (T) group. BU II Barrett Universal
II, D diopters, EVO Emmetropia Verifying Optical, HQST

Hoffer QST (Savini/Taroni), SRK/T Sanders–Ret-
zlaff–Kraff/theoretica
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In the shallow ACD group, the formulas who
had a ME significantly different from zero were
the Hoffer Q and Holladay 1 formulas, with a
myopic shift (P = 0.001, 0.034, respectively). No
statistically significant difference existed in AE
among formulas. The EVO2.0 formula had the
highest percentage of eyes within ± 0.50 D
and ± 1.00 D of the target refraction (92.5%
and 100.0%, respectively) (P = 0.004 and 0.019,
respectively).

In the regular ACD group, the formulas who
had a ME significantly different from zero were
the Hoffer Q, HQST, Holladay 1, Kane and T2
formulas, with a hyperopic shift (P = 0.003,
0.039, 0.026, 0.026, and 0.021, respectively). No
statistically significant difference existed in AE
among formulas. Both the EVO2.0 and Ladas
super formulas had the highest percentage of
eyes within ± 0.75 D of the target refraction
(98.6% and 98.6%, respectively) (P = 0.005 and
0.004, respectively).

Fig. 9 Median absolute error (MedAE) plotted against
toricity (T) groups for each formula. BU II Barrett
Universal II, EVO Emmetropia Verifying Optical, HQST

Hoffer QST (Savini/Taroni), MedAE median absolute
error, SRK/T Sanders–Retzlaff–Kraff/theoretica
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Fig. 10 Stacked bars comparing the percentage of cases
within a given diopter (D) range of predicted spherical
equivalent (SE) refraction outcome of each subgroup of
toricity (T). A Low-toricity group, B Medium-toricity

group, C High-toricity group. BU II Barrett Universal II,
EVO Emmetropia Verifying Optical, HQST Hoffer QST
(Savini/Taroni), SRK/T Sanders–Retzlaff–Kraff/
theoretica
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In the deep ACD group, the formulas who
had a ME significantly different from zero were
the Ladas super formula, with a myopic shift
(P = 0.038). No statistically significant differ-
ence existed in AE as well as the percentage of
eyes within ± 0.25 D, ± 0.50 D, ± 0.75 D,
and ± 1.00 D among formulas.

Subgroup Analysis with K

Table 5 and Figs. 5, 6 and 7 summarizes the
MEs, SDs, Mins, Maxs, MAEs and MedAEs for
the ten IOL formulas in K subgroups, as well as
the percentage of eyes within ± 0.25 D, ± 0.50
D, ± 0.75 D, and ± 1.00 D for each formula.

In the flat K group, the formulas who had a
ME significantly different from zero were the BU
II and SRK/T formulas, with a hyperopic shift
(P = 0.037, 0.000, respectively). The EVO2.0
formula was the most accurate (P = 0.024),
which also had the highest percentage of eyes
within ± 0.75 D of the target refraction
(100.0%) (P = 0.010).

In the regular K group, there was no signifi-
cant difference between ME and zero in any
formula. No statistically significant difference
existed in AE as well as the percentage of eyes
within ± 0.25 D, ± 0.50 D, ± 0.75 D,
and ± 1.00 D among formulas.

In the steep K group, the formulas who had a
ME significantly different from zero were the BU
II, EVO2.0, SRK/T and T2 formulas, with a
myopic shift (P = 0.023, 0.041, 0.000, 0.045,
respectively). No statistically significant differ-
ence existed in AE as well as the percentage of
eyes within ± 0.25 D, ± 0.50 D, ± 0.75 D,
and ± 1.00 D among formulas.

Subgroup Analysis with T

Table 6 and Figs. 8, 9 and 10 summarizes the
MEs, SDs, Mins, Maxs, MAEs and MedAEs for
the ten IOL formulas in T subgroups, as well as
the percentage of eyes within ± 0.25 D, ± 0.50
D, ± 0.75 D, and ± 1.00 D for each formula.

