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ABSTRACT

Introduction: The aim of this work is to evalu-
ate the intraobserver repeatability and interob-
server reproducibility of corneal power
measurements obtained with a swept-source
optical coherence tomographer (CASIA 2,
Tomey, Japan) in healthy subjects.
Methods: A total of 67 right eyes from 67
healthy subjects were enrolled. Two experi-
enced observers measured each eye three times
consecutively with the CASIA 2. Corneal power
values were recorded as simulated keratometry,
anterior, posterior, and total corneal power.
Parameters were flattest keratometry (Kf),

steepest keratometry (Ks), mean keratometry
(Km), astigmatism magnitude, astigmatism
power vectors J0 and J45. Intraobserver repeata-
bility and interobserver reproducibility of the
CASIA 2 were assessed by the within-subject
standard deviation (Sw), test–retest repeatability
(TRT), coefficients of variation (CoV), and intr-
aclass correlation coefficients (ICCs). Double-
angle plots were used for astigmatism vector
analysis.
Results: The CASIA 2 had high repeatability for
all corneal power values, with Sw values B 0.17
diopters (D), TRT B 0.46 D, and ICCs ranging
from 0.866 to 0.998. Interobserver repro-
ducibility was also high, showing all Sw val-
ues B 0.10 D, TRT B 0.27 D, and ICCs C 0.944.
The reproducibility of the average of three
consecutive measurements (Sw 0.01–0.10 D, TRTChak Seng Lei, Xuanqiao Lin and Rui Ning contributed
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0.03–0.27 D, ICC 0.944–0.998) was higher than
the reproducibility of single measurements (Sw

0.01–0.17 D, TRT 0.03–0.47 D, ICC
0.867–0.996).
Conclusions: The CASIA 2 showed high
intraobserver repeatability and interobserver
reproducibility for anterior, posterior, and total
corneal power measurements in 6.0-mm diam-
eter area. In addition, we suggest that using the
average of three consecutive measurements can
improve reproducibility between observers,
compared to single measurements only.

Keywords: Swept-source optical coherence
tomographer; Corneal power; Biometry

Key Summary Points

Why carry out this study?

Accurate measurement of corneal power is
the basis of clinical diagnosis and
treatment.

This study aimed to evaluate the
intraobserver repeatability and
interobserver reproducibility of corneal
power measurements obtained with a
swept-source optical coherence
tomographer (CASIA 2, Tomey, Japan).

What was learned from the study?

The parameters of anterior, posterior, and
total corneal power in 6.0-mm diameter
area obtained by CASIA 2 showed high
intraobserver repeatability and
interobserver reproducibility in healthy
people. The average of three consecutive
measurements can improve
reproducibility between observers,
compared to single measurements only.

INTRODUCTION

Precise measurements of corneal power are
crucial for various clinical applications in oph-
thalmology. In particular, the anterior and

posterior corneal curvatures are essential for the
early diagnosis of keratoconus and monitoring
its progression [1]. Furthermore, the corneal
power accounts for about two-thirds of the total
dioptric power of the eye and is therefore
essential when calculating the power of the
intraocular lens (IOL) for cataract surgery. Any
measurement errors will result in a prediction
error in the IOL calculation formulae, giving
patients less-than-ideal results [2–4]. Thus, a
device that can accurately and consistently
monitor corneal power values will give patients
a better outcome.

Previously, keratometry was limited by the
ability to measure only the anterior corneal
surface curvature. In the absence of information
about the posterior surface of the cornea, the
power of the entire cornea has been tradition-
ally estimated by applying the keratometric
refractive index (n = 1.3375). This methodology
is based on the assumption that the anterior
and posterior surfaces of the cornea related to
each other by a constant factor [5]. Most of the
IOL calculation formulas were designed and
built based on this variable [6]. Currently, both
the anterior and posterior corneal curvatures
can be directly measured, allowing for the cal-
culation of the total corneal power using either
ray-tracing or the Gaussian optics formula [7].
Technologies that are capable to achieve this
include slit-scanning topography, Scheimpflug
camera, color light-emitting diode (LED)
reflection topography, and optical coherence
tomography (OCT). The CASIA 2 (Tomey Cor-
poration, Nagoya, Japan) is a swept-source
optical coherence tomography (SS-OCT) based
device, measuring the ocular anterior segment
parameters using a swept laser 1310 nm wave-
length with a maximum penetration depth of
13 mm and providing a fast scan rate of 50,000
A-scans per second.

