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ABSTRACT

Introduction: The mismatch between training
and testing data distribution causes significant
degradation in the deep learning model perfor-
mance in multi-ethnic scenarios. To reduce the
performance differences between ethnic groups
and image domains, we built a deep transfer
learning model with adaptation training to
predict uncorrected refractive errors using

posterior segment optical coherence tomogra-
phy (OCT) images of the macula and optic
nerve.
Methods: Observational, cross-sectional, mul-
ticenter study design. We pre-trained a deep
learning model on OCT images from the
B&VIIT Eye Center (Seoul, South Korea)
(N = 2602 eyes of 1301 patients). OCT images
from Poona Eye Care (Pune, India) were
chronologically sorted into adaptation training
data (N = 60 eyes of 30 patients) for transfer
learning and test data (N = 142 eyes of 71
patients) for validation. Deep learning models
were trained to predict spherical equivalent (SE)
and mean keratometry (K) values via transfer
learning for domain adaptation.
Results: Both adaptation models for SE and
K were significantly better than those without
adaptation (P\ 0.001). In myopia/hyperopia
classification, the model trained on circular
optic disc OCT images yielded the best perfor-
mance (accuracy = 74.7%). It also performed
best in estimating SE with the lowest mean
absolute error (MAE) of 1.58 D. For classifying
the degree of corneal curvature, the optic nerve
vertical algorithm performed best (accu-
racy = 65.7%). The optic nerve horizontal
model achieved the lowest MAE (1.85 D) when
predicting the K value. Saliency maps fre-
quently highlighted the retinal nerve fiber
layers.
Conclusions: Adaptation training via transfer
learning is an effective technique for estimating
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refractive errors and K values using macular and
optic nerve OCT images from ethnically
heterogeneous populations. Further studies
with larger sample sizes and various data sour-
ces are needed to confirm the feasibility of the
proposed algorithm.

Keywords: Adaptation training; Transfer
learning; Ethnically distinct populations; OCT;
Refractive errors

Key Summary Points

Why carry out this study?

Despite the known racial and ethnic
differences in ocular measurements and
pathological conditions, few studies have
examined the application of deep learning
in different races.

We aimed to employ a transfer learning
technique for the adaptation process,
initially train the algorithm on an East
Asian dataset, and validate it in an Indian
population to predict refractive error and
corneal curvature using posterior segment
optical coherence tomography (OCT)
images.

What was learned from the study?

We successfully developed deep learning
algorithms to predict refractive error and
corneal curvature from macular and optic
nerve OCT images.

Transfer learning successfully tuned the
domain shift caused by differences in
ethnicity and imaging devices with small
data. This algorithm will be clinically
useful for screening when further studies
with larger sample sizes and various data
sources are conducted.

INTRODUCTION

Deep learning is a type of artificial intelligence
(AI) in which a model learns predictive features
and patterns from raw data without requiring
the features to be specified explicitly [1]. It has
been applied in ophthalmology for identifying
vision-related diseases [2, 3]. However, despite
the known racial and ethnic differences in
ocular measurements and pathological condi-
tions [4, 5], few studies have examined the
application of deep learning in different races.
Especially the mismatch between training and
testing data distribution causes significant
degradation in the model performance in multi-
ethnic scenarios. Although ethnic differences in
retinal images have been reported [6], the
application of deep learning models to different
ethnicities has not yet been studied. It is nec-
essary to study whether deep learning models
developed for a specific race can be applied to
other races or domains.

In transfer learning, information gleaned
from one task is applied to a related problem in
a different domain [7], which is typically used
when training data are scarce or heterogeneous.
The transfer learning approach could improve
disease detection accuracy for data-disadvan-
taged ethnic groups and for intra-study domain
adaptation [8]. In a previous study, a model
trained on large-scale genome data was first
adapted for a small ethnic group through fine-
tuning and additional domain adaptation
training [9]. Thus, a new task with a small
adaptation dataset can be trained using pre-
trained weights from a large dataset through
transfer learning [10]. It is expected that the
spread of AI models for various groups will
become possible through intra-study adaptation
training using ocular images.

