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ABSTRACT

Artificial intelligence (AI) technology is
promising in the field of healthcare. With the
developments of big data and image-based
analysis, AI shows potential value in ophthal-
mology applications. Recently, machine learn-
ing and deep learning algorithms have made
significant progress. Emerging evidence has
demonstrated the capability of AI in the diag-
nosis and management of anterior segment
diseases. In this review, we provide an overview
of AI applications and potential future applica-
tions in anterior segment diseases, focusing on
cornea, refractive surgery, cataract, anterior

chamber angle detection, and refractive error
prediction.
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Key Summary Points

The application of artificial intelligence
(AI) in anterior segment diseases is
promising.

AI is capable of diagnosing and managing
anterior segment diseases.

Cornea, refractive surgery, cataract,
anterior chamber angle detection and
refractive error prediction are the most
common fields of AI applications.

AI methods still face potential challenges.

INTRODUCTION

With the development of artificial intelligence
(AI) technology, it is proving to be promising in
the field of healthcare, including radiology,
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pathology, microbiology, electronic medical
records, and surgery [1–3]. The potential value
of AI in ophthalmology is expanding, especially
in the areas relying on big data and image-based
analysis [4, 5]. The cornea and the lens are the
two most important refractive structures in the
anterior segment [2]. Cataract and cornea
opacity rank within the top five leading causes
of blindness worldwide [6, 7]. Delayed recogni-
tion of anterior segment diseases may lead to
severe complications and permanent vision
loss. The diagnosis and treatment of anterior
segment diseases often involve imaging analy-
sis, including slit-lamp photography (SLP),
anterior segment optical coherence tomogra-
phy (AS-OCT), corneal tomography/topography
(CT), ultrasound biomicroscope (UBM), specu-
lar microscopy (SM), and in vivo confocal
microscopy (IVCM) [2–4]. Thus, AI algorithms,
based on anterior segment images, are mostly
committed to improving accuracy for disease
screening and predicting possible outcomes
after disease treatments, in combination with
clinical data [2, 4, 5].

In this review, we detail the history and basic
principles of AI algorithms in anterior segment
diseases. In addition, we provide updated over-
view of AI applications and discuss the potential
futures in anterior segment diseases, encom-
passing cornea, refractive surgery, cataract,
anterior chamber angle detection, and refrac-
tive error prediction.

METHODS

We performed the systematic review using the
PubMed database, focusing on the most recent
studies and clinical trials on the anterior seg-
ment diseases. The following keywords were
searched: ‘‘artificial intelligence,’’ ‘‘machine
learning,’’ ‘‘deep learning,’’ ‘‘cornea,’’ ‘‘keratitis,’’
‘‘keratoplasty,’’ ‘‘corneal sub-basal nerve,’’ ‘‘cor-
neal epithelium,’’ ‘‘corneal endothelium,’’ ‘‘re-
fractive surgery,’’ ‘‘keratoconus,’’ ‘‘cataract,’’
‘‘cataract surgery’’, ‘‘intraocular lens,’’ ‘‘paedi-
atric cataract,’’ ‘‘cataract surgery training,’’ ‘‘cat-
aract surgery monitoring,’’ ‘‘anterior chamber
angle,’’ ‘‘refractive error,’’ and ‘‘anterior segment
diseases.’’ Articles published in English were

included, which were manually screened for
further relevant studies. This article is based on
previously conducted studies and does not
contain any studies with human participants or
animals performed by any of the authors. The
literature search is illustrated in the Preferred
Reporting Items for Systematic Reviews and
Meta-Analyses (PRIMSA) flowchart (Fig. 1).

HISTORY AND PRINCIPLE

McCarthy et al. first reported the concept of AI
in 1955 [8]. In general, the core of AI algorithm
is to mimic human behaviors in the real world
and make human-like decisions by software
programs [9]. The first generation of an AI
algorithm relied on the curation of medical
experts and the formulation of robust decision
rules [10]. During the past 60 years, AI algo-
rithms have improved considerably. Recent AI
algorithms can manage more complex interac-
tions, which include machine learning (ML)
and deep learning (DL) as the two most com-
mon subfields [5, 9].

The ML algorithms contain two categories:
supervised and unsupervised. Supervised ML
methods are trained by input–output pairs
(termed ‘‘ground truth’’), which contain inputs

Fig. 1 Illustration of literature search strategy in PRISMA
flowchart
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and the desired output labels manually marked
by human experts [5, 9, 10]. The algorithm
learns to give the correct output for an input on
new cases. Unsupervised ML methods are
trained using unlabeled data to find subclusters
of the original data, which may demonstrate
something previously unknown to experts.
There are common ML algorithms, such as
logistic regression (LR), decision trees (DT),
support vector machines (SVM), Gaussian mix-
ture model (GMM), and random forests (RF),
etc.

