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ABSTRACT

Introduction: Inaccurate, untimely diagnoses
of fundus diseases leads to vision-threatening
complications and even blindness. We built a
deep learning platform (DLP) for automatic
detection of 30 fundus diseases using ultra-
widefield fluorescein angiography (UWFFA)
with deep experts aggregation.
Methods: This retrospective and cross-sectional
database study included a total of 61,609
UWFFA images dating from 2016 to 2021,
involving more than 3364 subjects in multiple
centers across China. All subjects were divided
into 30 different groups. The state-of-the-art

convolutional neural network architecture,
ConvNeXt, was chosen as the backbone to train
and test the receiver operating characteristic
curve (ROC) of the proposed system on test data
and external test date. We compared the clas-
sification performance of the proposed system
with that of ophthalmologists, including two
retinal specialists.
Results: We built a DLP to analyze UWFFA,
which can detect up to 30 fundus diseases, with
a frequency-weighted average area under the
receiver operating characteristic curve (AUC) of
0.940 in the primary test dataset and 0.954 in
the external multi-hospital test dataset. The tool
shows comparable accuracy with retina spe-
cialists in diagnosis and evaluation.
Conclusions: This is the first study on a large-
scale UWFFA dataset for multi-retina disease
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classification. We believe that our UWFFA DLP
advances the diagnosis by artificial intelligence
(AI) in various retinal diseases and would con-
tribute to labor-saving and precision medicine
especially in remote areas.

Keywords: Ultra-widefield fluorescein
angiography; Deep neural networks; Artificial
intelligence; Fundus/retinal diseases; Long tail

Key Summary Points

Why carry out this study?

Inaccurate and untimely diagnoses of
retinal fundus diseases can lead to vision-
threatening complications and even
blindness, which decreases the quality of
life and aggravates economic burden.

Compared with conventional images,
ultra-widefield fluorescein angiography
(UWFFA) has the advantages of a wide
imaging range and fast acquisition, which
leads to a great improvement in accurate
diagnosis and evaluation.

We developed a clinically applicable deep
learning model to facilitate diagnosis and
evaluation in 30 fundus diseases, making
it the first study on a large-scale UWFFA
dataset for multi-retina disease
classification.

What was learned from the study?

Our deep learning platform (DLP) could
achieve remarkable accuracy on both test
[0.940 area under the receiver operating
characteristic curve (AUC)] and external
test datasets (0.954 AUC), which was
comparable with retinal specialists.

We believe that our UWFFA DLP
enhanced the auxiliary diagnosis in 30
types of common retinopathies
immediately following examination, and
this promising tool will fill the gap in
current artificial intelligence (AI) tools for
UWFFA image diagnosing, and contribute
to labor-saving and precision medicine,
especially in remote areas.

INTRODUCTION

Millions of people in the world suffer from
ocular fundus diseases such as diabetic
retinopathy (DR) [1], retinal vein occlusion
(RVO) [2], age-related macular degeneration
(AMD) [3], retinal detachment (RD) [4], optic
neuropathy, and fundus tumors [5]. Without
accurate diagnoses and timely appropriate
treatment, these diseases cause irreversible
blurred vision, metamorphopsia, visual field
defects, or even blindness, which decrease the
quality of life and aggravate economic burden.

Fundus fluorescein angiography (FFA) is an
examination method with routine clinical
application [6]. In recent years, ultra-widefield
fluorescein angiography (UWFFA) has emerged
with the advantage of capturing nearly 200� and
has been used to image a larger retinal area. The
application of UWFFA is of great significance for
the diagnosis and evaluation of a variety of
vitreoretinal diseases and allowing for more
accurate severity grading [7]. However, the
learning curve of effectively reading either FFA
or UWFFA images is long and training a pro-
fessional requires significant time and cost.
Especially in some rural and remote regions,
characterized by insufficient ophthalmic ser-
vices and a shortage of ophthalmologists, arti-
ficial intelligence (AI) and telemedicine can
help physicians function more effectively. An
examination using either FFA or UWFFA can be
administered by nonprofessionals using an AI
system and selectively delivered online to major
ophthalmic institutions for diagnosis.

Although AI has already achieved impressive
performance on color photography and optical
coherent tomography (OCT), the studies of
UWFFA are either still rare or only involve a
single disease or feature, due to the lack of data.
Moreover, UWFFA images provide varying
dynamic information that cannot be simply
analyzed one-by-one as in static OCT and color
photography. Previous studies [8, 9] also
ignored the difference in distribution between
training and external test data, resulting in a
significant performance drop on out-of-distri-
bution (o.o.d.) testing data.
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In this study, we collected a total of 61,609
UWFFA images dating from 2016 to 2021,
involving more than 3364 subjects in multiple
centers across China. Based on this large-scale
UWFFA dataset, we have developed a multi-
disease automatic detection platform by a
multi-expert classification model and a test-
time aggregation method that could classify 30
types of common fundus diseases and condi-
tions based on UWFFA images. It demonstrated
a competitive performance compared with
retina specialists. Furthermore, our system also
demonstrates high efficiency in the external
multi-hospital test particularly for DR, RVO,
and so on. In general, our study represents an
important step in the application of AI using
UWFFA images.