Refractive errors (myopia, hyperopia, and
astigmatism) occur when light is not accurately
focused on the macula. Uncorrected refractive
error (URE) remains the leading cause of visual
impairment and the second leading cause of
blindness globally, with 596 million people
suffering from distance visual impairment and
43 million considered legally blind in 2020
[11, 12]. A link between URE and other ocular
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morbidities has been observed, such as an
increased risk of open-angle glaucoma and
retinal detachment in myopia [13]. In addition,
progressive elongation of the eyeball in high
myopia also causes degenerative fundoscopic
changes, including posterior staphyloma, lac-
quer cracks of the Bruch’s membrane, chori-
oretinal atrophy, and vision-threatening
choroidal neovascularization [14]. This diffi-
culty is exacerbated by the fact that clinicians
focus on pathological ocular lesions in patients
with low vision. Therefore, the impact of
refraction may be underappreciated in diag-
nosing and distinguishing multiple possible
causes of visual impairment [15].

In this study, we evaluated retinal imaging-
domain deep learning models in ethnically
distinct populations. Recently, both fundus
photography and posterior segment optical
coherence tomography (OCT) have been used
to train deep learning models to predict refrac-
tive errors [16]. We sought to tackle the domain
difference in developing deep learning models
to predict URE, classify the degree of myopia
and hyperopia, and estimate the corneal cur-
vature from macular and optic nerve OCT
images. We aimed to employ a transfer learning
technique for the adaptation process, initially
train the algorithm on an East Asian dataset,
and validate it in an Indian population.

METHODS

Study Design

The main objective of this study was to evaluate
the performance of multi-ethnic machine
learning schemes via transfer learning in eth-
nically distinct populations. Data were obtained
from two sources: South Korea (for initial model
development) and India (for model adaptation
and validation). This observational, cross-sec-
tional study was approved by the Ethics Com-
mittee of Sahyadri Hospital in Pune,
Maharashtra, India, and the Korean National
Institute for Bioethics Policy (KoNIBP, No. P01-
202302-01-009) in Seoul, South Korea. All pro-
cedures adhered to the principles of the Decla-
ration of Helsinki. Informed consent was

obtained from all Indian patients in their pre-
ferred language (English, Hindi, or Marathi),
and the KoNIBP waived the requirement for
informed consent for retrospective data
collection.

Dataset

We pre-trained the deep learning models to
learn the features of OCT using a large Korean
dataset (N = 2602 eyes of 1301 patients). We
enrolled an independent Indian dataset for
adaptation and external validation. The Indian
dataset was chronologically sorted into adapta-
tion training data (N = 60 eyes of 30 patients)
for transfer learning and test (N = 142 eyes of 71
patients) data for validation.

To build the initial deep learning models
using a large Korean dataset, we analyzed the
preoperative ocular data of healthy patients
aged between 21 and 50 years who underwent
refractive surgery at the B&VIIT Eye Center
between January 2018 and December 2020. We
used the preoperative data to guarantee that the
subjects have no past surgical history. Patients
with poor image quality were excluded. Retinal
cross sections passing through the center of the
retina (fovea) along the horizontal and longi-
tudinal axes were collected during a three-di-
mensional OCT examination (Topcon 3D OCT-
1 Maestro, Tokyo, Japan). All subjects under-
went visual acuity measurements, autorefrac-
tometer readings (Nidek ARK-1, Nidek Co Inc.,
Gamagori, Japan), and manifest refraction.

For the Indian dataset, preoperative patients
aged[18 years who sought LASIK, cataract
surgery, or routine ophthalmic examination at
Poona Eye Care (Pune, Maharashtra, India)
between October 2022 and December 2022 were
recruited. Each subject underwent a visual acu-
ity test, autorefractometer readings (Topcon KR-
8900 Auto Keratorefractometer, Tokyo, Japan),
and manifest refraction. Horizontal and vertical
OCT cross sections through the center of the
macula and the center of the optic nerve, as well
as OCT cross sections around the circumference
of the optic nerve, were obtained using Cirrus
HD-OCT 500 (Software Version 10.0.1.19039,
Carl Zeiss Meditec, Jena, Germany) using the
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built-in automatic focusing feature to select the
highest-quality images of the macula.