The DL algorithms, the latest incarnation of
the artificial neural networks (ANN), can per-
form sophisticated multilevel data abstraction
without manual feature engineering [9, 11]. The
DL method consists of an input layer, an output
layer, and a few hidden layers in between. An
artificial neuron, such as a cortical neuron,
responds to one element of the input layer and
hidden layer. The ‘‘weight’’ of each input and
hidden layer can be ascribed before passing to
the next layer. Convolutional neural networks
(CNN) and recurrent neural networks (RNN) are
the progression of DL methods.

CORNEA

Infectious Keratitis

Corneal blindness largely results from keratitis
[6, 12]. Keratitis can get worse rapidly and even
progress to corneal perforation without timely
and correct diagnosis [12]. Early detection and
appropriate treatment of keratitis can halt the
disease progression and reach a better visual
prognosis [12, 13]. However, the diagnosis of
keratitis often requires a skilled ophthalmolo-
gist, the current clinical positive rate (33–80%)
is far from ideal [14].

AI has beendeveloped to recognize causes and
improve diagnostic accuracy of keratitis. Saini
et al. built an ANN classifier using 106 corneal
ulcer subjects with laboratory evidence on smear
or culture, and complete healing response to
specific antibiotic or antifungal drugs [15].
Specificities of theANNclassifier for bacterial and
fungal categories were 76.5% and 100%, respec-
tively. Using 2008 IVCM images, Lv et al. tested a

DL ResNet system to diagnose fungal keratitis
[16]. The accuracy, specificity, and sensitivity
were 0.9364, 0.9889, and 0.8256, respectively.
Also, with 1870 IVCM images, Liu et al. trained
an novel CNN framework (AlexNet) for the
automatic diagnosis of fungal keratitis (accu-
racy = 99.95%) [17]. Kuo et al. designed a DL
framework with DenseNet architecture, relying
on 288 slit-lamp images, to diagnose fungal ker-
atitis (sensitivity of 71%, specificity of 68%) [18].
Hung et al. developed deep learning models for
identifying bacterial keratitis and fungal kerati-
tis, with a highest average accuracy of 80.0%
using slit-lamp images from 580 patients [19].
Ghosh et al. tested CNNmodels with the highest
area under the curve (AUC) of 0.86 for rapidly
discriminating between fungal keratitis and
bacterial keratitis using slit-lamp images from
194 patients [20]. Li et al. built a DL algorithm,
DenseNet121, based on 6567 slit-lamp images
[21]. DenseNet121 achieved an AUC of 0.998, a
sensitivity of 97.7%, and a specificity of 98.2% in
keratitis detection.

To test the capability of distinguishing ker-
atitis from other anterior diseases, AI methods
have also proven to be workable. Based on 1772
slit-lamp images, Li et al. combined Visionome
with a DL framework for dense annotation of
the pathological features [22]. DL frameworks
using ResNet and faster region-based CNN
detected anterior disease, such as keratitis,
conjunctival hyperemia, and pterygium, etc. Gu
et al. proved that a novel DL network focusing
on 5325 slit-lamp images, which contained a
family of multitask and multilabel learning
classifiers, was workable to diagnose infectious
keratitis, noninfectious keratitis, corneal dys-
trophy or degeneration, and corneal neoplasm
(AUC = 0.910) [23]. Loo et al. also proposed a
DL algorithm for segmentation of ocular struc-
tures and microbial keratitis biomarkers [24].
Using slit-lamp images from 133 eyes, the DL
algorithm is promising for the quantification of
corneal physiology and pathology.

Keratoplasty

As reported by the Eye Bank, the demand for
corneal graft tissue is increasing, which
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represents a significant financial and public
health burden [25]. AI methods may help cor-
nea surgeons to better decide on possibilities for
performing keratoplasty and related procedures.
Yousefi et al. introduced a ML approach, which
was useful for identifying keratoconus and sus-
pects (3495 subjects) who may be at higher risk
for future keratoplasty using AS-OCT informa-
tion [26]. Hayashi et al. built a DL model
(AUC = 0.964) to judge the need for rebubbling
after Descemet’s endothelial membrane kerato-
plasty (DMEK) using AS-OCT images from 62
eyes.

AI models have been tested for detecting and
improving therapeutic effects of surgical proce-
dures during keratoplasty. Hayashi et al. built a
deep neural network model, Visual Geometry
Group-16, to predict successful big-bubble (SBB)
formation during deep anterior lamellar ker-
atoplasty (DALK) [27]. Based on AS-OCT and
corneal biometric values of 46 patients, the
AUC of this model reached 0.75. Using AS-OCT
images from 1172 subjects, Treder et al. evalu-
ated a CNN classifier (accuracy = 96%) to detect
graft detachment after DMEK [28]. Heslinga
et al. developed a DL model to locate and
quantify graft detachment after DMEK using
1280 AS-OCT scans [29]. Dice scores for the
horizontal projections of all B-scans with
detachments was 0.896. Pan et al. used a DL
framework for augmented reality (AR)-based
surgery navigation to guide the suturing in
DALK [30]. The corneal contour tracking accu-
racy was 99.2% on average. Vigueras-Guillén
et al. developed a DL method to estimate the
corneal endothelium parameters from SM ima-
ges of 41 eyes after Descemet stripping auto-
mated endothelial keratoplasty (DSAEK) [31].
The proposed DL method obtained reliable and
accurate estimations.

