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ABSTRACT

Introduction: Deep learning (DL) for screening
diabetic retinopathy (DR) has the potential to
address limited healthcare resources by
enabling expanded access to healthcare. How-
ever, there is still limited health economic
evaluation, particularly in low- and middle-

income countries, on this subject to aid deci-
sion-making for DL adoption.
Methods: In the context of a middle-income
country (MIC), using Thailand as a model, we
constructed a decision tree-Markov hybrid
model to estimate lifetime costs and outcomes
of Thailand’s national DR screening program
via DL and trained human graders (HG). We
calculated the incremental cost-effectiveness
ratio (ICER) between the two strategies. Sensi-
tivity analyses were performed to probe the
influence of modeling parameters.
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Results: From a societal perspective, screening
with DL was associated with a reduction in costs
of * US$ 2.70, similar quality-adjusted life-
years (QALY) of ? 0.0043, and an incremental
net monetary benefit of * US$ 24.10 in the
base case. In sensitivity analysis, DL remained
cost-effective even with a price increase from
US$ 1.00 to US$ 4.00 per patient at a Thai
willingness-to-pay threshold of * US$ 4.997
per QALY gained. When further incorporating
recent findings suggesting improved compli-
ance to treatment referral with DL, our analysis
models effectiveness benefits of * US$ 20 to
US$ 50 depending on compliance.
Conclusion: DR screening using DL in an MIC
using Thailand as a model may result in societal
cost-savings and similar health outcomes com-
pared with HG. This study may provide an
economic rationale to expand DL-based DR
screening in MICs as an alternative solution for
limited availability of skilled human resources
for primary screening, particularly in MICs with
similar prevalence of diabetes and low compli-
ance to referrals for treatment.

Keywords: Cost-utility analysis; Health
economics; Diabetic retinopathy; Artificial
intelligence; Public health

Key Summary Points

Why carry out this study?

A limited number of studies on economic
evaluation of deep learning (DL) for
diabetic retinopathy (DR) screening in
high-income countries have
demonstrated the potential for cost-
saving with DL from a healthcare provider
perspective. However, very few studies
evaluated DL for DR screening in a
middle-income country (MIC).

This study was conducted to analyze the
cost-utility of DL compared to trained
non-physician human graders (HG) to
screen DR over a lifetime horizon of
patients from both societal and healthcare
provider perspectives.

What was learned from this study?

Our cost-utility analysis showed that in the context
of MICs, such as Thailand, screening for DR using
DL, compared to HG, may cause a high incremental
cost-effectiveness ratio (ICER) over a lifetime
horizon of patients from a healthcare provider
perspective. This was due to much higher sensitivity
of DL compared to that of HG and led to a higher
treatment cost. However, screening using DL caused
less bilateral blindness, which in turn caused more
cost-saving than HG from a societal perspective.
Our data provide an economic rationale for decision
makers to expand DL-based DR screening in MICs
with similar prevalence of diabetes, shortages of
skilled human resources for primary screening, and
low compliance to referrals for treatment. In
general, DR screening using DL or HG could
achieve greater cost-savings with higher compliance
to referrals for treatment.
Policy makers should be aware of budget impact of
treating more patients with sight-threatening DR
(STDR) with clinical deployment of DL.

INTRODUCTION

Deep learning (DL), a type of artificial intelli-
gence (AI), has been retrospectively and
prospectively validated as an effective tool for
screening of diabetic retinopathy (DR), one of
the leading causes of blindness worldwide, with
levels of performance on par with expert oph-
thalmologists [1–3].

To build further evidence toward real-world
deployment of DL for DR, rigorous health eco-
nomic evaluations are essential to ensure
appropriate allocation of healthcare budgets.
While a few economic evaluations conducted in
high-income countries found a potential for DL
to be cost-effective for DR screening, few studies
have been conducted for resource-limited set-
tings, such as middle-income countries [4].

Thailand, a middle-income country (MIC)
with a population of 70 million people and a
gross domestic product of US$ 7189.04 per
capita in 2020, is one of the few countries where
a nationwide screening program for DR has
been well established. The program, supported
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by the Ministry of Public Health, has been
conducted across all provinces and adminis-
tered by provincial health officers. Most of the
approximately 700 screening units throughout
the country are at the primary care level and use
grading of color fundus photographs (CFP) for
identification of referrals to ophthalmologists.
Given the shortage of ophthalmologists, the
grading is performed by trained, non-physician
healthcare personnel (HG).