We used the central pseudo-color B-scans
images from each volume for the deep learning
analysis. In this study, those with a self-reported
history of any previous ocular surgery or those
with retinal or optic nerve pathology, as iden-
tified on OCT, were excluded from both the
Korean and Indian datasets. Supplementary
Fig. 1 shows examples of OCT images from the
B&VIIT and Poona Eye Care.

Algorithm Development

Spherical equivalent (SE) was used as the target
metric for determining refractive error, which
incorporates both refractive power (sphere) and
astigmatism (cylinder). High myopia was
defined as SE of - 6.00 D or below, mild-to-
moderate myopia as SE between - 6.00 and
0.00 D, and hyperopia as SE of 0.00 D or greater.
The K value was used as the target metric for
determining corneal curvature, which averages
the flat meridian (K1) and steep meridian (K2)
measured by keratometry. A flat cornea was
defined as a K value of 42.0 D or below, a regular
cornea as K value between 42.0 and 45.0 D, and
a steep cornea as K value of 45.0 or greater [17].
This categorization has been adopted in previ-
ous studies to predict different postoperative
prognoses according to corneal curves [17, 18].
When analyzing the keratometry values, eight
eyes were excluded from the original test set
(N = 142 eyes) due to missing values.

As shown in Fig. 1, we employed stepwise
transfer learning to predict URE (measured
using SE) and corneal refractive power (K value)
to overcome the ethnic and image domain dif-
ferences between multicenter data sources. As
the Indian dataset was too small to fully train
the CNN, we adopted transfer learning for
domain adaptation based on a large Korean
dataset. In the prior-learning stage, we pre-
trained the models without freezing weights to
predict the URE and K values from the Korean
OCT dataset via transfer learning using a pre-
trained CNN from the ImageNet dataset (Sup-
plementary Fig. 2). In the target-task learning
stage, the fully connected layer of the trained

model was fine-tuned using only small adapta-
tion datasets from Indian subjects. This fine-
tuning used the pre-trained weights as a starting
feature-space point for further training on the
small target dataset (Indian dataset) with the
same architecture as the source model. Deep
learning models were trained individually for
each OCT imaging domain (macula horizontal
and vertical OCT). We used the macular-hori-
zontal OCT model pre-trained on the Korean
dataset as a prior model for training the optic
nerve OCT (horizontal, vertical, and circular)
image domains.

A pre-trained ResNet50 architecture was used
as the feature extractor (Supplementary Fig. 3).
This architecture has shown robust predictive
performance in OCT-based tasks [19, 20]. All
ResNet50 weights of the feature extractor were
trained using the Korean dataset. Through this
pretraining, the feature extractor learns the
basic features and patterns present in the OCT
images, such as retinal layers, thickness, and
shape. Once pretraining is completed, the CNN
can be fine-tuned on a small task dataset. The
weights of the feature extractor nets were fixed
for the target task learning based on the Indian
dataset. In our study, the last layer of the CNN
architecture was replaced with a modified fully
connected layer (2 9 2048 weights and 2 9 1
bias for ResNet50), a Soft-max function for
classification tasks, and a linear regressor for
regression tasks. The input images were resized
according to the input tensor of ResNet50. To
avoid overfitting, typical linear data augmenta-
tion methods were used in all training processes
[21]. Augmentation using changes in magnifi-
cation and axis was set widely to cover the
magnification and scan area between the two
domains random position translations (- 20%
to ? 20%), random rotations (- 15� to 15�),
random magnifications (- 25% to 25%). The
cross-entropy loss was used as the loss function
for training the classification models. We used
mean absolute error (MAE) as the loss function
for all for regression tasks. All models were
optimized using stochastic gradient descent
(SGD) with momentum algorithm (learning
rate = 0.0001) with a mini-batch size of 32. The
experiments for optimizing the architecture
were performed using MATLAB R2022a
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(MathWorks Inc., Natick, MA, USA). For inter-
pretability, saliency maps were generated using
the gradient-weighted class activation mapping
(Grad-CAM) technique to visualize the areas on
which the deep-learning model was focused. For
hands-on experience with this study, the codes
for practice and light-version models are pro-
vided at a publicly accessible source (https://
data.mendeley.com/datasets/89z7h5gnpw). In
this material, the deep learning models were
developed based on Python and implemented
in Keras with TensorFlow.

