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ABSTRACT

Age-related macular degeneration (AMD) is one
of the leading causes of blindness in the elderly,
more commonly in developed countries. Opti-
cal coherence tomography (OCT) is a non-in-
vasive imaging device widely used for the
diagnosis and management of AMD. Deep
learning (DL) uses multilayered artificial neural
networks (NN) for feature extraction, and is the
cutting-edge technique for medical image
analysis for diagnostic and prognostication
purposes. Application of DL models to OCT
image analysis has garnered significant interest
in recent years. In this review, we aimed to
summarize studies focusing on DL models used
in classification and detection of AMD. Addi-
tionally, we provide a brief introduction to
other DL applications in AMD, such as seg-
mentation, prediction/prognostication, and
models trained on multimodal imaging.

Keywords: Age-related macular degeneration;
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Key Summary Points

Deep learning (DL) is the cutting-edge
machine learning for medical image
analysis. In recent years, DL applications
to age-related macular degeneration
(AMD) have shifted from color fundus
photographs to optical coherence
tomography (OCT) imaging.

DL techniques for AMD OCT analysis can
be applied for different purposes,
including classification, segmentation,
and prediction.

Classification DL models utilized for the
detection of AMD, differentiation of AMD
from other macular pathologies, and
identification of different stages of AMD
typically have robust performance.

INTRODUCTION

Age-related macular degeneration (AMD) is the
most common cause of central vision loss in
developed countries [1]. Of people 40 years and
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older in the USA, it was estimated that 18.34
million (11.64%) were living with early-stage
AMD, while 1.49 million (0.94%) were living
with late-stage AMD in 2019. By 2040, AMD is
expected to affect 288 million people world-
wide, with 10% of this population with inter-
mediate or late-stage AMD [1, 2]. Optical
coherence tomography (OCT) is the most
commonly utilized and arguably the most
important imaging modality for the manage-
ment of AMD. Deep learning (DL), a subtype of
machine learning (ML), has garnered a lot of
attention in recent years as the cutting-edge ML
technique for medical image analysis. The most
common architecture used in DL models is deep
convolutional neural network (DCNN), which
is modeled after how the human brain processes
visual information and typically contains many
layers that perform different functions such as
convolution and pooling. A newer architecture,
called vision transformers (ViTs), has also
emerged recently. In contrast to DCNN, ViTs
decouple feature aggregation and transforma-
tion, and are composed of a series of trans-
former blocks that contain a feed-forward layer
and self-attention layer [3]. To date, DL has
been widely applied to ophthalmic image
analysis, including images from eyes with AMD.
In this article, we plan to perform an in-depth
review of published studies on DL applications
to OCT and AMD. Specifically, we focus on
applications that detect or classify AMD.

METHODS

We performed a systematic search of the
PubMed database, including studies published
between January 2017 and October 2022. The
search criteria were ‘‘deep learning’’ AND ‘‘age-
related macular degeneration’’ AND ‘‘optical
coherence tomography.’’ After a list of relevant
publications was generated, we included studies
that focused on classification or detection of
AMD on OCT images. Studies that did not
involve DL or OCT imaging were excluded.

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

Detection of AMD

In this section, we summarize studies that used
DL to detect AMD on OCT images or to differ-
entiate between OCT images with and without
AMD pathologies.

He et al. developed a two-stage DL model for
the detection of AMD (neovascular and non-
neovascular) in OCT volume scans. In the first
stage, a ResNet-50 deep convolutional neural
network (CNN) was used for classification. In
the second stage, the image feature vector set
from healthy controls and test image feature
vector set were used as inputs for the local
outlier factor (LOF) algorithm. The model was
initially trained on the USCD dataset [4], con-
sisting of 250 neovascular AMD, 250 non-neo-
vascular AMD (nnAMD), and 250 healthy
control OCT volumes. When tested on the
external Duke dataset (723 AMD and 1407
healthy control volumes) [5], the model
achieved a performance of area under the
receiver operating characteristic curve (AUC) of
0.99, sensitivity of 95.0%, and specificity of
95.0% [6].