In the low-toricity group, there was no sig-
nificant difference between ME and zero in any
formula. The EVO2.0 and Ladas super formulas
both had the highest percentages of eyes

within ± 0.75 D of the target refraction (96.3%
and 96.3%, respectively) (P = 0.023, 0.023,
respectively).

In the medium-toricity group, there was no
significant difference between ME and zero in
any formula. The Kane and HQST formulas were
the most accurate formulas (P = 0.013 and
0.023, respectively). The EVO2.0 (99.2%) for-
mula performed the highest percentage of eyes
within ± 0.75 D (P = 0.006).

In the high-toricity group, there was no sig-
nificant difference between ME and zero in any
formula. No statistically significant difference
existed in AE as well as the percentage of eyes
within ± 0.25 D, ± 0.50 D, ± 0.75 D,
and ± 1.00 D among formulas.

DISCUSSION

In this study, we assessed the precision of
diverse formulas in calculating the SE of toric
IOLs. Our findings indicated that the Kane and
EVO2.0 formulations exhibited superior out-
comes. Notably, the EVO2.0 formula performed
well across various ACD, K, and T subgroups.
The Ladas super formula provided additional
benefits within the normal ACD group.

Numerous scholars have emphasized the
superiority of new-generation formulas over
Gaussian optics-based standard formulas in
predicting SE for non-toric IOLs [8]. Pereira et al.
[21] asserted that the Kane, BU II, EVO, T2, and
Ladas Super formulas were the most accurate
preoperative refractive calculations for the
overall cohort. In two large studies, Darcy et al.
[7] and Melles et al. [8] concluded that the Kane
formula performed the highest accuracy overall.
Moreover, Cheng et al. [22] discovered that the
EVO2.0 formula significantly further enhanced
the accuracy compared to the previous version.
It is noteworthy that a formula exhibiting high
accuracy in predicting SE for non-toric IOLs
may not be equally effective for toric IOLs.
Given the distinct degrees on the two meridians
of toric IOLs, the effective lens position (ELP)-
related refractive effect for toric IOLs may differ
from that of non-toric IOLs. As a result, for-
mulas may inaccurately predict the ELP for toric
IOLs, consequently affecting the overall SE
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outcome. Consequently, we selected a specific
cohort of eyes implanted with toric IOLs to
assess the predictive accuracy of both new-
generation formulas and the standard formulas
based on Gaussian optics, along with their
improved version, in estimating SE in this
investigation.

The Kane formula used multiple extensive
datasets compiled by skilled high-volume sur-
geons, employing a blend of theoretical optics,
regression analysis, and artificial intelligence
(AI) components to make its predictions. An
interesting facet of this calculation is the inte-
gration of patient sex as a variable into the
equation [23]. Kane et al. [24] contended that
the predictive efficacy of the Kane toric formula
for astigmatism surpassed that of the Abulafia-
Koch, Barrett, and EVO2.0 toric formulas. Our
current findings further affirmed the Kane for-
mula’s precision in predicting SE of toric IOL.
Our study also found that the EVO2.0 formula
also displayed a promising algorithm. Remark-
ably, it even had a higher percentage of eyes
within ± 0.50 D, ± 0.75 D, and ± 1.00 D com-
pared to the Kane formula, a phenomenon
possibly linked to its emmetropization theory
[25]. As a novel thick-lens formula, it calculates
an ‘‘emmetropia factor’’ for each eye. Simulta-
neously, this formula considers both the optical
dimensions of the eye and diverse IOL geome-
tries [22].