Statistical Analysis

To evaluate the predictive performance of the
deep learning models, the MAE, median abso-
lute prediction error (MedAE), and Pearson
correlation coefficient were computed in the
test dataset validation. The MAE values between
the models were compared using a paired t test.
To detect specific conditions using each binary
deep learning model, the area under the recei-
ver operating characteristic curve (ROC-AUC)
was calculated. Youden’s index, a widely used
estimate of optimal thresholds that assigns
equal weight to sensitivity and specificity, was
adopted in this study [22]. Cohen’s kappa and
Matthew’s correlation coefficients, which are
common metrics in multiclass classification
[23], were used to evaluate the multiclass

prediction tasks [24]. These two metrics range
from 0 to 1, and the closer they are to 1, the
higher the classification performance.

RESULTS

The characteristics of the patients in the B&VIIT
(N = 2602 eyes of 1301 subjects) and Poona Eye
Care (adaptation set with N = 60 eyes of 30
subjects; validation set with N = 142 eyes of 71
subjects) are summarized in Table 1. The data-
sets showed different characteristic distribu-
tions. The mean keratometry was the only
parameter for which no significant differences
were observed among the development, adap-
tation, and validation datasets.

The experimental results of modulating the
size of the adaptation dataset are shown in
Fig. 2. As expected, the SE and mean keratom-
etry prediction accuracies improved as the size
of the adaptation dataset increased. However,
this effect tapered off when the size of the
adaptation dataset was[40. When compared
to the no-adaptation training (size of the adap-
tation dataset = 0), the performance was greatly
improved after all adaptation processes
(P\0.001 for all paired comparisons). As can be
seen here, models trained with the Korean
dataset without adaptation training showed
critically low accuracy on the unseen new
Indian dataset in both the SE and mean

Fig. 1 Deep learning model development and workflow. Schematic of the training and knowledge transfer process for
predicting refractive errors and keratometry. OCT optical coherence tomography
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keratometry prediction. Based on this analysis,
a size of 60 is used for the results presented
below.

The performance of the deep learning model
in estimating URE and corneal curvature is
presented in Table 2. The model trained on
circular cross sections of the optic nerve per-
formed significantly better than the other
models in estimating spherical equivalent, with
a MAE of 1.58 D and a MedAE of 1.38 D. For
keratometry prediction, the models trained on
horizontal and vertical cross sections of the
optic nerve showed the best performance, with
MAEs of 1.85 and 1.91 D and MedAEs of 1.59
and 1.67 D, respectively. The P values for the

MAE comparison of the other three models
were\0.001, indicating a significantly worse
performance.

Figure 3 shows the accuracy of the model in
classifying eyes as having hyperopia, mild
myopia, or high myopia. The model trained on
circular cross sections of the optic nerve showed
the best prediction accuracy of 74.7%, with a
Cohen’s kappa of 0.489 and Matthew’s correla-
tion of 0.494.