Lee et al. used a modified version of visual
geometry group 16 (VGG-16) CNN model to
distinguish between AMD OCT images and
healthy controls. The model was trained on
80,839 OCT volume scans (41,074 AMD and
39,765 controls) and validated on 20,163 ima-
ges (11,616 AMD and 8547 controls). The pro-
posed model achieved an AUC of 92.7% with an
accuracy of 87.6% on an image level [7].

Shi et al. developed an interpretable DL
model (Med-XAI-Net) to specifically detect the
presence or absence of geographic atrophy (GA)
in OCT images and to interpret the localization
of GA in B-scans. The model was trained and
tested on 1284 OCT volume scans (321 with GA
and 963 without GA). Med-XAI-Net achieved a
performance of 93.5% AUC, 82.8% sensitivity,
and 94.6% specificity [8].

In a recent study, Srivastava et al. worked on
a DL model that utilized the choroid section in
OCT scans to improve the diagnostic accuracy
for detecting AMD. A ResNet50 model was
trained to classify AMD vs. normal images on a
publicly available dataset of 384 subjects (total
of 14,560 images out of which 7890 with signs
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of AMD and 6670 normal). Their proposed
method achieved an AUC of 96.7% for the
detection of AMD [9].

Treder et al. developed a DL framework that
was trained with 1012 cross-sectional OCT
images (701 AMD and 311 healthy) and later
tested in 100 images (50 AMD and 50 healthy).
The algorithm achieved 92% specificity, 100%
sensitivity, and 96% accuracy for detecting
AMD [10].

Differentiation of AMD from Other
Macular Pathologies

This section summarizes studies that aimed to
differentiate AMD from other macular
pathologies on OCT.

Baharlouei et al. used a wavelet scattering
network to identify normal retina vs. four
macular pathologies, namely central serous
retinopathy (CSR), macular hole (MH), diabetic
retinopathy (DR), and AMD. The open-access
OCTID dataset [11] containing 572 OCT images
was used for training and testing. The extracted
features were fed to a principal component
analysis (PCA) classifier. The accuracy for
detecting normal images was 97.4% and 82.5%
for the classification of the four pathologies
[12].

Sun et al. extracted the global features of an
OCT volume for classification of macular dis-
eases. B-scan features were extracted and
stacked together to generate a two-dimensional
(2-D) feature map to be used as input. A pre-
trained ResNet50 CNN was used as the back-
bone. The Duke [5] and Tsinghua datasets [448
AMD and 462 diabetic macular edema (DME)]
were used in this study, and OCT volumes were
labeled as normal, AMD, and DME. Fivefold
cross-validation showed an average accuracy,
sensitivity, and specificity of 98.1%, 99.2%, and
95.6%, respectively, for classification [13].

Vellakani and Pushbam proposed a DL
model to differentiate between normal, AMD,
and DME. The Kaggle dataset [14] was used
(1750 training images, 250 validation images,
and 8 testing images for each diagnosis). The
model involved CNN and long short-term
memory (LTSM) networks. The model using

DenseNet201 and LTSM performed best with an
overall accuracy of 96.9%, positive predictive
value of 97.2%, and true-positive rate of 96.9%
using OCT images enhanced by generative
adversarial network (GAN) [15].

In a recent study, Alqudah presented a novel
CNN (AOCT-Net) for a multiclass classification
system based on OCT. Publicly available data-
sets from USCD [4] (108,312 OCT images) and
Duke [5] (26,900 OCT images) were utilized in
this study. Images were labeled as normal,
AMD, choroidal neovascularization (CNV),
DME, or drusen. The model correctly identified
100% of cases with AMD, 98.8% of cases with
CNV, 99.1% cases with DME, 98.9% cases with
drusen, and 99.1% cases of normal with an
overall accuracy of 95.3% [16].

Finally, Li et al. used transfer learning and
the VGG-16 network to classify AMD and DME
in OCT images. A total of 109,312 retinal OCT
images from five different institutions were
included study (37,456 with CNV, 11,599 with
DME, 8867 with drusen, and 51,390 normal).
The algorithm reached a high accuracy of
98.6%, with a sensitivity of 97.8%, a specificity
of 99.4%, and AUC of 1 [17].