METHODS

Data Acquisition and Preprocessing

A total of 56,327 UWFFA images were collected
from Eye Center of the Renmin Hospital of
Wuhan University. All images were captured
from February 2016 to September 2021 using
Optos 200Tx or California (Optos plc, Dun-
fermline, UK) with 200� fields of view. The
subjects were examined after mydriasis and
ultra-widefield fundus (UWF) pseudocolor ima-
ges were obtained. After intravenous injection
of fluorescein dye, UWFFA images were cap-
tured during the early (within 1 min) and late
(5–10 min) phases. A total of 2689 images were
excluded due to poor quality, 12,826 images
were excluded because subjects were treated
before capturing images, and 230 images were
excluded due to each disease only containing
images from a single subject. Finally, 40,582
images were split totally randomly into three
sets: the training set contained 27,156 images
from 2055 subjects, the test set contained 8538
images from 671 subjects, and the external test
set contained 4888 images from 379 subjects.
There was no overlap in subjects between
training, test, and external test sets. Further-
more, 4550 UWFFA images from 196 subjects
collected from Shaanxi Eye Hospital, Xi’an
People’s Hospital (Xi’an Fourth Hospital) and

732 UWFFA images from 63 subjects collected
from Tianjin Medical University Eye Hospital
were added to the external test set to verify the
generalizability of the model. All images were
preliminary annotated by two graduate stu-
dents, and then reviewed by senior doctors with
more than 3 years of working experience. When
the images classified by the two senior doctors
were inconsistent, it would be judged by a
superior doctor with more than 20 years of
working experience. All images were classified
into 30 diseases: DR, normal, uveitis, central
retinal vein occlusion (CRVO), branch retinal
vein occlusion (BRVO), myopia, optic neu-
ropathy, familial exudative retinopathy (FEVR),
floaters, macular disorders without AMD, ocular
ischemia syndrome (OIS), retinal degeneration,
central serous chorioretinopathy (CSC), RD,
AMD, choroiditis, retinal arterial obstruction
(RAO), Eales disease, Coat’s disease, Stargardt
disease, retinitis pigmentosa (RP), retinal vas-
culitis, asteroid hyalosis, acute retinal necrosis
(ARN), retinal tear, retina capillary heman-
gioma (RCH), retinal arterial macroaneurysms
(RAMs), drusen, retinal medullated nerve fibers
(RMNF), and prepapillary vascular loops. After
annotation, the training set and test set con-
tained all 30 diseases, the external test set only
contained 24 diseases with RAO, ARN, RCH,
RAMs, drusen, and prepapillary vascular loops
not included. All of the UWF images were
anonymized before being utilized by research
investigators. This study was approved by the
Clinical Research Ethics Committee of Renmin
Hospital of Wuhan University (ethics number
WDRY2021-K034) and conducted in accor-
dance with the tenets of the Declaration of
Helsinki. Informed consent was waived by the
ethics committee as none of the images con-
tained personal information about the patients.
We have permission to access the database.

Model Architecture

Due to the large number of disease labels and
the extremely unbalanced data, as shown in
Fig. 1a, the conventional deep learning strate-
gies and architectures leveraged in [10–13] are
not sufficient for our task. As the distribution of
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samples in the real world and in the test dataset
might not be the same as the distribution of
training samples, the trained model would
perform poorly under that situation. Moreover,
UWFFA images combined consecutive infor-
mation, therefore it is hard to diagnose a case
with a single image because the information
contained in one image is insufficient.

To overcome these problems, we proposed
(i) a multi-expert model with shared shallow
layers and independent expert networks to
learn feature extraction and (ii) a test-time
aggregation method to combine knowledge
from multi-experts for classification. The
schematics of the proposed method is shown
in Fig. 2.

Backbone

The state-of-the-art convolutional neural net-
work architecture, ConvNeXt [14, 15] was cho-
sen as the backbone, which combined the
advantages of ConvNet and Transformer
[16, 17], and achieves competitive performance

with Transformer-based methods on image
classification tasks. The reason of using Con-
vNeXt rather than Transformer-based methods
was that Transformer-based methods are data
hungry so the number of training samples of
most diseases were not enough to train that
type of method. A similar observation was also
found in other studies [18].

Multi-Expert Framework

As shown in Fig. 2, the proposed model includes
two parts: (1) shared two shallow layers of the
backbone f h that could extract general low-level

features [19]; (2) individual expert networks
E1;E2 and E3, each containing two deep layers of
the backbone that learn objective-specific fea-
tures and a classifier for different tasks [20]. The
prediction of the framework is the average of
the logits of all experts.