Figure 4 shows the accuracy of the model in
classifying the eyes as having flat, regular, or
steep corneas. The model trained on vertical
cross sections of the optic nerve showed the best
prediction accuracy of 65.7%, with a Cohen’s

Table 1 Demographics and ocular data of subjects in training data (Korea) and validation data (India)

Original development data
(B&VIIT Eye Center, South
Korea; N = 2602 eyes from 1301
patients)

Adaptation data (Poona
Eye Care, India; N = 60
eyes from 30 patients)

Validation data (Poona
Eye Care, India;
N = 142 eyes from 71
patients)

P value for
multiple
comparison

Age (years) 26.23 ± 5.80 32.58 ± 11.21 30.41 ± 9.17 \ 0.001

Sex,

female:male

784:517 15:15 30:41 \ 0.001

Axial length

(mm)

25.47 ± 1.68 24.64 ± 1.03 23.97 ± 1.17 \ 0.001

Manifest refraction

Sphere (D) - 3.77 ± 2.16 - 2.40 ± 2.67 - 2.40 ± 2.41 \ 0.001

Cylinder (D) - 1.91 ± 1.50 - 0.76 ± 1.08 - 0.83 ± 0.99 \ 0.001

Spherical

equivalent

(D)

- 4.73 ± 2.38 - 2.78 ± 2.69 - 2.82 ± 2.53 \ 0.001

Corneal refractive power

Flattest

keratometry

(D)

42.53 ± 3.13 42.94 ± 1.30 43.47 ± 1.48 \ 0.001

Steepest

keratometry

(D)

44.89 ± 3.82 44.01 ± 1.29 44.54 ± 1.58 \ 0.001

Mean

keratometry

(D)

43.71 ± 3.42 43.48 ± 1.23 44.01 ± 1.49 0.698
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kappa of 0.364 and Matthew’s correlation of
0.353. The overall performance in classifying
the degree of corneal curvature was worse than
that in classifying the degree of myopia/hyper-
opia, with the best accuracy in the former
(65.7%) being still lower than the worst accu-
racy in the latter (68.8%).

The ROC curves are shown in Fig. 5. The
optic nerve circular model had an AUC of 0.956
and 0.869 for detecting high myopia and
hyperopia, respectively, demonstrating the best
performance. The optic nerve vertical model
was the best at detecting flat and steep corneas
with ROC-AUCs of 0.848 and 0.879, respec-
tively. We also performed the deep learning
experiments on two additional learning tasks
without adaptation training. Figure 6 shows
that the transfer learning models with adapta-
tion training outperformed the models without
adaptation (including models trained with only
the Korean dataset and those with only the
Indian adaptation dataset) in all prediction
tasks (P\ 0.001 for all comparisons).

Figures 7 and 8 show examples of the Grad-
CAM saliency mapping technique for the pre-
diction of SE and K value and for the classifica-
tion of hyperopia/myopia and flat/steep corneal
curvature. The entire retinal layer of the local

area around the fovea was frequently high-
lighted to determine URE in the macula hori-
zontal, macula vertical, and optic nerve circular
cross-sectional images. The Bruch’s membrane
opening and the internal limiting membrane at
the optic nerve cupping were frequently high-
lighted for determining SE in the horizontal and
vertical optic nerve cross-sectional images. A
similar pattern was observed when predicting
K values. The entire retinal layer around the
fovea was frequently highlighted to determine
K values.

DISCUSSION

In this study, we presented a deep transfer
learning framework by adaptation training to
build better models for the data-disadvantaged
group. Transfer learning successfully tuned the
domain shift caused by differences in ethnicity
and imaging devices with small data. During
adaptation learning, we tried to overcome the
difference between the two image domains
through traditional data augmentation. We
developed deep learning algorithms to predict
refractive error and corneal curvature from five
types of OCT images: horizontal and vertical
cross sections of the macula and horizontal,

Fig. 2 Experimental results for deep learning model adaptation. Influence of the adaptation dataset size on A refractive
error and B mean keratometry prediction accuracy
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vertical, and circular cross sections of the optic
nerve. We also used these images to train the
algorithm to classify eyes as having high myo-
pia, moderate myopia, or hyperopia and to
classify corneal curvature as flat, normal, or
steep. Attempts to predict refractive errors and
corneal curvature from OCT images of the
retina and optic nerve in various domains are
new challenges. Although it is an experimental
study, new relationships that have been clini-
cally estimated [25, 26] were observed through
deep learning. There was a limit to classification
performance in prediction of corneal curvature,
but we found a significant possibility.