Furthermore, our study also included an
examination of three improved IOL calculation
formulas – the Ladas Super, T2, and HQST for-
mulas. The Ladas Super Formula integrates
optimal components from the Hoffer Q, Holla-
day 1, Holladay 1 with Koch adjustment, and
SRK/T formulas, employing a three-dimensional
model to select the most suitable formula [14].
Additionally, this formula was revised in 2019
based on the postoperative data from over 4000
eyes and is now based on AI [26]. In our study,
the Ladas Super Formula exhibited a signifi-
cantly better performance than the SRK/T for-
mula in the percentage of eyes within ± 0.75 D.
The T2 formula, replacing the corneal height
estimation steps in the SRK/T formula with a
regression formula derived from extensive
patient data [11], performed better than the
SRK/T formula in our cohort. The HQST

formula, retaining the Gaussian optic architec-
ture while incorporating AI for enhanced ELP
prediction and adjustments for eyes with
AL[ 25 mm, [12] demonstrated improved out-
comes compared to the Hoffer Q formula.
Despite these advancements, these three for-
mulas still fell short of the predictive accuracy
achieved by the Kane and EVO2.0 formulas,
implying a potential need for enhancing.

In each of the ACD subgroups, the EVO2.0
formula provided outstanding outcomes, and
the Ladas super formula also yielded good
results in the regular ACD group. Hipólito-Fer-
nandes et al. [27] investigated the impact of
ACD in patients with normal ALs, concluding
that the PEARL-DGS, Kane, EVO2.0, and BU II
formulas were more accurate in the shallow
ACD group. Although no significant differences
were found with other formulas in our study,
the EVO2.0 formula consistently once again
showed a good predictive effect. In terms of ME,
both the Hoffer Q and Holladay 1 formulas
revealed myopic shifts in the shallow ACD
group because of the absence of ACD [3, 5],
which was similar to the other studies which
implanted non-toric IOLs [19, 28]. Moreover,
we discovered that the Ladas super formula
yielded myopic outcomes in the deep ACD
group, and the Hoffer Q, HQST, Holladay 1,
Kane, and T2 formulas resulted a hyperopic
outcome in the regular ACD group, suggesting
that there is room for improvement for these
formula.

In the analysis of K subgroups, the EVO2.0
formula emerged as the most effective in the flat
K group. It is hard to discuss the specific factors
contributing to its outstanding performance, as
it has not been published; nevertheless, it still
merits further attention. Besides, the BU II for-
mula’s poor result is challenging to interpret
due to its unknown principle, also possibly
influenced by the small sample size in this
subgroup, while the result of the SRK/T formula
is easy to explain because of ‘‘cusp phe-
nomenon’’ previously identified by scholars
[29]. Reitblat et al. [29] reported myopic MEs for
all formulas except the Haigis, Olsen, and Hof-
fer Q formulas. This aligned with our findings,
indicating suboptimal prediction accuracy for
each formula in the steep K group.
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Additionally, we also investigated the SE
predictive accuracy of each formula for toric
IOL across various T subgroups. The EVO2.0 and
Ladas super formulas demonstrated high per-
formance in the low-toricity group, whereas the
Kane, HQST, and EVO2.0 formulas performed
well in the medium-toricity group. This
revealed the superior predictability of new-
generation and enhanced formulas in diverse T
subgroups compared to traditional third-gener-
ation formulas.

We acknowledge certain limitations in our
study. While our sample size calculation
deemed it sufficiently large to detect significant
differences in the overall MedAE, larger-scale
studies can offer more substantial insights in
subgroup analyses. In addition, the absence of
lens thickness, central corneal thickness, and
white-to-white measurements restricted our
ability to draw comprehensive conclusions
regarding the comparison between formulas
and the application of some specific formulas. It
is worth noting that these additional variables
are optional in the aforementioned formulas,
with none being mandatory. However, the
fundamental requirements for IOL power cal-
culation were fulfilled through the measure-
ment of AL, ACD, and K [7, 21].

CONCLUSIONS

In summary, our findings indicated that the
new-generation formulas, particularly the Kane
and EVO2.0 formulas, have better performances
in predicting SE for toric IOL in patients with
normal ALs, and the EVO2.0 formula provided
more accurate outcomes across various
subgroups.
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