Each expert was assigned to learn different
objectives and constrained by different losses.
E1 was designed to be good at the distribution of
training data, which would perform well in

Fig. 1 The distribution of datasets. a The distribution of
the training data. b The distribution of the test data.
c–e The distribution of the external test data from WH,
XA, and TJ, respectively. WH: Renmin Hospital of

Wuhan University; XA: Shaanxi Eye Hospital, Xi’an
People’s Hospital (Xi’an Fourth Hospital); TJ: Tianjin
Medical University Eye Hospital
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many group classes. It is constrained by the
traditional cross-entropy loss [21]:

LCE ¼ � 1

N

XN

i¼0
yilog E1 xið Þð Þ;

where E1ð�Þ is the softmax probability
calculated by the expert network E1, N is the
number of data; E2 learns features and the
classifier from balanced distribution. It is guided
by the class balanced loss [22]:

LCB ¼ � 1

N

XN

i¼0

1 � b

1 � bNy
yilog E2 xið Þð Þ;

where E2ð�Þ is the softmax probability produced
by the expert network E2, b is the
hyperparameter, and Ny is the number of

samples in the data labeled as y; E3 aims to
excel on the inverse distribution of training
data, which would perform well in few group
classes. It is supervised by a modified weighted
softmax loss:

LINV ¼ � 1

N

XN

i¼0

1

py

N

Ny
yilog E3 xið Þð Þ;

where E3ð�Þ is the softmax probability of the
expert network E3, py denotes the frequency of

the class y to compensate for the long-tailed
distribution. To guide the whole model, the
final loss is calculated as:

L ¼ LCE þ LCB þ LINV

Test-Time Experts Aggregation

All experts are skilled in different groups and
distributions, so it is important to aggregate
them on unknown test distributions. The
rationale of our test-time aggregation is that the
expert should play a more important role and
be robust in their area of expertise. To measure
the robustness of experts, we introduced a self-
supervised method that aggregates experts with
normalized weights. As shown in Fig. 2, differ-
ent from other self-supervised methods that
create different views for a given sample, our
method utilizes different subnets f 1ð�Þ and f 2ð�Þ
generated by dropout proposed in R-drop [23]

Fig. 2 The structure of proposed method. f h: shared
shallow layers. Ei: expert subnets. Ci: classifier of each
expert. LCE : cross-entropy loss. LCB: class balanced

loss. LINV : inversely weighted softmax loss. E j
i : expert

subnets with jth dropout method. LDKL: symmetrical

Kullback–Leibler divergence. w j
i : the weight of softmax

output from ith expert subnet with jth dropout
method. Pi: the weighted prediction. a The scheme of

the framework with multi-experts Sect. ‘‘Multi-expert
Framework’’: The framework trains multiple experts with
a shared backbone to learn different knowledge. b Test-
time experts aggregation Sect. ‘‘Test-time Experts Aggrega-
tion’’: Data are fed into a network with different dropout
methods learning the weight of each expert to fully utilize
the diverse knowledge from all experts. Best viewed in
color. Zoom in for details
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to find out the learnable weight W ¼
½w1;w2;w3� 2 R3 that minimizes the symmetri-
cal Kullback–Leibler divergence [24]

LDKL ¼ 1

2
LKL f 1 xið Þjjf 2ðxið ÞÞ þ LKL f 2 xið Þjjf 1ðxið ÞÞð Þ

During test-time aggregation, only the
learnable weight W was updated, all
parameters in the networks and classifiers were
frozen. Since an expert would give similar
predictions from different subnets on skilled
classes, minimizing Kullback–Leibler divergence
would learn higher weights for the stronger
expert, even though the test data distribution is
unknown.

Consecutive Information Aggregation

Different from single-image classification,
UWFFA images were captured in a sequence so
that each image provides different information.
As discussed previously, only utilizing a single
UWFFA image for classification was insufficient
for retinal specialists. To fully use the serial
UWFFA images, we proposed to aggregate
information with information entropy. At test
time, the softmax of each image was calculated
using test-time experts aggregation and the
information entropy of the softmax from each
sample was computed during aggregation. After
all images from a single case were processed, the
information entropy of all images were nor-
malized, and their reciprocal were used as the
weight, adding all softmax together to get the
final softmax output for classification.

RESULTS

Implementation Details

All input images were resized to
512 9 512 pixels, followed by random cropping
with padding, random flipping, random erasing
[25], and RandAugment [26] as data augmen-
tation. All models were trained for 200 epochs
on 4 Nvidia RTX3090 GPUs with PyTorch.
During training, the optimizer AdamW [27] was

applied with a learning rate of 4 9 10–3. Subse-
quently, there was a 10 epoch linear warmup
and a cosine decaying schedule. The networks
were regularized with stochastic depth [28] and
label smoothing [29]. The backbone was pre-
trained on ImageNet-1 K [30]. The b was set to
0.99.

Data Characteristics

UWFFA images were collected for deep learning
algorithm development and validation. Train-
ing and test data were collected from Renmin
Hospital of Wuhan University, denoted as WH
in the following sections. External test data
were collected from Shaanxi Eye Hospital, Xi’an
People’s Hospital (Xi’an Fourth Hospital),
denoted as XA in the following sections and
Tianjin Medical University Eye Hospital deno-
ted as TJ in the following sections. Table 1 pre-
sents an overview of the training and test
datasets, Table 2 provides a summary of the
external test dataset, and Table 3 illustrates the
distribution of age and gender. Among them,
the training data were extremely biased
(Fig. 1a), and the distributions of the test data
(Fig. 1b) and the external test data (Fig. 1c–e)
were different from the training data.