Corneal Subbasal Nerve Neuropathy

Diabetic peripheral neuropathy (DPN) is the
most common complication of both type 1 and
2 diabetes [32]. IVCM is capable of quantifying
corneal subbasal plexus, which represents small
nerve fiber damage and repair. Scarpa et al. used
a CNN algorithm for the classification of IVCM

images from 50 healthy subjects and 50 diabetic
subjects with neuropathy [33]. This CNN algo-
rithm provided a completely automated analy-
sis for identifying clinically useful features for
corneal nerves (accuracy = 96%). Focusing on
corneal nerve fiber, Williams et al. applied a
deep learning algorithm on IVCM images from
222 subjects, with a specificity of 87% and
sensitivity of 68% for the identification of DPN
[34]. Based on IVCM images from 369 subjects,
Preston et al. utilized a CNN algorithm for cor-
neal subbasal plexus detection to classify DPN,
with the highest F1 score of 0.91 [35].

Cornea Epithelium and Endothelium
Parameters

The epithelium is the outermost layer of the
cornea, critical for refractive status and wound
healing [36]. The most common examination
method used by ophthalmologists is slit-lamp
microscopy combined with different illumina-
tions and eye staining techniques. Noor et al.
reported that AI methods could differentiate
abnormal corneal epithelium tissues using 25
hyperspectral imaging (HSI) images without eye
staining [37]. SVM and CNN algorithms were
used to extract image features with an accuracy
of 100%.

Fuchs endothelial dystrophy (FED) comes
with an increase in the thickness of the Desce-
met’s membrane, guttae, and a progressive loss
of endothelial cells [38]. The guttae is a large
deposition of extracellular matrix in the corneal
endothelium. Vigueras-Guillén et al. developed
DL methods to estimate the corneal endothe-
lium parameters using 500 SM images with
guttae [39]. The DL methods obtained lower
mean absolute errors compared with commer-
cial software.

REFRACTIVE SURGERY

Early Keratoconus

Keratoconus (KC) is a noninflammatory corneal
ectasia disorder, over 90% of reported KC is
bilateral, and because of the progressive corneal
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thinning, the corneal protrusion and irregular
corneal astigmatism induces poor visual per-
formance in KC patients [40]. Early KC is a
general concept of early stage KC, including
subclinical KC, preclinical KC, KC suspects, and
forme fruste KC (FFKC) [41]. Unlike KC, the
visual performance of early KC patients is good,
and there is no specific corneal topographic
finding in early KC patients [42]. However,
undetected early KC is known to be associated
with iatrogenic keratectasia, which is the most
severe and irreversible complication after laser
in situ keratomileusis (LASIK) [43, 44]. Hence,
discrimination of early KC from normal eyes is
an urgent task for ophthalmologist and oph-
thalmology science.

Discriminating early KC from normal eyes by
single anterior corneal topographic map is dif-
ficult; however, AI makes it possible to generate
thousands of features to improve the accuracy
of the discrimination power of early KC based
on big data. In 1997, Smolek et al. introduced a
neural network (NN) algorithm to discriminate
early KC eyes from KC eyes by using corneal
topography with a limited sample size [45].
After that, numerous studies have used ML
algorithms to detect early KC eyes by using
corneal topography. Accardo et al. used a NN
method to discriminate early KC eyes from
normal eyes, achieving sensitivity of 94.1% and
specificity of 97.6% [46]. Saad et al. also used a
NN method to detect early KC eyes, achieving
sensitivity of 63% [47].

After the Scheimpflug camera became widely
applied in ophthalmology clinics, multiple AI-
related have studies used this system to detect
early KC by collecting both anterior and poste-
rior corneal surface information. Kovacs et al.
[48] and Hidalgo et al. [49] both applied ML
algorithms to detect early KC eyes by using a
Scheimpflug camera, achieving sensitivities of
92% and 79.1%, respectively. Lopes et al. [50]
and Smadja et al. [51] did similar studies to
detect early KC eyes by using ML algorithms of
RF and DT. Recently, Xie et al. used a DL algo-
rithm to detect early KC eyes and achieved an
accuracy of 95%, which was higher than
achieved by senior ophthalmologists [52]. Fur-
ther, Xu et al. combined raw data of the entire
cornea (anterior curvature, posterior curvature,

anterior elevation, posterior elevation, and
pachymetry) to build a ML model called the
KerNet [53]. The KerNet was helpful for distin-
guishing clinically unaffected eyes in patients
with asymmetric KC from normal eyes (AUC =
0.985). Chen et al. reported a CNN model that
combined color-coded maps of the axis, thick-
ness, and front and back elevation [54]. The
CNN model reached accuracy of 0.90 for rec-
ognizing healthy eyes and early stage KC. The
outcomes of these studies show great potential
for the application of AI in detecting early KC
eyes by using a Scheimpflug camera, though the
detection accuracy varies among studies. The
limited information of low-resolution images
captured by the Scheimpflug camera is one of
the possible reasons.