Recent studies have already found high
repeatability of CASIA 2 for corneal power
measurements [8, 9]. Good agreement for cor-
neal power values has been demonstrated
between CASIA 2 and other SS-OCT devices or
Scheimpflug cameras [8–12], but a low agree-
ment has been found with respect to a spectral-
domain OCT device [13]. However, as far as we
know, the repeatability of astigmatism and the
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reproducibility of corneal power measurements
have not yet been examined.

This study aimed to evaluate the intraob-
server repeatability and interobserver repro-
ducibility of the CASIA 2 in measuring corneal
power of the anterior and posterior corneal
surfaces as well as simulated keratometry and
total corneal power. Moreover, we investigated
whether averaging three consecutive measure-
ments obtained by a single observer could
improve the reproducibility between observers.

METHODS

Subjects

Sixty-seven right eyes of 67 healthy subjects
were analyzed in this prospective study. Sub-
jects were recruited at the Eye and ENT Hospital
of Fudan University, Shanghai, China. All par-
ticipants underwent comprehensive ophthal-
mologic examination, which consisted of
subjective refraction, non-contact tonometry,
slit-lamp examination, and ophthalmoscopy
before they were considered candidates. Inclu-
sive criteria were as follows: (1) they had to be
older than 18 years of age, (2) the corrected
distance visual acuity had to be equal to or
better than 20/20, and (3) patients did not wear
soft contact lenses within 2 weeks and rigid
contact lenses within 4 weeks. Exclusive criteria
were as follows: (1) previous ophthalmological
surgery or ocular trauma, 2) history of the
ophthalmic disease (such as keratoconus, cat-
aract, and glaucoma), 3) dry eye disease (Schir-
mer’s test\ 5 mm/5 min) and (4) poor fixation
during the scan.

This prospective study was approved by the
Institutional Ethics Committee of the Eye and
ENT Hospital of Fudan University (2021174)
and conducted by the principles of the Decla-
ration of Helsinki. All subjects signed an
informed consent after understanding the pur-
pose of the study.

Instruments and Parameters

The CASIA 2 is a Fourier-domain, SS-OCT using
a swept laser 1310-nm wavelength with a max-
imum penetration depth of 13 mm and pro-
viding a fast scan rate of 50,000 A-scans per
second. The ‘‘Corneal Map’’ mode under the
‘‘Anterior Segment’’ exam protocol was used,
which comprises 16 consecutive meridional
scans with 800 A-scans per line, a scan width of
16 mm, and a scan depth of 11 mm. Each
measurement with a scan speed of 0.3 s can
provide 4 corneal power measurements:

(1) Simulated keratometry this is calculated
using 1.3375 as the refractive index of the
cornea.

(2) Anterior corneal power this is calculated
using the corneal refractive index (1.376).

(3) Posterior corneal power this is calculated
using the refractive index of the cornea
(1.376) and aqueous humor (1.336).

(4) Total corneal power this is calculated by
adding the corneal thickness correction to
the sum of the refractive powers of the
anterior and posterior surfaces, according
to the Gaussian optics formula:

K-real ¼ K-anterior þ K-posterior

� d= 1:376 � 106
� �� �

� K-anterior
��K-posterior;

where K-anterior and K-posterior refer to the
keratometry of the anterior and posterior
cornea and ‘‘d’’ refers to corneal thickness [12].

Corneal astigmatism was converted into two
power vectors: J0 and J45. The calculation for-
mulas were as follows:

J0 ¼ � C=2ð Þ � cos 2að Þ; J45 ¼ � C=2ð Þ � sin 2að Þ;

where C is the cylinder power and a is the
cylinder axis. In the Jackson cross cylinder, J0
represents the cylinder axis at the 180� and 90�
meridians and J45 represents the cylinder axis at
the 45� or 135� meridians [14].