System Architecture

A system was developed to classify 30 types of
disease from UWFFA images. A multi-experts
model was trained to learn feature extraction
and a test-time aggregation method was intro-
duced to utilize knowledge from multi-experts
and the sequential information from UWFFA
images. The system was then evaluated under
two different settings. One was similar to the
real-world common clinical diagnosis methods,
that is, doctors read multiple images from a
single subject continuously to diagnose the
disease comprehensively, the other was based
on single-image classification. The technical
details of the system and its implementation are
explained in further detail below.
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Table 1 Summary of training and test datasets

Disease ID Train Test

Images Subjects Images Subjects

DR 0 6950 438 2178 145

Normal 1 4705 612 1516 204

Uveitis 2 2885 147 1002 48

CRVO 3 2583 135 705 45

BRVO 4 2408 178 782 59

Myopia 5 1029 78 324 25

Optic neuropathy 6 812 53 254 17

FEVR 7 684 28 201 9

Floaters 8 555 64 229 21

Macular disorders w/o AMD 9 541 51 205 17

OIS 10 516 23 111 7

Retinal degeneration 11 463 46 153 15

CSC 12 415 28 137 9

Retinal detachment 13 370 25 123 8

AMD 14 348 25 111 8

Choroiditis 15 324 24 128 8

RAO 16 259 15 69 5

Eales disease 17 236 15 53 4

Coats disease 18 172 8 30 2

Stargardt disease 19 146 9 39 2

RP 20 144 9 39 2

Retinal vasculitis 21 89 6 25 1

Asteroid hyalosis 22 87 8 22 2

ARN 23 74 3 24 1

Retinal tear 24 77 9 21 2

RCH 25 67 1 24 1

RAMs 26 65 5 19 1

Drusen 27 64 5 6 1

RMNF 28 51 4 5 1

Prepapillary vascular loops 29 37 3 3 1

DR diabetic retinopathy, CRVO central retinal vein occlusion, BRVO branch retinal vein occlusion, FEVR familial exudative vitreo-

retinopathy, AMD age-related macular degeneration, OIS ocular ischemia syndrome, CSC central serous chorioretinopathy, RAO retinal

arterial obstruction, RP retinitis pigmentosa, ARN acute retinal necrosis, RCH retina capillary hemangioma, RAMs retinal arterial

macroaneurysms, RMNF retinal medullated nerve fibers
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Table 2 Summary of external test datasets

Disease ID WH XA TJ

Images Subjects Images Subjects Images Subjects

DR 0 1400 88 2174 65 245 14

Normal 1 1001 131 528 47 131 22

Uveitis 2 385 22 391 15 – –

CRVO 3 400 24 284 13 151 11

BRVO 4 320 24 511 27 196 15

Myopia 5 161 9 57 2 – –

Optic neuropathy 6 175 11 138 6 – –

FEVR 7 173 8 42 1 – –

Floaters 8 112 10 59 4 – –

Macular disorders w/o AMD 9 173 14 21 1 – –

OIS 10 52 3 – – – –

Retinal degeneration 11 – – 23 2 – –

CSC 12 76 4 103 4 – –

Retinal detachment 13 93 6 - - - -

AMD 14 132 9 31 2 9 1

Choroiditis 15 39 2 - - – –

Eales disease 17 35 1 38 1 – –

Coats disease 18 – – 28 1 – –

Stargardt disease 19 – – 33 1 – –

RP 20 35 2 – – – –

Retinal vasculitis 21 7 1 – – – –

Asteroid hyalosis 22 55 5 89 4 – –

Retinal tear 24 41 4 – – – –

RMNF 28 23 1 – – – –

DR diabetic retinopathy, CRVO central retinal vein occlusion, BRVO branch retinal vein occlusion, FEVR familial
exudative vitreoretinopathy, AMD age-related macular degeneration, OIS ocular ischemia syndrome, CSC central serous
chorioretinopathy, RP retinitis pigmentosa, RMNF retinal medullated nerve fibers, WH Renmin Hospital of Wuhan
University, XA Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), TJ Tianjin Medical University Eye
Hospital
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Performance of the Proposed System

Due to the biased distribution, we split data in
the test dataset into three groups: Many (train-
ing samples[1000), medium (med)
(100\ training samples\1000), and few
(training samples\ 100). Table 4 and Fig. 3
show that the proposed framework performed
well in most diseases on test dataset. As shown
in Fig. 4 for the classification accuracy of each
disease, the darker color on the diagonal of the
matrix indicates a better classification result.
This demonstrated the effectiveness of our
design. To be specific, we achieved a referable
frequency-weighted average F1 score of 0.792,
sensitivity of 0.778, specificity of 0.970, and
area under the receiver operating characteristic
curve (AUC) of 0.940. The system performs rel-
atively well on all diseases in the ‘‘many’’ group.
In the many group, the range of F1 scores is
0.759–0.876. The highest F1 score was achieved
on normal (0.876), which has the most subjects
in the training set. The second was DR (0.868),
which has the most training samples. All AUC
are greater than 0.9 in the ‘‘many’’ group. Dif-
ferent from the ‘‘many’’ group, the F1 scores in
the ‘‘med’’ group have a wide range of
0.167–0.800. The system cannot classify OIS,
Coats, and AMD well. However, the AUC of
each disease in the ‘‘med’’ group is also greater
than 0.8. In contrast, the system performs sur-
prisingly good on the ‘‘few’’ group, achieving
0.512 weighted-average F1 score, and the

weighted accuracy is also much higher than
‘‘med’’ group. The average AUC in the ‘‘few’’
group is almost as high as in the ‘‘many’’ group.
The specificity of all diseases are greater than
0.95.