In recent years, based on AI algorithms,
several studies have tried to combine corneal
information from multiple instruments to
improve the detection accuracy of early KC.
Hwang et al. [55] and Shi et al. [56] both com-
bined Scheimpflug camera information and AS-
OCT, which quantified corneal epithelial
information to differentiate early KC eyes from
normal eyes. The AUCs were 1.0 and 0.93,
respectively. Perez-Rueda et al. combined
biomechanical and corneal topographic infor-
mation to detect early KC with an AUC of 0.951
[57]. These studies show that corneal informa-
tion at different dimensions can improve the
detection accuracy of early KC. AI will be a
useful tool to detect early KC by generating
numerous features from cornea.

Surgery Outcomes in Refractive Surgery

Predicting the outcomes of laser refractive sur-
gery is important during clinical work. AI
methods may enhance the quality of refractive
surgical results by preventing the misdiagnosis
in nomograms. Based on big data (17,592 cases
and 38 clinical parameters for each patient),
Achiron et al. developed ML classifiers to sup-
port clinical decision-making and lead to better
individual risk assessment [58]. Cui et al. ana-
lyzed the ML technique for prediction of small
incision lenticule extraction (SMILE) nomo-
grams with 1465 eyes [59]. Compared with the
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experienced surgeon, the ML model showed
significantly higher efficacy and smaller error of
SE correction. However, the ML model was less
predictable for eyes with high myopia and
astigmatism. Park et al. tested ML algorithms
using 3034 eyes composed of four categorical
features and 28 numerical features accepted for
SMILE surgery [60]. AdaBoost achieved the
highest performance and accuracy for the
sphere, cylinder, and astigmatism axis,
respectively.

LENS

Age-Related Cataract

Cataract is the leading cause of blindness
worldwide [6]. Approximately 32 million catar-
act surgeries have been performed globally up to
2020. With the global aging trend, public eye
care demand is growing fast [6]. The clinical
consultation and surgery for cataract patients
will cause heavy burden for healthcare systems
[61]. Thus, more precise diagnosis and treat-
ment are in urgent need.

Age-related cataract always manifests as cor-
tical cataract, nuclear sclerotic, and posterior
subcapsular cataract. Slit-lamp microscopy and
photography are mostly used to observe and
capture cataract with diffuse, slit-beam, and
retro-illumination techniques. In general, doc-
tors usually diagnose and grade cataract
according to subjective experience, based on
the Lens Opacities Classification (LOCS) III and/
or the Wisconsin cataract grading system,
which might be inconsistent [62, 63]. Therefore,
a unified and objective assessment of cataract is
critical. AI technology based on big data is
capable of this diagnostic and grading task.
Using 37,638 slit-lamp photographs, Wu et al.
built a ResNet model to capture mode recogni-
tion (AUC[99%), cataract diagnosis (AUC[
99%), and detection of referable cataracts
(AUC[91%) [64]. To grade nuclear cataracts,
Gao et al. built a CNN model using 5378 slit-
beam images (mean absolute error = 0.304)
[65]. Similarly, Xu et al. built a SVR model to
grade nuclear cataracts using 5378 slit-beam
images (mean absolute error = 0.336) [66].

Cheung et al. built a SVM model to grade
nuclear cataracts using 5547 slit-beam images
(AUC = 0.88–0.90) [67]. Keenan et al. developed
a deep learning model called DeepLensNet to
perform automated and quantitative classifica-
tion of cataract severity for all three types of
cortex, nuclear, and posterior subcapsular cat-
aract. Compared with clinical ophthalmolo-
gists, the DeepLensNet performed significantly
more accurately for cortex opacity (mean
squared error = 13.1) and nuclear sclerosis
(mean squared error = 0.23). For the least com-
mon posterior subcapsular cataract, the grading
capability was similar between the DeepLensNet
(mean squared error = 16.6) and clinical oph-
thalmologists [68]. Objectively, silt-lamp ima-
ges of good quality require a certain amount of
training to reduce inter-examiner deviation.
Clinical grading labels for the training set may
bring biases. Future work might focus on more
objective grading algorithms combined with
cortex, nuclear, and posterior subcapsular cat-
aract, avoiding such errors of subjectivity.