This study demonstrated that AI could use
posterior segment morphology, as shown on
OCT, to estimate the ocular properties typically
associated with anterior segment anatomy. It
also underscores the value of the transfer
learning technique in pre-training a model on
one task and adapting it to a more specific task
using heterogeneous training data. Although
URE and keratometry may not immediately
indicate ocular pathology and we can easily
measure them, this study provides a new insight
that OCT images have another piece of ocular
information (Supplementary Table 1).

While macular OCT images have previously
been used for predicting refractive error, this

Table 2 Validation performance of the developed model after adaptation for estimating spherical equivalent and ker-
atometry in the Indian validation set

Domain MAE – SD
(D)

MedAE
(D)

Pearson
correlation

P value for
correlation

P value for MAE
comparison

SE prediction

(ResNet50)

Macula

horizontal

1.65 ± 1.14 1.41 0.715 \ 0.001 \ 0.001

Macula

vertical

1.71 ± 1.07 1.42 0.703 \ 0.001 \ 0.001

Optic nerve

horizontal

1.62 ± 1.16 1.40 0.720 \ 0.001 \ 0.001

Optic nerve

vertical

1.61 ± 1.10 1.40 0.734 \ 0.001 0.003

Optic nerve

circular

1.58 ± 1.03 1.38 0.741 \ 0.001 Reference

Keratometry

prediction

(ResNet50)

Macula

horizontal

2.42 ± 1.71 2.18 0.627 \ 0.001 \ 0.001

Macula

vertical

2.23 ± 1.74 2.05 0.655 \ 0.001 \ 0.001

Optic nerve

horizontal

1.85 ± 1.70 1.59 0.689 \ 0.001 Reference

Optic nerve

vertical

1.91 ± 1.72 1.67 0.680 \ 0.001 0.141

Optic nerve

circular

2.65 ± 1.79 2.27 0.602 \ 0.001 \ 0.001

MAE mean absolute prediction error, MedAE median absolute prediction error, SD standard deviation, SE spherical
equivalent
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Fig. 3 Classification performance for identifying hyper-
opia/mild myopia/high myopia (N = 142 eyes). Ground
truth vs. prediction of the degree of myopia/hyperopia for
models trained on A horizontal and B vertical cross-

sections of the macula and C horizontal, D vertical, and
E circular cross-sections of the optic nerve. SE spherical
equivalent

Fig. 4 Classification performance for identifying flat/
regular/steep cornea (N = 134 eyes). Ground truth vs.
prediction of the degree of corneal curvature for models
trained on A horizontal and B vertical cross sections of the
macula and C horizontal, D vertical, and E circular cross

sections of the optic nerve. When analyzing the keratom-
etry values, eight eyes were excluded from the original test
set (N = 142 eyes) due to missing value. K mean
keratometry
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work represents a significant improvement in
performance (the lowest MAE improved from
2.66 D to 1.58 D) [27]. In contrast to the pre-
vious study, we relied on ethnically diverse
training data and employed a stepwise transfer
learning technique. Our work demonstrates
how deep learning models trained on data from
one center or a single ethnic group can be
repurposed and applied elsewhere. In this study,

deep learning models trained on a large Korean
dataset were tuned relatively accurately using a
small Indian adaptation set. To date, AI-based
studies have suffered from performance decline
during external validation, limiting their
robustness in heterogeneous data [28]. How-
ever, fine-tuning the training process through
transfer learning for a small adaptive dataset al-
lows researchers to overcome this performance

Fig. 5 ROC curves for uncorrected refractive errors and
keratometry value prediction. ROC curves to distinguish
high myopia, hyperopia, flat corneal curvature, and steep

corneal curvature. SE spherical equivalent, K mean ker-
atometry, ROC receiver operating characteristic curve,
AUC area under the curve, CI confidence interval
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Fig. 6 Comparison of deep learning (DL) schemes in the test dataset. The tasks are to predict A high myopia, B hyperopia,
C flat cornea, and D steep cornea. SE spherical equivalent, K mean keratometry, OCT optical coherence tomography

Fig. 7 Grad-CAM saliency maps for spherical equivalent (SE) prediction and hyperopia/mild myopia/high myopia
classification. OCT optical coherence tomography
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degradation in external validation sets [9].
Recently, the fine-tuning of specific tasks based
on large deep learning models, known as foun-
dation models, has become widespread and has
been used as an adaptive training method for
datasets with different data distributions [29].
Our study is consistent with this recent trend.