For each corneal power value, the following
data were recorded: flattest keratometry (Kf),
steepest keratometry (Ks), mean keratometry
(Km), astigmatism magnitude, J0, and J45. The
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Table 1 Intraobserver repeatability of corneal power values by the CASIA 2

Parameter Observer Mean – SD (D) Sw (D) TRT (D) CoV (%) ICC (95% CI)

Kf-Simulated 1st 43.00 ± 1.30 0.12 0.32 0.27 0.992 (0.988–0.995)

2nd 42.97 ± 1.30 0.11 0.32 0.27 0.992 (0.988–0.995)

Ks-Simulated 1st 44.16 ± 1.49 0.11 0.30 0.24 0.995 (0.992–0.997)

2nd 44.16 ± 1.49 0.10 0.29 0.24 0.995 (0.993–0.997)

Km-Simulated 1st 43.58 ± 1.37 0.09 0.24 0.20 0.996 (0.994–0.997)

2nd 43.56 ± 1.37 0.08 0.23 0.19 0.996 (0.994–0.998)

AST-Simulated 1st 1.16 ± 0.62 0.14 0.40 12.27 0.949 (0.925–0.967)

2nd 1.20 ± 0.60 0.14 0.39 11.70 0.948 (0.924–0.966)

J0-Simulated 1st – 0.52 ± 0.32 0.07 0.20 – 0.950 (0.926–0.967)

2nd – 0.54 ± 0.32 0.07 0.20 – 0.950 (0.926–0.967)

J45-Simulated 1st 0.09 ± 0.21 0.08 0.22 – 0.879 (0.825–0.919)

2nd 0.09 ± 0.21 0.07 0.18 – 0.912 (0.872–0.942)

Kf-Anterior 1st 47.90 ± 1.45 0.12 0.33 0.25 0.993 (0.990–0.996)

2nd 47.86 ± 1.45 0.13 0.36 0.27 0.992 (0.988–0.995)

Ks-Anterior 1st 49.19 ± 1.66 0.12 0.33 0.24 0.995 (0.992–0.997)

2nd 49.19 ± 1.67 0.13 0.35 0.26 0.994 (0.991–0.996)

Km-Anterior 1st 48.55 ± 1.52 0.09 0.25 0.19 0.996 (0.995–0.998)

2nd 48.53 ± 1.52 0.10 0.27 0.20 0.996 (0.994–0.997)

AST-Anterior 1st 1.29 ± 0.69 0.15 0.43 11.93 0.951 (0.928–0.968)

2nd 1.33 ± 0.67 0.17 0.46 12.53 0.942 (0.914–0.962)

J0-Anterior 1st – 0.58 ± 0.36 0.08 0.23 – 0.948 (0.924–0.966)

2nd – 0.60 ± 0.35 0.09 0.24 – 0.944 (0.917–0.963)

J45-Anterior 1st 0.10 ± 0.24 0.08 0.23 – 0.888 (0.839–0.926)

2nd 0.09 ± 0.24 0.07 0.20 – 0.913 (0.873–0.942)

Kf-Posterior 1st – 5.99 ± 0.19 0.03 0.08 0.46 0.980 (0.971–0.987)

2nd – 5.99 ± 0.19 0.03 0.07 0.44 0.982 (0.972–0.988)

Ks-Posterior 1st – 6.31 ± 0.22 0.03 0.09 0.49 0.981 (0.972–0.988)

2nd – 6.31 ± 0.23 0.03 0.07 0.42 0.986 (0.980–0.991)

Km-Posterior 1st – 6.15 ± 0.20 0.02 0.05 0.32 0.990 (0.986–0.994)

2nd – 6.15 ± 0.20 0.02 0.05 0.30 0.992 (0.988–0.995)

AST-Posterior 1st – 0.31 ± 0.12 0.04 0.12 13.73 0.880 (0.827–0.920)

2nd – 0.31 ± 0.12 0.04 0.11 12.12 0.904 (0.861–0.937)
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corneal area for analysis was 6.0 mm in diame-
ter as stated in the instruction manual.

Measurement Technique

All subjects were measured under non-mydri-
atic conditions between 10:00 and 5:00 p.m. to
minimize any influence of the normal diurnal
variations of corneal curvature and thickness
[15]. They were instructed to keep their chin
and forehead in position and stare at the inter-
nal fixation light. Complete blink was required
before each measurement. The device was rea-
ligned for subsequent scans to prevent interde-
pendence of successive measurements. Only
measurements with a Quality Statement ‘‘OK’’

were accepted, otherwise, the measurements
were repeated.