AI models using fundus images to diagnose
and grade cataract have also been developed.
Xu et al. built a CNN model using 8030 fundus
images to grade cataract (accuracy = 86.24%)
[69]. Zhang et al. applied a SVM and CNN
model using 1352 fundus images to grade cat-
aract (accuracy = 94.75%) [70]. Xiong et al. uti-
lized a DT model for cataract grading using 1355
fundus images (accuracy = 83.8%) [71]. Yang
et al. developed an ensemble learning model for
cataract grading using 1239 fundus images (ac-
curacy = 84.5%) [72]. However, the fundus
images do not directly capture the lenticular
opacity. Along the visual axis, any opacity from
cornea and vitreous or small pupil can blur the
fundus images, leading to inaccurate diagnosis
of cataract.

Moreover, Scheimpflug tomography was
used to build an objective tool for nuclear cat-
aract staging, called Pentacam Nucleus Staging
(PNS). Based on the pixel intensity in the
nucleus region, the PNS provided the severity
value for nuclear sclerosis [73, 74]. Based on a
deep learning algorithm, swept-source optical
coherence tomography (SS-OCT) images have
also been used to quantify cataract by lens pix-
els intensity. The sensitivity and specificity to
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detect cataract were 94.4% and 94.7%, respec-
tively, for cortex, nuclear, and posterior sub-
capsular cataract detecting [75]. However, these
images are potentially flawed by the limitations
of themselves. All the AI-based models and tools
are hypothesized based on the properties of
each image device. Well-designed AI models
may be further developed along the following
criteria: objective grading, detection cataract of
three types, specificity of lens opacity, inter-
pretability of results, robustness to corneal dis-
ease, and limited inter-operator variability [75].

IOL Prediction

Intraocular lens (IOL) formulas are developed to
improve IOL selection for cataract eye. New IOL
formulas are applying big data and computa-
tional methodologies to achieve better predic-
tion of targeted refraction and simplify the IOL
selection process (Table 1).

Using the method of pattern recognition, the
Hill-radial basis function (Hill-RBF) is developed
based on AI and regression analysis of a very
large database of actual postsurgical refractive
outcomes to predict the IOL power [76]. The
Hill-RBF can deal with the undefined factors in
IOL power calculations. However, it is still an
empirical algorithm that relies on the type of
data and eye characteristics [77]. The Hill-RBF
2.0 is improved, with a larger database com-
bined with expanded ‘‘in-bounds’’ biometry
ranges [76]. Hill-RBF 3.0 included gender into
the main metrics and further improved accu-
racy [78].

The Kane formula is a new IOL power for-
mula combined AI with theoretical optics,
which includes axial length, keratometry,
anterior chamber depth, lens thickness, central
corneal thickness, A-constant, and gender for
IOL power prediction. Connell et al. found the
Kane formula was more accurate than the Hill-
RBF 2.0 Barrett Universal II for actual postop-
erative refraction [79].

In 2015, the concept of ‘‘super formula’’ was
introduced with the integration of AI technol-
ogy. This formula allowed the 3D analysis
framework, including IOL power, axial length,
and corneal power, to observe areas of

similarities and disparities between IOL formu-
las [80]. The Ladas super formula consists of
SRK/T, Hoffer Q, Holladay 1, Holladay with WK
adjustment, and Haigis with the help of a
complex DL algorithm. Kane et al. compared
the Ladas formula with the new IOL formulas
[77]. The study found that the Ladas super

Table 1 Artificial intelligence (AI)-based formulas for
intraocular lens (IOL) power calculations

AI-based
IOL
formula

Principles Metrics

Hill-RBF

3.0

Neural network,

regression

AL, K, ACD, CCT,

WTW, LT, gender

Kane Theoretical

optics,

regression

AL, K, ACD, CCT, LT,

gender

Ladas

Super

Formula

Deep learning

with various

formulas

AL, K, ACD

Pearl-

DGS

Machine learning,

output

linearization

AL, K, ACD, CCT,

WTW, LT

Clarke Bayesian additive

regression trees

AL, K, ACD, CCT, LT

VRF-G Theoretical

optics,

regression, ray-

tracing

AL, K, ACD, LT, CCT,

WTW, gender, Pre-R

FullMonte Neural network AL, K, STS width and

perpendicular depth,

cornea shape factor Q

Kamona Machine learning Mean K of anterior

corneal surface, mean

K of posterior corneal

surface, AL, ACD, LT,

WTW

AL axial length, K keratometry, ACD anterior chamber
depth, CCT central corneal thickness, WTW white-to-
white, LT lens thickness, STS sulcus-to-sulcus, Pre-R pre-
operative refraction
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formula was less accurate than the Barrett
Universal II, but was more accurate than Hill-
RBF.