Fine-Grained Classification Within AMD

This section focuses on studies that differenti-
ated between different stages of AMD or
between different features of AMD. For exam-
ple, polypoidal choroidal vasculopathy (PCV) is
a choroidal vascular disease that was initially
described by Yanuzzi et al. as a part of the
spectrum of manifestations of AMD [18]. How-
ever, PCV and typical nAMD present differently
on retinal imaging and may show different
responses to different treatment modalities.
Therefore, it is important clinically to distin-
guish between the two entities.

Wongchaisuwat et al. developed a ResNet-
based DL model to distinguish PCV from
nAMD, using fundus fluorescein angiography
(FFA) and indocyanine green angiography
(ICGA) as gold standard. The model was trained
on 2334 SD-OCT images and validated on 1171
images. An AUC of 0.81 with 60% sensitivity
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and 71% specificity was achieved when tested
on the external validation dataset [19].

In a study by Ma et al., 3704 B-scans from 42
eyes with nAMD, 4307 B-scans from 31 eyes
with PCV, and a ResNet34 backbone were uti-
lized. Several versions of the model were
trained, achieving an AUC that ranged from
0.95 to 0.98. Clinical interpretability analysis
was performed through projection of normal-
ized aggregation of B-scan-based saliency maps
onto the en face plane, with good correspon-
dence seen between pathological features
detected from the projected en face saliency
map and ICGA [20].

In another cross-sectional study by Hwang
et al. a deep CNN was built to detect nAMD and
distinguish retinal angiomatous proliferation
(RAP) and PCV. A total of 3951 SD-OCT images
from 314 participants (229 AMD, 85 controls)
were analyzed. When distinguishing between
AMD (PCV or RAP) and normal cases, the pro-
posed model had 99.1% accuracy, with a sensi-
tivity and specificity of 99.2% and 99.1%,
respectively. While the model had 89.1% accu-
racy in distinguishing between RAP and PCV,
the sensitivity and specificity of the proposed
model for RAP detection were 89.4% and 88.8%,
respectively, and its AUC was 0.95 [95% confi-
dence interval (CI) 0.72–0.85] [21].

Hwang et al. trained three different CNN
backbones, ResNet50, InceptionV3, and VGG-
16, to accurately diagnose AMD aimed for tele-
medicine. Using data augmentation, they gen-
erated 35,900 OCT images (7924 normal, 2906
dry AMD, 11,304 active wet AMD, and 13,766
inactive wet AMD). The models were trained on
28,720 images, validated on 7180 images, and
finally clinically verified on 3872 images. The
detection accuracy for the different stages of
AMD was generally higher than 90% and was
significantly superior (p\0.001) to that of
medical students (69.4% and 68.9%) and equal
(p = 0.99) to that of retina specialists (92.7%
and 91.9%) [22].

Sotoudeh-Paima et al. proposed a multiscale
CNN, based on a feature pyramid network
(FPN), for the classification of normal, dry (de-
fined as drusen), and wet AMD (defined as CNV)
in OCT images. The authors utilized VGG-16 as
the backbone network. The training set

consisted of 12,649 retinal OCT images from
441 patients (120 normal, 160 drusen, and 161
CNV) and 108,312 OCT images from 4686
patients (3548 normal, 713 drusen, 791 CNV,
and 709 DME) [4]. The testing set comprised of
1000 retinal OCT images (250 from each class)
from the USCD dataset [4], and the best model
achieved a performance of 93.4% accuracy [23].

Yan et al. used ResNet34, integrated with a
convolutional block attention module (CBAM)
block, to classify OCT images as normal, dry
AMD (drusen), inactive wet AMD (inactive
CNV), and active wet AMD (active CNV). The
respective precision and recall for detection of
drusen were 84.3% and 87.3%, 81.2% and
80.0% for inactive CNV, 97.7% and 90.2% for
active CNV, and 93.7% and 96.5% for normal.
The GradCam heatmap also indicated a high
level of correspondence for ROI between the
model and the ophthalmologists [24].