Two experienced observers carried out three
consecutive qualified measurements in a ran-
dom order and the whole procedure was com-
pleted within 5 min. Three successive
measurements of each observer were used to
evaluate intraobserver repeatability. To assess
the interobserver reproducibility, we utilized
two methods: (1) Average: comparing the aver-
age of three consecutive measurements from
each observer, and (2) Single: comparing the
first measurements from each observer.

Table 1 continued

Parameter Observer Mean – SD (D) Sw (D) TRT (D) CoV (%) ICC (95% CI)

J0-Posterior 1st 0.15 ± 0.06 0.02 0.06 – 0.877 (0.822–0.918)

2nd 0.15 ± 0.06 0.02 0.05 – 0.906 (0.863–0.938)

J45-Posterior 1st – 0.03 ± 0.04 0.01 0.03 – 0.888 (0.838–0.926)

2nd – 0.03 ± 0.04 0.01 0.03 – 0.918 (0.880–0.946)

Kf-Real 1st 42.01 ± 1.29 0.11 0.31 0.27 0.992 (0.989–0.995)

2nd 41.98 ± 1.29 0.12 0.34 0.29 0.991 (0.987–0.994)

Ks-Real 1st 43.02 ± 1.47 0.12 0.33 0.28 0.994 (0.990–0.996)

2nd 43.02 ± 1.47 0.12 0.33 0.28 0.993 (0.990–0.996)

Km-Real 1st 42.51 ± 1.35 0.09 0.25 0.21 0.996 (0.993–0.997)

2nd 42.50 ± 1.35 0.09 0.26 0.22 0.995 (0.993–0.997)

AST-Real 1st 1.01 ± 0.58 0.14 0.40 14.33 0.940 (0.911–0.960)

2nd 1.04 ± 0.58 0.16 0.43 15.01 0.929 (0.896–0.954)

J0-Real 1st – 0.44 ± 0.31 0.08 0.21 – 0.942 (0.915–0.962)

2nd – 0.46 ± 0.31 0.08 0.22 – 0.939 (0.910–0.960)

J45-Real 1st 0.08 ± 0.21 0.08 0.22 – 0.866 (0.807–0.910)

2nd 0.07 ± 0.20 0.07 0.20 – 0.888 (0.838–0.926)

Kf flattest keratometry, Ks steepest keratometry, Km mean keratometry, AST astigmatism magnitude, J0 cylinder axis at the
180� and 90� meridians, J45 cylinder axis at the 45� and 135� meridians, CI confidence interval, SD standard deviation, Sw
within-subject standard deviation, TRT test–retest repeatability (2.77 Sw), CoV within-subject coefficient of variation, ICC
intraclass correlation coefficient
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Statistical Analysis

Statistical analysis was performed using SPSS
(version 21.0, IBM Corporation, USA) and
Microsoft Office Excel 365 (Microsoft Corp.,
USA). Before data analysis, the normality of the
data distribution was assessed by the Kol-
mogorov–Smirnov test (P[0.05). To determine
the intraobserver repeatability and interob-
server reproducibility of the CASIA 2, the
mean ± standard deviation (SD), within-subject
deviation (Sw), test–retest (TRT) repeatability,
coefficients of variation (CoV) and intraclass
correlation coefficients (ICCs) were calculated
and analyzed. The Sw is also known as the
standard deviation of repeated measurements
[16]. The TRT is defined as 2.77 9 Sw, repre-
senting an interval within which 95% of the
differences between measurements are expected
to lie [16]. The lower TRT represents better
repeatability. The CoV was calculated as the
ratio of the Sw to the overall mean. The lower
CoV indicates higher repeatability [16]. The
ICCs ranging from 0 to 1 are commonly classi-
fied as follows:\0.75 indicates poor repeata-
bility; 0.75 to\ 0.90 indicates moderate
repeatability; C 0.90 indicates high repeatabil-
ity. A closer ICC to 1 suggests better measure-
ment consistency [17].

Given that astigmatism power vectors (J0,
J45) have small magnitudes, which causes the
CoV to be large, and can be either positive or
negative, CoV cannot represent the actual
variation among measurements. When the

mean value of a parameter is near zero, the CoV
is sensitive to small changes in the mean, lim-
iting its usefulness [18]. For this reason, we
excluded the CoV for assessing the precision for
measurements of J0 and J45.