Based on the prediction of the internal lens
position (TILP), the Pearl-DGS is a thick-lens
IOL calculation formula using AI and linear
algorithms [81]. The Pearl-DGS is currently an
open-source tool for IOL power prediction.
Clarke et al. reported a ML model (Bayesian
additive regression trees) for IOL power calcu-
lation to optimize postoperation refractive out-
comes, which had a median error close to the
IOL manufacturer tolerance [82]. VRF formula is
a vergence-based thin-lens formula. Based on
theoretical optics with regression and ray-trac-
ing principles, the VRF-G formula is a modifi-
cation of VRF, including eight metrics: axial
length, keratometry, anterior chamber depth,
horizontal corneal diameter, lens thickness,
preoperative refraction, central corneal thick-
ness, and gender [83]. The FullMonte formula
was built on mathematical neural networks
combined with the Monte Carlo Markov Chain
algorithm [84]. The Kamona method is based on
ML algorithms using the mean K of anterior
corneal surface, mean K of posterior corneal
surface, axial length, anterior chamber depth,
lens thickness, and white-to-white values [85].

Other AI-based IOL models have been tested
to predict the IOL power. Li et al. developed a
novel ML-based IOL power calculation method,
the Nallasamy formula, based on a dataset of
cataract patients [86]. They proved that the
Nallasamy formula outperformed Barrett
Universal II. Li et al. also developed a ML-pre-
diction method to improve the performance of
the ray-tracing IOL calculation, which showed
more precise results in long eyes [87]. Sramka
et al. evaluated the Support Vector Machine
Regression model (SVM-RM) and the Multilayer
Neural Network Ensemble model (MLNN-EM)
for IOL power calculations, which achieved
better results than the Barrett Universal II for-
mula [88].

Li et al. incorporated a ML method for
effective lens position (ELP) predictions, which
is an important factor for IOL power formulas
[89]. Brant et al. tested a ML algorithm to opti-
mize the IOL inventory close to the target
refractive status [90]. With the development of

global databases and AI algorithms, more new
IOL power calculators and models will achieve
better IOL power prediction, especially for short
eyes, long eyes, and post-refractive surgery eyes.

Pediatric Cataract

Although pediatric cataracts are relatively rare
(1 per 3000), clinical manifestations are quite
inconsistent [91]. Pediatric cataract will cause
deprivation of visual stimuli, which is a big
threat to visual development. Appropriate
diagnosis and treatment will be helpful to
reduce deprivation amblyopia and blindness
[92, 93].

Recent developments in AI have shown their
potential possibility for the diagnosis and
management of pediatric cataract using slit-
lamp images. Liu et al. built an AI model that
combined CNN with SVM methods for quali-
tative and quantitative pediatric cataract
detection using 886 slit-lamp images [94]. This
model was validated for pediatric cataract
diagnosis as classification (accuracy = 97.07%),
area grading (accuracy = 89.02%), density (ac-
curacy = 92.68%), and location (accu-
racy = 89.28%). Lin et al. created the
Congenital Cataract-Cruiser (CC-Cruiser) to
identify, stratify, and strategize treatment for
images of pediatric cataract [95]. The accuracies
of cataract diagnosis and treatment determina-
tion reached 87.4% and 70.8%, respectively. In
addition, Long et al. developed a Congenital
Cataract-Guardian (CC-Guardian) to accurately
detect and address complications using internal
and multiresource validation [96]. The CC-
Guardian included three functional modules: a
prediction module, a scheduling follow-up
module, and a clinical decision module. The
CC-Guardian provided real medical benefits for
the effective management of congenital catar-
act. Combing the silt-lamp images and clinical
information, Zhang et al. applied random forest
(RF), Naı̈ve Bayesian (NB), and association rules
mining to build an AI model to predicate post-
operative complications of pediatric cataract
patients, with average classification accuracies
over 75% [97]. In future studies, it is important
to contain more clinical data and image results
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to improve the prognosis accuracy of pediatric
cataract.

Cataract Surgery Training and Monitoring

Cataract surgery is the cornerstone operation to
master for an eye surgeon. Video recording of
cataract surgery is an effective way to collect
surgical workflows, which are useful for surgical
skill training and optimization. Combined with
AI algorithms, this may extend applications to
automatic report generation and real-time sup-
port. The Challenge on Automatic Tool Anno-
tation for cataRACT Surgery (CATARACTS), in
the context of a decision support algorithm,
demonstrated that the annotation of cataract
surgery was workable [98]. Yu et al. proved that
a CNN-RNN algorithm inputted with instru-
ment labels was accurate for identifying pre-
segmented phases from cataract surgery videos
[99]. Yeh et al. developed a CNN-RNN model
that showed accurate predictions for routine
steps of cataract surgery and estimated the
possibility for complex cataract surgeries with
advanced surgical steps [100]. Yoo et al. trained
a CNN-based smart speaker (accuracy = 93.5%)
for the timeout speech to confirm surgical
information, such as right side, left side, catar-
act, phacoemulsification, and IOL [101]. Further
improvements might offer more help in catar-
act surgery education and monitoring.