A CapsNet-based DL architecture was trained
on a total of 726 spectral domain OCT (SD-
OCT) images in a study by Celebi et al. to
improve the accuracy of diagnosing AMD. The
images were labeled as drusen (n = 159), dry
AMD (n = 145), wet AMD (n = 156), and normal
(n = 266). Images were pre-processed by identi-
fying the region of interest (ROI) and speckle
noise reduction based on optimized Bayesian
non-local mean (OBNLM) filter. The proposed
algorithm was validated on the public Kaggle
dataset [14] and achieved an accuracy of 98.0%,
sensitivity of 96.7%, and specificity of 99.9%
[25].

An et al. utilized 185 normal OCT images,
535 OCT images of AMD with fluid, and 514
OCT images of AMD without fluid for training.
During testing, 49 images from 25 normal eyes,
188 AMD OCT images with fluid, and 154 AMD
images without any fluid from 77 AMD eyes
were used. A two-stage classification process was
developed. In the first stage, a VGG-16 model
was trained to differentiate between normal and
AMD OCT images. In the second stage, the
VGG-16 model was then fine-tuned to detect
fluid in AMD OCT images. During the first
stage, normal and AMD OCT images were clas-
sified with 99.2% accuracy. In the second stage,
fluid detection was achieved with a 95.1%
accuracy [26].
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Similarly, Motozawa et al. developed a two-
stage process: first to distinguish healthy eyes
from AMD and second to determine AMD with
and without exudative changes. The first stage
of the CNN model was able to classify AMD and
normal OCT images with 100% sensitivity,
91.8% specificity, and 99.0% accuracy. The
second stage was trained and validated with 721
AMD images with exudative changes and 661
AMD images without any exudation, achieving
a performance of 98.4% sensitivity, 88.3%
specificity, and 93.9% accuracy [27].

Potapenko et al. developed a CNN to detect
retinal edema associated with AMD in OCT
images. The algorithm was initially trained on a
dataset consisting of 50,439 OCT images and
associated treatment information retrieved
from the Department of Ophthalmology,
Rigshospitalet, Copenhagen, Denmark data-
base, and later trained on a subset of the same
dataset relabeled by three ophthalmologists.
There was moderate intergrader agreement on
the presence of edema in the relabeled data
(76.4%). The proposed CNN performed on par
with intergrader agreement in detecting edema
on OCT images with an of AUC 0.97 and an
accuracy rate of 90.9% [28].

Saha et al. developed a DL model for the
automated detection and classification of AMD
OCT biomarkers, including hyperreflective foci
(HF), hyporeflective foci, and subretinal druse-
noid deposits. A total of 1050 OCT B-scans with
subretinal drusenoid deposits, 326 with
intraretinal HF, and 206 with hyporeflective
drusen were included in the training dataset.
The algorithm achieved an overall accuracy of
87% for identifying the presence of these AMD
biomarkers [29] (Table 1).

Clinical Implications of Classification/
Detection Models

To date, multiple studies have demonstrated
the robust performances of DL models in
detecting the presence of AMD or classifying
different stages of AMD on OCT images. Given
the widespread availability of OCT technology,
this development could lead to the decentral-
ization of management for AMD. For example,

OCT machines can be set up in the community
setting to perform screening on a population
level, using DL models to automatically detect
the presence of AMD-related pathologies in
patients with no known history of AMD. Alter-
natively, for patients with known dry AMD,
OCT imaging could be performed in a commu-
nity, primary care or at-home setting on a reg-
ular basis, and these patients could be promptly
referred to retinal specialists for further man-
agement, if signs of conversion to exudative
AMD are detected by DL models.

Other Applications and Future Directions

While the focus of the current review is on DL
applications to classification and detection of
AMD in OCT images, other important applica-
tions exist. In the following sections we high-
light some of these other applications and
approaches, such as segmentation, prognosti-
cation, and incorporation of multimodal
imaging.