The differences in astigmatism between
repeated measurements or between different
observers were analyzed by double-angle plots.
Double-angle plots were generated with the
Astigmatism Double Angle Plot Tool available
on the American Society of Cataract and
Refractive Surgery website [19]. This particular
methodology enables to display of both the
magnitude and axis of the average astigmatism
measurement differences (centroid), along with
the confidence ellipse [20].

RESULTS

A total of 67 eyes from 67 healthy subjects (22
men and 45 women) with a mean age of
27.70 ± 6.04 (range 18–41) years were included
in this study.

Intraobserver Repeatability

The intraobserver repeatability of the CASIA 2
measurements is reported in Table 1, demon-
strating high intraobserver repeatability for
both observers. The Sw of all measured param-
eters was B 0.17 D and the TRT was B 0.46 D.
The CoV of Kf, Ks, Km was B 0.49%.

The ICCs were higher than 0.929 for all
measured corneal power values, except for J45-
simulated (ICC 0.879–0.912), J45-anterior (ICC
0.888–0.913), astigmatism-posterior (ICC
0.880–0.904), J0-posterior (ICC 0.877–0.906),
J45-posterior (ICC 0.888–0.918), J45-real (ICC
0.866–0.888). Meanwhile, the ICCs for kerato-
metric parameters (Kf, Ks, Km) were higher than
0.980. With the first observer, the ICCs were the
highest in keratometric parameters (Kf, Ks, Km),
followed by astigmatism magnitude and J0,
whereas the worst was in J45. The ICCs for pos-
terior corneal power were slightly lower among
these four powers. The second observer showed
a similar trend.

As obtained by two observers, the differences
in astigmatism between repeated measurements

bFig. 1 Double-angle plots showing intraobserver differ-
ences in astigmatism between the first observer’s repeated
measurements in each corneal power measurement. Each
ring represents 0.25 diopters (D), and the outer ring
represents 1.0 D. The small ellipses (red) show the 95%
confidence ellipses for the centroid and the larger ellipses
(blue) show the 95% confidence ellipse for the difference
vectors of the dataset. First row: Simulated keratometry.
Second row: Anterior corneal power. Third row: Posterior
corneal power. Fourth row: Total corneal power. First
column: difference between first and second measurements.
Second column: difference between first and third mea-
surements. Third column: difference between second and
third measurements
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were mostly within 0.50 D in all corneal power
measurements (Figs. 1 and 2).

Interobserver Reproducibility

Table 2 lists the interobserver reproducibility of
all corneal power parameters obtained by aver-
aging the three consecutive measurements from
each observer (Average) or the first measure-
ments from each observer (Single), demon-
strating high interobserver reproducibility.

Regarding the average method, the high
interobserver reproducibility was indicated by
the low TRT values, with B 0.21 D for Kf, 0.25 D
for Ks, 0.19 D for Km, 0.27 D for astigmatism
magnitude, 0.15 D for J0, and 0.14 D for J45. The
CoV for Kf, Ks, and Km were B 0.28%. The ICCs
of all measured parameters were higher than
0.944 and mostly close to 1. Regarding the
Single method, the TRT values were B 0.34 D
for Kf, 0.37 D for Ks, 0.27 D for Km, 0.47 D for
astigmatism magnitude, 0.24 D for J0, and 0.22
D for J45. The CoV for Kf, Ks, and Km were
B 0.43%. The ICCs of all measured parameters
ranged from 0.867 to 0.996.

Overall, for all simulated keratometry
parameters, the TRT values of the Single
method were approximately 65% higher than
the TRT values of the Average method. Similar
trends were also observed at anterior, posterior,
and total corneal powers (Fig. 3). Likewise, for
the CoV of all keratometric parameters (Kf, Ks,
Km), there was about 65% increment of the
Single method compared to the average method

(Fig. 4). For all corneal power measurements,
the differences in astigmatism between aver-
aged measurements of each observer were
mostly within 0.50 D, whereas the differences
in astigmatism between single measurements of
each observer were dispersed in the range of
0.00–0.75 D (Fig. 5). These data indicate that
the reproducibility of averaged measurements,
as defined by Sw, TRT, CoV, and ICC, is higher
than the reproducibility of the single measure-
ments for all corneal power parameters.