The proposed system was also evaluated on
the external test dataset. The distribution of the
external test dataset was different from the
training and test dataset, as shown in Fig. 1,
which was far more challenging. Conventional
classification algorithms cannot achieve good
performance on o.o.d. data. Unlike those algo-
rithms, Table 5 and Fig. 5 indicated that our
system could classify disease well, even on an
o.o.d. dataset. In particular, we achieved a
referable frequency-weighted average F1 score
of 0.865, sensitivity of 0.831, specificity of
0.973, and AUC of 0.954. The proposed system
achieved stable performance on ‘‘many’’ and
‘‘few’’ groups from o.o.d. data, and the speci-
ficity was lower than the test dataset. Unex-
pectedly, the system carried out better
classification results in the med group from
external test data. The system failed to classify
RMNF, RP, Stargardt disease, choroiditis, and
retinal degeneration, which could be success-
fully distinguished in the test dataset.

We also conducted ablation studies to
demonstrate the effectiveness of each proposed
module. Firstly, an ablation study was con-
ducted on each loss, and the results are pre-
sented in Table 6. The table indicated that all
losses are essential for our method. This

Table 3 Summary of datasets

Characteristics Training Test External test dataset

Datasets WH WH WH XA TJ

Number of images 27,156 8538 4888 4550 732

Number of patients 2055 671 379 196 63

Agea, mean (SD), years 55.51 ± 16.42 N/A N/A

Mena, no. (%) 53% N/A N/A

WH Renmin Hospital of Wuhan University, XA Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), TJ
Tianjin Medical University Eye Hospital, SD standard deviation
aAge and gender information that could not be obtained are marked as ‘‘N/A’’
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Table 4 Performance of the proposed method on the test dataset

Group Diseases ID Test Subset weighted
accuracy

F1 Sensitivity Specificity AUC

Many DR 0 0.87 0.90 0.95 0.96 86.1%

Normal 1 0.88 0.87 0.95 0.95

Uveitis 2 0.76 0.69 0.99 0.94

CRVO 3 0.87 0.87 0.99 0.99

BRVO 4 0.86 0.90 0.98 0.97

Myopia 5 0.78 0.80 0.99 0.98

Med Optic neuropathy 6 0.62 0.53 1.00 0.85 45.5%

FEVR 7 0.57 0.44 1.00 0.98

Floaters 8 0.47 0.38 0.99 0.83

Macular disorders w/o AMD 9 0.61 0.59 0.99 0.84

OIS 10 0.17 0.14 0.99 0.86

Retinal degeneration 11 0.46 0.40 0.99 0.78

CSC 12 0.46 0.33 1.00 0.94

Retinal detachment 13 0.40 0.63 0.98 0.91

AMD 14 0.27 0.25 0.99 0.93

Choroiditis 15 0.63 0.63 1.00 0.81

RAO 16 0.80 0.80 1.00 1.00

Eales disease 17 0.24 0.50 0.98 0.89

Coats disease 18 0.00 0.00 1.00 0.77

Stargardt disease 19 0.67 0.50 1.00 1.00

RP 20 0.67 0.50 1.00 0.92

Few Retinal vasculitis 21 0.50 1.00 1.00 1.00 72.7%

Asteroid hyalosis 22 0.40 0.50 1.00 0.80

ARN 23 0.00 0.00 1.00 0.87

Retinal tear 24 0.67 1.00 1.00 1.00

RCH 25 0.87 0.90 0.95 0.96

RAMs 26 0.88 0.87 0.95 0.95

Drusen 27 0.76 0.69 0.99 0.94

RMNF 28 0.87 0.87 0.99 0.99

Prepapillary vascular loops 29 0.86 0.90 0.98 0.97
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necessity arises from the foundation of our
method in multi-experts aggregation, enabling
the utilization of knowledge acquired from
various experts to enhance performance. Sec-
ondly, we also tried different number of subnets
used during the test-time experts aggregation.
We found the advantage of employing addi-
tional subnets was obscure. The model
gained ?0.008 average F1 on external test by
leveraging three subnets and ?0.010 average F1
by leverage four subnets. Therefore, we opted
for the implementation of test-time experts
aggregation using two subnets, rather than a
greater number.

AI System versus Retinal Specialists

We evaluated the proposed system versus reti-
nal specialists on two different settings: (i) The
first experiment was tested on a small dataset,
which contained 50 UWFFA images from 19
different diseases (DR, normal, uveitis, CRVO,
BRVO, myopia, optic neuropathy, FEVR, floa-
ters, macular disorders without AMD, CSC, RD,
AMD, choroiditis, Eales disease, Coats disease,
Stargardt disease, RP, retinal tear). None of these
images were included in the training or testing
datasets. The evaluation protocol was consistent
with multiple UWFFA images from a single
subject diagnosed during testing. As shown in
Fig. 6a, our system performed better than reti-
nal specialists with 3 years or less of experience,
but still worse than retinal specialists with more

than 6 years of experience. (ii) The second
experiment was evaluated on another small
dataset selected from the test dataset, which
contained 50 UWFFA images from 29 diseases
(similar diseases from training data except for
RD), and classified with a single UWFFA image.
Our system achieved much better results than
retinal specialists with a single UWFFA image
(Fig. 6b). This indicated that our system can
automatically classify the disease from limited
UWFFA images. Besides, the intergrader relia-
bility between physicians showed substantial
agreement (Cohen’s kappa statistics: graduate
students 0.708, p\ 0.001, senior doctors 0.802,
p\0.001), and all showed strong consistency.