Segmentation

DL techniques can be used to segment OCT
images in order to detect and quantify
biomarkers. Schlegl et al. developed a DL
method to automatically detect and quantify
intraretinal fluid (IRF) and subretinal fluid (SRF)
in different retinal vascular diseases. The clini-
cal dataset consisted of 1200 OCT volumes of
patients with nAMD (n = 400), DME (n = 400),
and retinal vein occlusion (n = 400). The pro-
posed method achieved and AUC of 0.94 (range
0.91–0.97), a mean precision of 0.91, and a
mean recall of 0.84 in detection of IRF and AUC
of 0.92 (range 0.86–0.98), a mean precision of
0.61, and a mean recall of 0.81 in detection of
SRF [30]. In a subsequent study by the same
research group, Schmidt-Erfurth et al. used this
algorithm to accurately measure the fluid
response to anti-VEGF therapy in AMD using
the HARBOR clinical trial dataset. The study
utilized 24,362 3-D volumetric OCT scans from
1095 patients, who were treated over a period of
24 months, and biomarkers including IRF, SRF,
and pigment epithelial detachment (PED) were
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Table 1 Summary of the studies included in the current review article

Study and year Clinical context Neural network backbone Performance

Detection of AMD

He et al. [6],

2022

AMD vs. healthy controls ResNet-50 and local outlier

factor

AUC 0.99

Sensitivity 95.02%

Specificity 95.02%

Lee et al. [7],

2017

AMD vs. healthy controls VGG-16 AUC 0.92

Accuracy 87.63%

Shi et al. [8],

2021

Presence or absence of GA Med-XAI-Net AUC 0.93

Sensitivity 82.8%

Specificity 94.6%

Srivastava et al.

[9], 2020

AMD vs. normal ResNet-50 AUC 0.96

Treder et al.

[10], 2018

AMD vs. healthy controls Multilayer deep CNN

accelerated with TensorFlow

Sensitivity 100%

Specificity 92%

Accuracy 96%

Differentiation of AMD from other macular pathologies

Baharlouei et al.

[12], 2022

AMD vs. central serous retinopathy

vs. diabetic retinopathy vs.

macular hole vs. healthy controls

Wavelet scattering network;

extracted features were fed to

a principal component

analysis (PCA) classifier

Accuracy for the detection of

normal images 97.4%

Accuracy for classification of

pathologies 82.5%

Sun et al. [13],

2020

AMD vs. DME ResNet-50 Sensitivity 99.2%

Specificity 95.6%

Accuracy 98.1%

Vellakani and

Pushbam [15],

2020

AMD vs. DME vs. healthy controls DenseNet201 and long short-

term memory (LTSM) using

OCT images enhanced by

GAN

Accuracy 0.96

Positive predictive value 0.97

True-positive rate 0.96
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Table 1 continued

Study and year Clinical context Neural network backbone Performance

Alqudah [16],

2020

Drusen vs. AMD vs. CNV vs.

DME vs. normal

AOCT-Net Overall accuracy 95.3%

Accuracy for AMD

identification 100%

Accuracy for CNV

identification 98.6%

Accuracy for drusen

identification 98.9%

Accuracy for DME

identification 99.1%

Accuracy for identification of

controls 99.1%

Li et al. [17],

2019

AMD vs. DME VGG-16 AUC 1

Sensitivity 97.8%

Specificity 99.4%

Accuracy 98.6%

Wongchaisuwat

et al. [19], 2022

nAMD vs. PCV ResNet AUC 0.81

Sensitivity 60%

Specificity 71%

Ma et al. [20],

2022

nAMD vs. PCV ResNet34 AUC 0.95–0.98 (several

versions of the model were

trained and tested)

Hwang et al.

[21], 2021

nAMD (PCV or RAP) vs. normal;

PCV vs. RAP

VGG-19 nAMD vs. normal

Accuracy 99.1%

Sensitivity 99.2%

Specificity 99.1%

AUC 99.9%

PCV vs. RAP

Accuracy 89.1%

Sensitivity 89.4%

Specificity 88.8%

AUC 0.953
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Table 1 continued

Study and year Clinical context Neural network backbone Performance

Hwang et al.

[22], 2019

Dry AMD (drusen deposits) vs.

active wet AMD (presence of

subretinal fluid, intraretinal cysts,

or hyporeflective space and

subretinal hyperreflective

exudate) vs. inactive wet AMD

(lack of active wet AMD

characteristics) vs. normal

ResNet50

InceptionV3

VGG-16

Detection accuracy for the

different stages of AMD was

higher than 90%

Sotoudeh-Paima

et al. [23], 2022

Dry AMD (drusen) vs. wet AMD

(CNV) vs. DME vs. normal

FPN

VGG-16

ResNet50

DenseNet121

Best performing model (FPN-

VGG-16) achieved 93.4%

accuracy for the classification

of dry vs. wet AMD

Yan et al. [24],

2021

Dry AMD (drusen) vs. inactive wet

AMD (inactive CNV) vs. active

wet AMD (active CNV) vs.

normal

ResNet34 AUC 0.93–0.99

Celebi et al.