DISCUSSION

In this present study, SS-OCT (CASIA 2) was
utilized to analyze repeatability among and
across observers of various corneal power values
in healthy eyes. Previous studies have already
confirmed the good reliability of CASIA 2 in
measuring anterior segment parameters
[21–23]. To the best of our knowledge, there was
no research comprehensively analyzing the
precision (repeatability and reproducibility) of
the four corneal powers as provided by the
CASIA 2.

Regarding the intraobserver repeatability,
our data confirm the high repeatability with low
Sw, TRT, and high ICCs (Sw B 0.17 D, TRT
B 0.46 D, ICCs 0.866–0.998). Zhang et al. [9]
previously revealed the good repeatability of the
CASIA 2 by a low coefficient of repeatability
(COR) in corneal powers. For total corneal
power, Asawaworarit et al. [8] reported excellent
repeatability for CASIA 2 (Sw 0.076 D, TRT 0.211
D, CoV 0.2%, ICC 0.996), which is close to our
result (Sw 0.09 D, TRT 0.25 D, CoV 0.21%, ICC
0.996). Bao et al. [24] assessed six of the same
posterior corneal parameters as ours by using
two Scheimpflug–Placido analyzers (Sw

0.01–0.04 D, TRT 0.04–0.12 D). Likewise, we
showed high repeatability for the posterior
cornea (Sw 0.01–0.04 D, TRT 0.03–0.12 D).
Moreover, the double-angle plots (Figs. 1 and 2)
demonstrated consistent results: all the cen-
troids were close to zero. When the centroid is
infinitely close to zero, it means there is no
systematic error in data distribution, and mea-
surement errors are unlikely to be caused by
identifiable factors [25, 26].

bFig. 2 Double-angle plots showing intraobserver differ-
ences in astigmatism between the second observer’s
repeated measurements in each corneal power measure-
ment. Each ring represents 0.25 diopters (D), and the
outer ring represents 1.0 D. The small ellipses (red) show
the 95% confidence ellipses for the centroid and the larger
ellipses (blue) show the 95% confidence ellipse for the
difference vectors of the dataset. First row: Simulated
keratometry. Second row: Anterior corneal power. Third
row: Posterior corneal power. Fourth row: Total corneal
power. First column: difference between first and second
measurements. Second column: difference between first and
third measurements. Third column: difference between
second and third measurements

Ophthalmol Ther (2023) 12:3263–3279 3271



Table 2 Interobserver reproducibility of corneal power values by the CASIA 2

Parameter Method Mean – SD (D) Sw (D) TRT (D) CoV (%) ICC (95% CI)

Kf-Simulated Average 42.98 ± 1.30 0.06 0.18 0.15 0.998 (0.996–0.998)

Single 43.00 ± 1.30 0.10 0.28 0.24 0.994 (0.990–0.996)

Ks-Simulated Average 44.16 ± 1.49 0.08 0.21 0.17 0.997 (0.996–0.998)

Single 44.17 ± 1.48 0.11 0.31 0.26 0.994 (0.990–0.996)

Km-Simulated Average 43.57 ± 1.36 0.06 0.15 0.13 0.998 (0.997–0.999)

Single 43.59 ± 1.36 0.08 0.23 0.19 0.996 (0.994–0.998)

AST-Simulated Average 1.18 ± 0.61 0.09 0.25 7.52 0.979 (0.966–0.987)

Single 1.17 ± 0.60 0.14 0.38 11.69 0.950 (0.920–0.969)

J0-Simulated Average – 0.53 ± 0.32 0.05 0.13 – 0.977 (0.963–0.986)

Single – 0.52 ± 0.32 0.07 0.20 – 0.948 (0.918–0.968)

J45-Simulated Average 0.09 ± 0.21 0.05 0.13 – 0.955 (0.927–0.972)

Single 0.09 ± 0.22 0.08 0.21 – 0.886 (0.821–0.928)

Kf-Anterior Average 47.88 ± 1.45 0.08 0.21 0.16 0.997 (0.995–0.998)

Single 47.90 ± 1.45 0.12 0.34 0.26 0.993 (0.988–0.996)

Ks-Anterior Average 49.19 ± 1.67 0.09 0.24 0.18 0.997 (0.996–0.998)

Single 49.20 ± 1.66 0.13 0.37 0.27 0.994 (0.990–0.996)

Km-Anterior Average 48.54 ± 1.52 0.07 0.19 0.14 0.998 (0.997–0.999)