DISCUSSION

At present, the rapid development of AI tech-
nology has seen a wide range of applications
throughout the years. This is especially true in
computer-aided diagnosis of human diseases
[31], including but not limited to Alzheimer’s
disease [32], skin cancer, and lung cancer [33].
In retinal diseases, deep learning algorithms
have been applied for AI-assisted diagnoses to
detect DR [34], AMD [35], retinopathy of pre-
maturity (ROP) [36], glaucoma [37], and papil-
ledema [38]. Many of them are based on fundus
color photography and OCT, while only a few
AI applications are related to FFA or UWFFA.
Ding et al. [39] proposed a novel pipeline to
detect retinal vessels in UWFFA images using

Table 4 continued

Group Diseases ID Test Subset weighted
accuracy

F1 Sensitivity Specificity AUC

Weighted

average

0.78 0.80 0.99 0.98 77.8%

DR diabetic retinopathy, CRVO central retinal vein occlusion, BRVO branch retinal vein occlusion, FEVR familial exudative
vitreoretinopathy, AMD age-related macular degeneration, OIS ocular ischemia syndrome, CSC central serous chori-
oretinopathy, RAO retinal arterial obstruction, RP retinitis pigmentosa, ARN acute retinal necrosis, RCH retina capillary
hemangioma, RAMs retinal arterial macroaneurysms, RMNF retinal medullated nerve fibers, F1 F1 score, AUC area under
the receiver operating characteristic curve

Ophthalmol Ther (2024) 13:1125–1144 1135



deep neural networks (DNNs). This approach
reduced the effort required for generating
labeled ground truth data by combining two
key components: Cross-modality transfer and
human-in-the-loop learning. Moreover, Pan
et al. [40] also applied the model to identify the
nonperfusion areas, neovascularization, laser
scars, and microaneurysms in DR eyes. How-
ever, this approach did not conduct either dis-
ease classification nor grading.

Given this background, our team was the
first to adopt a deep learning model based on
the generative adversarial network (GAN) and
convolutional neural network (CNN) models in
DR. This approach allowed for DR classification
across different levels of severity. Notably, the
accuracy of the model was comparable to that
of the diagnoses made by resident doctors [41].
Nevertheless, limited work has investigated
applying AI to FFA or UWFFA. This is not

Fig. 3 ROC of the proposed system on test data.
a–f ROC curves and AUC for detecting every disease on
test data were calculated and plotted. ROC curves of each
disease and condition are listed in different colors.
g–i ROC curves and AUC were calculated and plotted
by ‘‘many,’’ ‘‘med,’’ and ‘‘few’’ groups, respectively. ROC:
receiver operating characteristic curve; AUC: area under
the receiver operating characteristic curve; Med: medium;
DR: diabetic retinopathy; CRVO: central retinal vein

occlusion; BRVO: branch retinal vein occlusion; FEVR:
familial exudative vitreoretinopathy; AMD: age-related
macular degeneration; OIS: ocular ischemia syndrome;
CSC: central serous chorioretinopathy; RAO: retinal
arterial obstruction; RP: retinitis pigmentosa; ARN: acute
retinal necrosis; RCH: retina capillary hemangioma;
RAMs: retinal arterial macroaneurysms; RMNF: retinal
medullated nerve fibers
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because the examination is not important or
clinically impractical. On the contrary, both
FFA and UWFFA are very important and some-
times indispensable for the diagnosis of many
retinal diseases. Rather, it is difficult to achieve
AI-mediated image reading. This is because the
examination is a dynamic process, and the flu-
orescein sodium circulates in the blood and
gradually empties over time. As such, the ima-
ges at different time points are different, and
the characteristics of a single image are limited.
Comprehensive evaluation of the entire process
is required when reading films manually.

In this study, our model focused on multiple
diseases instead of identifying only one disease
as in most previous studies. In clinical practice,
retinal disease screening of single-disease diag-
nostic algorithms (e.g., DR) would not recog-
nize other fundus diseases such as AMD,
glaucoma, RVO, and RAO. In reality, and espe-
cially in remote areas with an insufficient
number of ophthalmologists, there is an urgent
need for the ability to effectively detect various
types of fundus diseases. It is very valuable to
develop a multidisease detection system using
fundus images to avoid missed diagnoses and
delayed treatment. Additionally, the probability
of occurrence of different diseases varies, which
results in various data distributions at different
places and biased sample data. Previous works
[8, 42] have used augmentation to alleviate
unbalanced samples and achieved considerable

success on classification tasks. However, they
have not considered o.o.d. test data, where the
commonly used methods perform poorly on
o.o.d. data.