[25], 2023

Drusen vs. dry AMD vs. wet AMD

vs. healthy controls

CapsNet Sensitivity 96.7%

Specificity 99.9%

Accuracy 98.07%

An et al. [26],

2019

2-step classification: 1—normal vs.

AMD; 2—AMD with fluid vs.

AMD without fluid

VGG-16 Accuracy for AMD detection

99.2%

Accuracy for fluid detection

95.1%

Motozawa et al.

[27]—2019

2-step classification: 1—normal vs.

AMD; 2—AMD with exudative

changes vs. AMD without

exudative changes

Custom CNN Normal vs. AMD

Sensitivity 100%

Specificity 91.8%

Accuracy 99.0%

Exudative vs. non-exudative

AMD

Sensitivity 98.4%

Specificity88.3%

Accuracy 93.9%

Potapenko et al.

[28]—2022

AMD with edema vs. AMD

without edema

Custom CNN AUC 0.97

Accuracy 90.9%
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identified and quantified. The study revealed
that mean central 1-mm residual fluid volumes
were significantly lower in monthly treatment
regimen when compared to pro re nata treat-
ment regimen. The difference in residual IRF
volume was detected as - 0.55 nl (p\ 0.001)
and - 1.11 nl (p = 0.031) for residual SRF vol-
ume, between treatment regimens by the end of
the trial [31]. Gerendas et al. validated the per-
formance of the same segmentation algorithm
on real-world data, utilizing the database of
Vienna Imaging Biomarker Eye Study (VIBES,
2007–2018); 1127 treatment-naı̈ve AMD eyes
with at least one follow-up visit within 5 years
were included in the study. When compared to
human experts, the algorithm achieved an AUC
of 0.91 in detecting the presence of IRF and an
AUC of 0.87 in detecting the presence of SRF in
the entire scan [32].

Prediction/Prognostication

DL models have also been developed for pre-
diction and prognostication purposes, such as
predicting conversion to nAMD and treatment
response.

Yim et al. developed a model to predict
progression to nAMD in the fellow eye of
patients, who had been diagnosed with nAMD
in the first eye. Their model was trained with
both raw OCT volumes and segmented tissue
maps; 2795 patients across seven different sites
were included. On a volumetric scan level, the
model was able to predict imminent conversion
to nAMD within 6 months with a sensitivity of

80% and specificity of 55% (sensitive mode) and
sensitivity of 34% and specificity of 90%
(specific mode) [33].

In another study, Pfau et al. first used DL
(Deeplabv3 model with a ResNet-50 backbone)
to segment OCT biomarkers (the different reti-
nal layers and retinal pigment epithelium dru-
sen complex), then used various classic ML
techniques to predict the anti-VEGF treatment
frequency within the next 12 months. In total,
99 nAMD eyes from 96 patients (138 visits) were
included. The best performing model used ran-
dom forest regression, and had a mean absolute
error of 2.60 injections/year (2.25–2.96)
[R2 = 0.39] [34].

Fu et al. investigated the usefulness of OCT
biomarkers (retinal pigment epithelium, IRF,
SRF, PED, subretinal hyperreflective material,
and HF) quantified by DL in predicting treat-
ment response to anti-VEGF injections. Their
study included 926 treatment-naı̈ve eyes from
926 patients. The model that included baseline
OCT biomarkers, baseline visual acuity (VA),
and OCT/VA changes after injections had a
mean absolute error of 5.6, 5.0, and 7.2 letters in
predicting VA after injection #2, after injection
#3, and at month 12, respectively [35].

Multimodal Imaging

Although OCT is the most common and
important imaging modality for the manage-
ment of AMD, incorporation of other imaging
modalities into model training could further
improve the models’ performance. In this

Table 1 continued

Study and year Clinical context Neural network backbone Performance

Saha et al.