Single 48.55 ± 1.52 0.10 0.27 0.20 0.996 (0.994–0.998)

AST-Anterior Average 1.31 ± 0.68 0.10 0.27 7.40 0.980 (0.967–0.988)

Single 1.30 ± 0.67 0.17 0.47 12.92 0.939 (0.903–0.962)

J0-Anterior Average – 0.59 ± 0.35 0.05 0.15 – 0.977 (0.963–0.986)

Single – 0.58 ± 0.35 0.09 0.24 – 0.941 (0.906–0.963)

J45-Anterior Average 0.10 ± 0.23 0.05 0.14 – 0.953 (0.925–0.971)

Single 0.10 ± 0.24 0.08 0.22 – 0.893 (0.832–0.933)

Kf-Posterior Average – 5.99 ± 0.19 0.02 0.05 0.28 0.993 (0.988–0.995)

Single – 6.00 ± 0.19 0.03 0.07 0.43 0.982 (0.971–0.989)

Ks-Posterior Average – 6.31 ± 0.22 0.01 0.03 0.19 0.997 (0.995–0.998)

Single – 6.31 ± 0.23 0.02 0.06 0.34 0.991 (0.986–0.995)

Km-Posterior Average – 6.15 ± 0.20 0.01 0.03 0.15 0.998 (0.997–0.999)

Single – 6.15 ± 0.20 0.02 0.04 0.25 0.994 (0.990–0.996)

AST-Posterior Average – 0.31 ± 0.12 0.02 0.06 7.13 0.965 (0.943–0.978)

Single – 0.31 ± 0.12 0.04 0.10 11.50 0.914 (0.864–0.946)
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With respect to the interobserver repro-
ducibility, high reproducibility was determined
with low Sw, TRT values, high ICCs (Sw B 0.10
D, TRT B 0.27 D, ICCs 0.944–0.998). Asawa-
worarit et al. [8] presented excellent repro-
ducibility of CASIA 2 for total corneal power (Sw

0.062 D, TRT 0.172 D, CoV 0.1%, ICC 0.998)
and we obtained a similar result (Sw 0.07 D, TRT
0.18 D, CoV 0.16%, ICC 0.998). For the poste-
rior corneal power, our data (Sw 0.01–0.02 D,
TRT 0.02–0.06 D) presents similar results with a
previous study [24] of Scheimpflug–Placido
analyzers (Sw 0.01–0.03 D, TRT 0.03–0.07 D).
Mao et al. [27] revealed excellent reproducibility
of Keratograph 4 (Oculus, Wetzlar, Germany)
for simulated keratometry with low Sw, TRT,

CoV values and our results are in good agree-
ment with this study.

In addition, we found that the Sw, TRT, and
CoV values of the Average method were lower
than those of the Single method. The ICCs of
the Average method were all higher than 0.90
(ICCs 0.944–0.998) representing high repro-
ducibility whereas the ICCs of the Single
method were slightly lower (ICCs 0.867–0.996).
Even though the double-angle plots demon-
strated the centroids were all near to zero
(Fig. 5), the Average method yielded smaller
95% confidence ellipses for both the centroid
and the dataset, as well as the overall distribu-
tion was more concentrated than that of the
Single method. As reported by several researches

Table 2 continued

Parameter Method Mean – SD (D) Sw (D) TRT (D) CoV (%) ICC (95% CI)

J0-Posterior Average 0.15 ± 0.06 0.01 0.03 – 0.968 (0.948–0.980)

Single 0.15 ± 0.06 0.02 0.05 – 0.913 (0.862–0.946)

J45-Posterior Average – 0.03 ± 0.04 0.01 0.02 – 0.957 (0.931–0.973)

Single – 0.03 ± 0.04 0.01 0.03 – 0.936 (0.898–0.960)

Kf-Real Average 41.99 ± 1.29 0.07 0.20 0.17 0.997 (0.995–0.998)

Single 42.01 ± 1.29 0.11 0.32 0.27 0.992 (0.987–0.995)

Ks-Real Average 43.02 ± 1.47 0.09 0.25 0.21 0.996 (0.994–0.998)

Single 43.03 ± 1.47 0.13 0.35 0.30 0.992 (0.988–0.995)

Km-Real Average 42.51 ± 1.35 0.07 0.18 0.16 0.998 (0.996–0.999)