To learn from biased long-tail training data
and make the DLP system robust on different
test distributions, we applied a multi-expert
strategy to build a deep learning algorithm as
described in more detail below. Each expert is
constrained by different loss functions to learn
diverse knowledge from the training data. A
test-time multi-expert aggregation method is
also introduced to fully utilize the knowledge
from all experienced experts. Moreover, we
utilized entropy information weighting the
importance of each image in a case to aggregate
consecutive information from sequential
UWFFA images that normal fundus color pho-
tography and OCT do not contain. For all dis-
eases, the high-resolution (512 9 512 pixels)
images were fed into the model to extract
detailed features. Figure 4 shows the confusion
matrices of the proposed DLP with different
testing strategies. Figure 4a demonstrates that
without aggregation strategy, the backbone
cannot achieve a satisfied performance; Fig. 4b
tells that our system could correctly classify
most disease even with only a single image,
which is also proved by the results shown in
Fig. 6; Fig. 4c indicates that the proposed
entropy information weighting could increase
the sensitivity, specificity, and F1 scores of each

Fig. 4 The confusion matrix of the proposed framework
on different test dataset under different settings. a The
performance of our backbone without aggregation strategy.
b The performance of our system with aggregation strategy
using only a single image. c The performance of our system
with aggregation strategy using clinical standard diagnose.

d The performance of our system with aggregation strategy
using clinical standard diagnose on external test dataset.
w/o: without; A: aggregation strategy; w/: with; S: single
image; T: test dataset; C: clinical standard diagnose; T_ext:
external test dataset
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Table 5 Performance of the proposed method on the external test dataset

Group Diseases ID External test Subset weighted
accuracyF1 Sensitivity Specificity AUC

Many DR 0 0.93 0.95 0.97 0.97 88.5%

Normal 1 0.89 0.88 0.95 0.95

Uveitis 2 0.75 0.70 0.99 0.91

CRVO 3 0.89 0.85 1.00 0.99

BRVO 4 0.92 0.89 0.99 0.97

Myopia 5 0.89 0.73 0.89 0.99

Med. Optic neuropathy 6 0.77 0.71 1.00 0.95 54.3%

FEVR 7 0.62 0.44 1.00 0.90

Floaters 8 0.64 0.50 1.00 0.92

Macular disorders w/o

AMD

9 0.58 0.60 0.99 0.95

OIS 10 0.50 0.33 1.00 0.92

Retinal degeneration 11 0.00 1.00 0.00 0.66

CSC 12 0.67 0.63 1.00 0.95

Retinal detachment 13 0.42 0.83 0.98 0.91

AMD 14 0.60 0.50 1.00 0.96

Choroiditis 15 0.00 0.00 1.00 0.78

Eales disease 17 0.19 1.00 0.97 0.97

Coats disease 18 0.00 0.00 1.00 0.85

Stargardt disease 19 0.00 0.00 1.00 0.96

RP 20 0.00 0.00 1.00 0.85

Few Retinal vasculitis 21 0.50 1.00 1.00 1.00 73.2%

Asteroid hyalosis 22 0.88 0.78 1.00 0.93

Retinal tear 24 0.67 0.75 1.00 0.84

RMNF 28 0.00 0.00 1.00 0.90

Weighted average 0.87 0.83 0.97 0.95 83.1%

DR diabetic retinopathy, CRVO central retinal vein occlusion, BRVO branch retinal vein occlusion, FEVR familial
exudative vitreoretinopathy, AMD age-related macular degeneration, OIS ocular ischemia syndrome, CSC central serous
chorioretinopathy, RP retinitis pigmentosa, RMNF retinal medullated nerve fibers, F1 F1 score, AUC area under the
receiver operating characteristic curve
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disease; and Fig. 4d implies that our model is
robust on external test data with unknown
distribution.

The deep neural network works as a black
box that hinders it from being applied in clini-
cal works [9]. To understand the framework,
Grad-cam [43] is utilized to visualize the atten-
tion map of the model. The specialists could
examine whether the model makes a right
decision based on the correct captured features
on the images. From Fig. 7 we can find that our
model could locate most of the lesion correctly.

Moreover, we also analyzed other samples from
the test dataset, which indicated that the model
paid more attention to disease-related areas that
were consistent with expert domain knowledge.

As far as we know, our study is the first to
realize the multidisease classification of UWFFA
based on deep learning, which well fills the gap
in the application of AI. If this multidisease
algorithm model were to be widely used, it
would bring great convenience to patients and
specialists alike. For example, the algorithm can
be used in intelligent UWFFA image analysis

Fig. 5 ROC of the proposed system on external test data.
a–f ROC curves and AUC for detecting every disease on
external test data were calculated and plotted. ROC curves
of each disease and condition are listed in different colors.
g–i ROC curves and AUC were calculated and plotted by
‘‘many,’’ ‘‘med,’’ and ‘‘few’’ groups, respectively. ROC:
receiver operating characteristic curve; AUC: area under

the receiver operating characteristic curve; DR: diabetic
retinopathy; med: medium; CRVO: central retinal vein
occlusion; BRVO: branch retinal vein occlusion; FEVR:
familial exudative vitreoretinopathy; AMD: age-related
macular degeneration; OIS: ocular ischemia syndrome;
CSC: central serous chorioretinopathy; RP: retinitis
pigmentosa; RMNF: retinal medullated nerve fibers
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systems and hospital electronic medical report
management systems. For patients, they can
obtain an AI rapid diagnosis report as soon as
they finish the UWFFA examination. This
would provide timely information about their
condition. For specialists, this tool would
reduce the workload of trained professionals
and allow untrained technicians to objectively
screen and handle many more patients without
relying on specialists. In addition, it is also
convenient for specialists to manage and track
patient data, so as to better grasp the patient’s
condition. This would also allow for the physi-
cians’ needs regarding learning and scientific
research to be met. Finally, we hope that our

model can be applied to general clinical situa-
tions, as we believe it will benefit specialists and
patients in county hospitals and rural areas in
particular.