[29]—2019

Hyperreflective foci vs.

hyporeflective foci vs. subretinal

drusenoid deposits

Inception-v3

ResNet-50

InceptionresNet50

Accuracy for identifying the

presence of biomarkers

86–89%

AMD age-related macular degeneration, AUC area under the receiver operating characteristic curve, CNN convolutional
neural network, CNV choroidal neovascularization, DME diabetic macular edema, FPN feature pyramid network,
GA geographic atrophy, GAN generative adversarial network, LTSM long short-term memory, OCT optical coherence
tomography, PCV polypoidal choroidal vasculopathy, RAP retinal angiomatous proliferation, VGG-16 visual geometry
group 16
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section, we highlight studies that combined
OCT images with other commonly used imag-
ing modalities to train DL models.

Thakoor et al. developed a DL model to dif-
ferentiate among non-AMD vs. nnAMD vs.
nAMD. Nine model variations were trained,
using different permutations of imaging
modalities and configurations, including 2-D
OCT B-scan flow images, 3-D OCT volumes, 3-D
OCT volumes consisting of high-definition
B-scans, and 3-D optical coherence tomography
angiography (OCTA) volumes. The dataset
consisted of 501 eye images (104 non-AMD, 247
nnAMD, and 150 nAMD) from 305 patients.
The data was then split into training (n = 301),
validation (n = 100), and testing (n = 100) sets.
The models trained with multimodal images
consistently outperformed models trained with
only OCT and OCTA. The best performing
model trained with multimodal imaging
achieved an accuracy of 70.8 ± 1.12% for the
testing dataset [36].

Similarly, Jin et al. also aimed to determine
the efficacy of a DL model, trained with OCT
and OCTA images, in the activation of CNV in
nAMD. The model was developed with a feature
level fusion (FLF) method. The training dataset
included 924 images from 181 eyes (n = 176
patients) with AMD. The external datasets were
used for testing: Ningbo dataset (30 images from
15 patients with AMD) and Jinhua dataset (42
images from 21 patients with AMD). During
internal testing, the model achieved an accu-
racy of 95.5% (AUC = 0.97) comparable to
human experts (accuracy ranging between
90.3% and 97.8%). The proposed model also
achieved favorable results for both external
dataset with an AUC of 1.0 for Ningbo and an
AUC of 0.97 for Jinhua datasets, respectively
[37].

Instead of combining OCT with OCTA, Chen
et al. combined OCT with infrared reflectance
(IR) images to develop a DL model for the clas-
sification of AMD. They collected 2006 pairs of
IR and OCT images to develop the algorithms
using vertical plane feature fusion (VPFF). The
results were validated using an independent
external dataset containing 506 pairs of IR and
OCT images. The best performing model
achieved an AUC of 0.95 for detection of

normal eyes, an AUC of 0.91 for detection of dry
AMD, and 0.89 for detection of wet AMD in the
external dataset. When compared to human
observers the algorithm also performed similar
results (accuracy of 92.5% and 91.5% for senior
ophthalmologist and the algorithm, respec-
tively) [38].

CONCLUSIONS AND FUTURE
DIRECTIONS

In the current review, we focused on DL appli-
cations for classification and detection of AMD
and OCT images. The vast majority of the
published studies on DL/AMD/OCT pertained
to ‘‘classification’’ tasks, such as detection of
AMD, differentiation of AMD from other mac-
ular pathologies, and fine-grained classification
of different AMD stages or features. In general,
these studies demonstrated robust perfor-
mances by their models, which typically
involved a pre-trained CNN and transfer learn-
ing. More technical studies that focused pri-
marily on DL-based segmentation, prediction/
prognostication, and studies using multimodal
images were beyond the scope of the current
review, but were briefly mentioned as high-
lights. For each included study, we provided
details for the clinical context, datasets, and DL
technical information. In terms of future
directions, studies combining OCT images and
other imaging modalities will likely produce
better-performing models. Prospective, ran-
domized clinical trials will be needed to deter-
mine whether utilizing DL-based predictive
models as clinical decision support tools can
provide value by improving patient outcomes.
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