PRIMARY ANGLE-CLOSURE
GLAUCOMA

Primary angle-closure glaucoma (PACG)
accounts for 50% of global bilateral blindness
due to glaucoma [102]. By 2040, the number of
PACG will reach 32.04 million worldwide [103].
Objective and quantified assessments of ante-
rior chamber depth (ACD) and anterior cham-
ber angle (ACA) are important. To detect
shallow anterior chamber, DL methods have
been developed using anterior segment pho-
tographs (AUC = 0.86) [104] and fundus pho-
tographs (AUC = 0.987) [105]. Based on images
obtained using ultrasound biomicroscope,
automatic AI methods were applied for ACA

analysis [106–108]. However, ultrasound
biomicroscopy only shows the cross-section of
localized ACA. The development of SS-OCT can
capture the 3D structure of ACA. Combining AI
algorithms with SS-OCT images, automatic
classification for ACA evaluation is becoming
more efficient for PACG diagnosis [109]. Using
the SS-OCT images, Pham et al. developed a
convolutional neural network (DCNN) for dis-
crimination of scleral spur, iris, corneosclera
shell, and anterior chamber, with a Dice coeffi-
cient of 95.7% [110]. In addition, Liu et al. tes-
ted the reproducibility of a DL algorithm to
recognize scleral spur and anterior chamber
angle [111]. The repeatability coefficients of
were 0.049–0.058 mm for structure detection.
Randhawa et al. tested the generalizability of DL
algorithms to detect gonioscopic angle closure
based on three independent patient popula-
tions, with AUCs of 0.894–0.992 [112]. Porpo-
rato et al. validated a DL algorithm for 360�
angle assessment, with an AUC of 0.85 [113]. Li
et al. proposed a DL method using SS-OCT
images for classification of open angle, narrow
angle, and angle closure (sensitivity = 0.989,
specificity = 0.995) [114]. Similarly, Xu et al.
tested a DL classifier for primary angle closure
disease, the AUC of which reached 0.964 [115].
The incorporation of AI analysis and SS-OCT
images might work as a useful tool for the
management of angle-closure glaucoma.

UNCORRECTED REFRACTIVE ERROR

Uncorrected refractive error is associated with
visual impairment worldwide [6]. The timely
prediction of refractive error, including severe
myopia and hyperopia, is essential for reducing
the risks of retinal diseases, glaucoma, and
amblyopia [116, 117]. Varadarajan et al. evalu-
ated a DL method to extract information of
refractive error from retinal fundus images. The
mean absolute error of spherical equivalent (SE)
was 0.56–0.91 diopters [118]. Yoo et al. evalu-
ated a DL model to estimate uncorrected
refractive error using posterior segment OCT
(PS-OCT) images, which yielded an AUC of
0.813 for high myopia detection [119]. Chun
et al. tested a DL-based system for refractive
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error using photorefraction images captured by
a smartphone, with an overall accuracy of
81.6% [120]. With the application of ultrawide
field fundus images, Yang et al. proved the fea-
sibility of predicting refractive error in myopic
patients with DL models [121]. Above all, for
refractive error prediction, the AI analysis of

fundus and PS-OCT images showed a clear focus
of attention to the morphological changes of
macular and optic nerve head. However, the
accuracy of exact refractive error prediction
might need further improvements considering
more real-world factors.

Table 2 Summary of AI applications in anterior segment diseases

Cornea Refractive surgery Lens Primary angle-closure
glaucoma

Infectious keratitis Early keratoconus Age-related

cataract

Assessing anterior

chamber depth

Capturing 3D structure

of anterior chamber

angle

Recognizing the causes of infectious

keratitis

Distinguishing keratitis and

improving diagnostic accuracy

Discriminating early keratoconus

from normal eyes

Cataract diagnosis

Cataract grading

Keratoplasty Surgery outcomes IOL prediction

Deciding on possibilities and

methods to perform keratoplasty

Detecting the surgical effect

Predicting refractive surgical

results; supporting clinical

decision-making

IOL formula

IOL power

prediction model

Corneal subbasal nerve neuropathy Pediatric cataract Uncorrected refractive

error

Classifying corneal subbasal plexus

changes of diabetic peripheral

neuropathy

Pediatric cataract

diagnosis

Strategizing

treatment and

management

Predicting refractive

error

Cornea epithelium and

endothelium

Training and

monitoring

Differentiating abnormal corneal

epithelium

Estimating the corneal endothelium

parameters with gutta

Identifying of

cataract surgery

steps

Confirming

surgical

information
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LIMITATIONS AND FUTURE
APPLICATIONS

Combined with a considerable number of rele-
vant data and images, AI shows significant
promise in clinical diagnosis and decision-
making. However, elaborating underlying fea-
tures and classifying results of different diseases
through the AI algorithms yet might be a black
box, which is uncertainty whether agreeing
with the real-world or not [5]. The Standard
Protocol Items: Recommendations for Inter-
ventional Trials-AI (SPIRIT-AI) and Consoli-
dated Standards of Reporting Trials-AI
(CONSORT-AI) Steering Groups presented the
need for consensus-based reporting guidelines
for AI-related interventions [122]. These guide-
lines would improve both the consistency of
medical professionals and the effectiveness of
regulatory authorities. Therefore, AI interven-
tions still face potential challenges before being
introduced in clinical practice.