Single 42.52 ± 1.35 0.09 0.25 0.22 0.995 (0.993–0.997)

AST-Real Average 1.03 ± 0.57 0.10 0.27 9.40 0.972 (0.955–0.983)

Single 1.02 ± 0.57 0.16 0.44 15.52 0.926 (0.882–0.954)

J0-Real Average – 0.45 ± 0.31 0.05 0.15 – 0.969 (0.950–0.981)

Single – 0.44 ± 0.31 0.08 0.22 – 0.936 (0.899–0.960)

J45-Real Average 0.07 ± 0.20 0.05 0.13 – 0.944 (0.911–0.965)

Single 0.07 ± 0.21 0.08 0.22 – 0.867 (0.792–0.916)

Kf flattest keratometry, Ks steepest keratometry, Km mean keratometry, AST astigmatism magnitude, J0 cylinder axis at the
180� and 90� meridians, J45 cylinder axis at the 45� and 135� meridians, CI confidence interval, SD standard deviation, Sw
within-subject standard deviation, TRT test–retest repeatability (2.77 Sw), CoV within-subject coefficient of variation, ICC
intraclass correlation coefficient
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[18, 28, 31–36], the J45 vector always shows
lower precision with a lower ICC value com-
pared to other parameters. We obtained analo-
gous results through evaluating the

repeatability (ICC 0.866–0.918) and repro-
ducibility by the Single method (ICC
0.867–0.936), nonetheless, the Average method
achieved high reproducibility (ICC

Fig. 3 Test–retest repeatability (TRT) values of all
measured parameters for averaged measurements and
single measurement. Kf flattest keratometry, Ks steepest

keratometry, Km mean keratometry, AST astigmatism
magnitude, J0 cylinder axis at the 180� and 90� meridians,
J45 cylinder axis at the 45� and 135� meridians

Fig. 4 Coefficients of variation (CoV) values of keratometric parameters for averaged measurements and single
measurement. Kf flattest keratometry, Ks steepest keratometry, Km mean keratometry
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0.944–0.957). These findings suggested that the
Average method results in fewer discrepancies
between observers. Correspondingly, Chen and
Lam [28, 29] assessed the intersession repeata-
bility of the Pentacam (Oculus, Wetzlar, Ger-
many), showing the COR and the width of 95%
limits of agreement (LoA) of averaged mea-
surements were reduced and the authors con-
cluded that using an average result improves
intersession repeatability. Moreover, Read et al.
[30] performed 20 consecutive measurements
for each subject, showed that the standard
deviation decreases with multiple measure-
ments, the width of the 95% LoA substantially
increases when fewer than three measurements
from each instrument are used. Therefore, we
recommend using the mean of three consecu-
tive measurements to improve reproducibility
for clinical application.

Concerning corneal astigmatism, the CoV of
astigmatism magnitude was high
(7.13–15.01%). Several studies have reported
similar CoV (7.44–28.16%) with SS-OCT-based
devices [35, 37, 38]. However, we still suggest
the precision was good, as the ICCs of repeata-
bility were higher than 0.866 and the ICCs of
reproducibility were higher than 0.944 for
magnitude and both vectors.

Our results show that simulated keratometry
(43.57 ± 1.36D) provides higher values than
total keratometry (42.51 ± 1.35D) measure-
ments. Besides, the analysis area of CASIA 2 is
6 mm diameter, which is larger than the default
setting of other devices [39], four corneal power
measurements would be lower as the K values
was steep in the central zone of normal cornea.
These discrepancies will impact the prediction
accuracy of IOL power calculation formulas
unless specific constant optimization is carried
out.

The main limitation of the present study is
that we excluded eyes with corneal pathologies
or previous surgery. The measurements for ker-
atoconic eyes would likely be less reliable and
repeatability be decreased with increasing kera-
toconus (KC) severity [40]. Therefore, further
investigations should examine patients with KC
or after undergoing any corneal refractive sur-
gery. The second limitation is that our data were

only generated from young healthy adults and
did not include children.

CONCLUSIONS

In summary, our study revealed high intraob-
server repeatability and interobserver repro-
ducibility of all corneal power measurements
provided by CASIA 2. Additionally, since the
mean values of each observer’s three consecu-
tive measurements were more reproducible
than the values from just one single measure-
ment, we recommend using the mean value for
clinical applications to optimize the consis-
tency between different observers.
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