This study contains several limitations,
which caused a few failure classification cases.
(i) Even though our system alleviated the long-
tailed problem, still the dataset in some rare
disease with limited data. Our system demon-
strated favorable performance in the ‘‘many’’
group, while less than satisfactory in ‘‘med’’
group, as indicated in Table 4 and Table 5. This
might be caused by (1) it being challenging to
extract features of lesions that are too diffused
or too small from limited training samples. A

Table 6 Ablation study on each loss. Weighted average results on external test data are reported

LCE 1 LCB 1 LINV F1 Sensitivity Specificity AUC

H 0.75 0.72 0.97 0.94

H 0.78 0.78 0.99 0.95

H 0.42 0.46 0.98 0.91

H H 0.82 0.79 0.98 0.93

H H 0.80 0.74 0.99 0.92

H H 0.63 0.66 1.00 0.95

H H H 0.87 0.83 0.97 0.95

LCE cross entropy loss, LCB class balanced loss, LINV inversely weighted softmax loss, F1 F1 score, AUC area under the
receiver operating characteristic curve

Fig. 6 The classification performance of retinal specialists
verses the proposed system. a The accuracy of retinal
specialists with different years of experience and our system

using multi-images to diagnose. b The accuracy of retinal
specialists with different years of experience and our system
using single images to diagnose
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typical example is shown in Fig. 7b where the
model missed some correct characteristics of the
lesion in ARN, resulting in misclassification.
Likewise, the similar problem can be observed
in OIS and prepapillary vascular loops; (2) when
it comes to common features in two different
diseases, it is tricky to distinguish one type in
the ‘‘med’’/‘‘few’’ group from another disease
type in the ‘‘many’’ group. For instance, as
shown in Fig. 7d, the RAMs shares similar fea-
tures and lesion location with BRVO thus
causing a misclassification event. However, it is
not solely exists in DLPs, until now we are fac-
ing the same issue with experienced human
specialists; and (3) capturing small lesions such
as leaking points and prepapillary vascular
loops is subtle even in high-resolution images.
The original resolution of the UWFFA is around
4 K, which was resized to 512 9 512 for our
system. With a lower resolution, some lesions
were lost during compression, and this will
affect learning robust representations of the
lesions from training data. (ii) Currently, our
system lacks of the ability to distinguish the
quality of the image. In this study, low-quality
data were manually excluded from our datasets.
However in the real world, the image quality is

not always ideally high enough for our DLP,
resulting in performance degradation. For dec-
ades, tremendous effort has been made in the
standardization of imaging and examination,
and auto-selection algorithms are also under
developing; together we believe that we could
fix UWFFA image quality issue in the DLP sys-
tem. These common misclassifications are
excusable to some extent. The main advantage
of UWFFA lies in retinal vascular diseases and
peripheral lesions, meanwhile it is difficult to
accurately classify some tiny and occult lesions
of macula and optic disc. In fact, specialists face
the similar problems in reading UWFFA images.
As we mentioned above, several aspects need to
be further improved in our DLP system. As a
next step, we will optimize this model by col-
lecting a larger number of UWFFA images. In
addition, we will conduct real-world study in
the future, and continue to verify the perfor-
mance of our model with real-world data.

CONCLUSIONS

To our knowledge, this is the first report to
show up to 30 types of retina diseases and

Fig. 7 UWFFA images and corresponding visualized
attention map. a Our model located the lesion correctly
in the AMD eye. b The model missed some correct
characteristics of the lesion in ARN, resulting in misclas-
sification. c Our model located the lesion correctly in the
BRVO eye. d The RAMs shares similar features and lesion

location with BRVO, thus causing a misclassification
event. UWFFA: ultra-widefield fluorescein angiography;
AMD: age-related macular degeneration; ARN: acute
retinal necrosis; BRVO: branch retinal vein occlusion;
RAMs: retinal arterial macroaneurysms
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conditions that can be detected by deep learn-
ing algorithms in UWFFA at an accuracy level
comparable to that of retinal specialists. This is
also the largest UWFFA image dataset at present.
Such a UWFFA DLP could be applied to tele-
medicine systems and would contribute to labor
saving and precision medicine especially in
remote areas. In the future, we will continue to
accumulate larger scale of sample sizes and
optimize the classification model with higher
accuracy and more types of diseases, while
achieving automatic classification and grading
of common diseases [e.g., the Early Treatment
for Diabetic Retinopathy Study (ETDRS) auto-
matic grading in DR], to provide more com-
prehensive and prognostic information of
certain diseases.
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