Multimodal inputs as structural images and
functional data will be the future trend of AI
developments [123]. Multiple input types of
clinical tests are closer to the real world. How-
ever, more inputs also require more training
samples to avoid overfitting. Moreover, the
weight of each input should be considered
when performing the integration.

Up to now, most AI algorithms have been
trained with samples far away from clinical
reality. AI algorithms are not comparable due to
the applications of different databases. An
accessible public dataset of multi-ethnicity
patient cohorts is the key to enhance the gen-
eralizability of AI algorithms [122, 124]. Unified
data may thus be beneficial for optimization
and comparison among different AI models.

CONCLUSIONS

The application of AI in anterior segment dis-
eases is promising (Table 2). With the advanced
developments in AI algorithms, early diagnosis
of debilitating anterior segment disorders and
prediction of relative treatments, in the fields of
cornea, refractive surgery, cataract, anterior
chamber angle detection, and refractive error

prediction, will make great strides. Although AI
interventions face potential challenges before
their full application into clinical practice, AI
technologies swill make a significant impact on
intelligent healthcare in the future.
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57. Pérez-Rueda A, Jiménez-Rodrı́guez D, Castro-Luna
G. Diagnosis of subclinical keratoconus with a
combined model of biomechanical and topographic
parameters. J Clin Med. 2021;10:2746.

58. Achiron A, Gur Z, Aviv U, et al. Predicting refractive
surgery outcome: machine learning approach with
big data. J Refract Surg. 2017;33:592–7.

59. Cui T, Wang Y, Ji S, et al. Applying machine learn-
ing techniques in nomogram prediction and anal-
ysis for smile treatment. Am J Ophthalmol.
2020;210:71–7.

60. Park S, Kim H, Kim L, et al. Artificial intelligence-
based nomogram for small-incision lenticule
extraction. Biomed Eng Online. 2021;20:38.

61. WangW, YanW, Fotis K, et al. Cataract surgical rate
and socioeconomics: a global study. Invest Oph-
thalmol Vis Sci. 2016;57:5872–81.

62. Chylack LT Jr, Wolfe JK, Singer DM, et al. The Lens
Opacities Classification System III. The longitudinal
study of cataract study group. Arch Ophthalmol.
1993;111:831–6.

63. Panchapakesan J, Cumming RG, Mitchell P. Repro-
ducibility of the Wisconsin cataract grading system
in the Blue Mountains Eye Study. Ophthalmic Epi-
demiol. 1997;4:119–26.

64. Wu X, Huang Y, Liu Z, et al. Universal artificial
intelligence platform for collaborative management
of cataracts. Br J Ophthalmol. 2019;103:1553–60.

65. Gao X, Lin S, Wong TY. Automatic feature learning
to grade nuclear cataracts based on deep learning.
IEEE Trans Biomed Eng. 2015;62:2693–701.

66. Xu Y, Gao X, Lin S, et al. Automatic grading of
nuclear cataracts from slit-lamp lens images using
group sparsity regression. Med Image Comput
Comput Assist Interv. 2013;16:468–75.

67. Cheung CY, Li H, Lamoureux EL, et al. Validity of a
new computer-aided diagnosis imaging program to
quantify nuclear cataract from slit-lamp pho-
tographs. Invest Ophthalmol Vis Sci. 2011;52:
1314–9.

68. Keenan TDL, Chen Q, Agrón E, et al. DeepLensNet:
deep learning automated diagnosis and quantitative
classification of cataract type and severity. Oph-
thalmology. 2022;129:571–84.

69. Xu X, Zhang L, Li J, Guan Y, Zhang L. A Hybrid
global-local representation CNN model for auto-
matic cataract grading. IEEE J Biomed Health
Inform. 2020;24:556–67.

70. Zhang H, Niu K, Xiong Y, Yang W, He Z, Song H.
Automatic cataract grading methods based on deep
learning. Comput Methods Progr Biomed.
2019;182: 104978.

71. Xiong L, Li H, Xu L. An approach to evaluate blur-
riness in retinal images with vitreous opacity for
cataract diagnosis. J Healthc Eng. 2017;2017:
5645498.

72. Yang JJ, Li J, Shen R, et al. Exploiting ensemble
learning for automatic cataract detection and
grading. Comput Methods Progr Biomed. 2016;124:
45–57.

73. Grewal DS, Brar GS, Grewal SP. Correlation of
nuclear cataract lens density using Scheimpflug
images with Lens Opacities Classification System III
and visual function. Ophthalmology. 2009;116:
1436–43.

74. Lim SA, Hwang J, Hwang KY, Chung SH. Objective
assessment of nuclear cataract: comparison of

1452 Ophthalmol Ther (2023) 12:1439–1455



double-pass and Scheimpflug systems. J Cataract
Refract Surg. 2014;40:716–21.
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