Through deep learning, it was confirmed
that there was a significant relationship
between the shape of the optic nerve and the
refractive power. We are also unaware of previ-
ous reports using optic nerve OCT images to
predict either refractive error or corneal curva-
ture. However, it is worth noting that the
algorithm’s performance when estimating
K value was lower than when estimating SE
(highest accuracy of 65.7 vs. 74.3%, respec-
tively). The refractive power of the cornea
(K value) accounts for a large portion of the
overall optical refractive power of the eye but is
heavily influenced by external factors such as
eyelid conditions [30]. However, because the
overall refractive power (SE) and shape of the
retina may interact with each other during

growth and development, their relationship is
expected to be stronger [31].

Using saliency maps, we also sought to
understand which OCT image regions con-
tributed the most to the model’s predictive
results to generate new insights into the rela-
tionship between posterior segment anatomy
and refraction. The results of Grad-CAM sal-
iency mapping highlighted the Bruch’s mem-
brane opening, suggesting a relationship
between myopia and the morphological factors
of the optic nerve head. A larger Bruch’s mem-
brane opening diameter is linearly associated
with severe myopia [32]. All retinal and chor-
oidal layers observed on OCT are associated
with myopia [33]. Furthermore, highly myopic
eyes may be related to inner retinal layer thin-
ning and a decreased ratio of posterior chor-
oidal thickness to Bruch’s membrane thickness
[34]. Deep-learning algorithms reflect these
characteristics in SE prediction. Interestingly,
this relationship was similar in predicting
K value.

Our study had several limitations. The Kor-
ean OCT images were obtained on the Topcon

Fig. 8 Grad-CAM saliency maps for K value prediction and flat/regular/steep cornea classification. K mean keratome-
try, OCT optical coherence tomography
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3D OCT-1 Maestro, whereas Indian OCT images
were obtained using the Zeiss Cirrus HD-OCT
500; the images from the latter were of slightly
higher quality on average than the former. The
clinical profiles of the two populations also
varied: Korean patients were overwhelmingly
myopic, with no hyperopia in the initial train-
ing set, whereas 23% of Indian patients under-
went routine ophthalmic examination,
resulting in a much lower incidence of high
myopia. Thus, the pre-training and validation
data exhibited key differences, with the former
being biased towards a more negative SE.
Finally, the Indian dataset was limited in size. A
larger number of study datasets may further
improve the prediction accuracy of the algo-
rithm. In addition, it is not sure that the
developed model is clinically feasible to use
OCT imaging for refractive error. We expect this
study to be useful only when OCT is more
widely available as a screening equipment in
the future. It should be noted that the study
data did not include the pathological eyes.
Further research is needed to confirm whether
the proposed algorithm properly works in eyes
with glaucoma or keratoconus. Finally, analyz-
ing pseudo-color images taken from OCT mea-
surement results other than raw volume images
is also a disadvantage of this study.

CONCLUSIONS

In conclusion, we have developed an algorithm
to predict and classify the degree of refractive
error and corneal curvature using macular and
optic nerve OCT images. Using the deep transfer
learning technique, we were able to train the
model on data from individuals who were eth-
nically distinct from our validation dataset
population and demonstrated robust perfor-
mance. Thus, our proposed adaptation training
had great potential to promote the deep learn-
ing screening in ethnically heterogeneous pop-
ulations. Although we investigated the concept
of deep transfer learning for adaptation, this
algorithm will be clinically useful for screening
when further studies with larger sample sizes
and various data sources are conducted.
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