To reduce demands on limited human
resources and expand access to screening in the
country, DL approaches have been evaluated
[5]. We previously conducted a retrospective
validation study of a DL model for detecting
referable DR in Thai patients with diabetes.
Using a dataset of[ 10,000 CFPs from those in
the Thai diabetes registry, we found the model
to have a high sensitivity (0.97) and specificity
(0.96) for the detection of referrable DR [6].
Following this, a prospective interventional
study in nine primary health centers validated
the DL model’s feasibility for real-time DR
screening and confirmed the high sensitivity
(0.91) and specificity (0.95) [7]. Human-cen-
tered evaluative research was also conducted,
reporting that patients and health care profes-
sionals were receptive to deploying DL in the
real world [5].

The cost burden of patients with DR without
screening to detect referrals for timely inter-
vention was demonstrated in a recent study on
cost-effectiveness analysis of DR screening using
DL in low-income patients at primary care
centers in the US. The estimated cost incurred
to patients who received routine care by oph-
thalmologists at referral centers without
screening was 2082.91 USD per patient com-
pared to 1596.99 USD when they received
screening by DL [8].

Thus, to inform further implementation of
DL for DR screening, we conducted this health
economic evaluation to inform decision makers
regarding the deployment of DL compared with
HG in the context of MIC. The results of this
study can be applied not only to Thailand but
also to other MICs with similar prevalence of

diabetes and limitations in resources.

METHODS

We constructed a model for cost-utility analysis
(CUA) using data derived from previously pub-
lished validation studies of the DL system for
DR screening in Thailand [6]. All the studies
were approved by the Ethics Committee of
Rajavithi Hospital; all patients provided written
informed consent. This economic evaluation
was conducted and reported according to Con-
solidated Health Economic Evaluation Report-
ing Standards (CHEERS) 2022 Checklist
provided in Supplementary Material. This study
was approved by the Institutional Review Board
of Rajavithi Hospital, Thailand (COA:
087/2562) and conducted according to the
Declaration of Helsinki.

Target Population

A hypothetical cohort of patients with type 2
diabetes, aged 40 years, not previously screened
for DR, was modeled for this CUA. This cohort
was selected because the national program pre-
dominantly screens type 2 diabetes patients [
age 40 years and the model accounts for yearly
screenings for non-referred patients. The
patients were scheduled for annual DR screen-
ing and were referred for treatment if diagnosed
with sight-threatening DR (STDR). STDR was
defined as patients with either eye having dia-
betic macular edema (DME), severe non-prolif-
erative DR (NPDR), or proliferative DR (PDR).
These definitions are based on the International
Clinical Classification of DR (ICCDR) [9, 10].

Model Structure

The CUA using a Markov model with an
embedded decision tree was undertaken from
both societal and provider perspectives. Costs
and health outcomes were evaluated over a life-
time horizon of patients with a discount rate of
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3% a year for future costs and outcomes. The
decision tree (Fig. 1A) illustrates the screening
processes for patients. They received annual
screening at primary health centers by grading of
CFP by either HG or DL until they exited. An exit
was defined as when a patient was graded as
referral, ungradable, or with death. The ungrad-
able patient was defined when CFP of both eyes
was ungradable or when CFP of either eye was
ungradable and that of the fellow eye was graded
as non-STDR. This proportion of ungradable
patients was found to be similar in both DL and
HG arms in our previous study [11].

All patients with STDR in both arms received
additional confirmatory grading by retinal spe-
cialists. Patients confirmed to be true positives
were referred for treatment. Those confirmed as
false positives and those with negative screen-
ing results were re-screened in the following
year.

A Markov model was developed using
Microsoft Excel (Microsoft Corp., Redmond,
WA) comprising five health states based on the
natural history of the disease and a 1-year cycle
length (Fig. 1B). Transitional probabilities in
this model are shown in Table 1. According to
the progression rates of DR, patients could
remain stable or progress towards bilateral
blindness or death. A half-cycle correction was
applied to account for events and transitions
that might occur at any point during the cycle.

Screening Strategies

This model reflected differences in the diagnostic
accuracy of DL as compared to HG. DL had higher
sensitivity (0.950 for DL and 0.737 for HG) but

slightly lower specificity than HG (0.980 for DL
and 0.986 for HG) [11]. Another difference, not
captured in this model, was that DL enabled
immediate results, whereas HG results could be
delayed by 1–2 weeks if primary gradings could
not be completed at the point of care [5]. Given
that the timing of results can lead to differences
in the proportion of patients who adhere to fol-
low-up at the referral centers for treatment
[27, 28], for example, a prospective study of DR
screening using DL to provide immediate results
showed the adherence rate to referrals was 55.4%
compared with the historical adherence rate of
18.7% at 1 year [27], a scenario analysis was per-
formed to understand the potential impact of
this differential compliance.

Model Input Parameters

Transitional Probabilities and Screening
Performance
The baseline prevalence of the disease severity
was obtained from our previous studies [11].
The transition probabilities were derived from
the literature [11, 12]. The proportion of
patients with bilateral DR was estimated at 75%
in the model [29]. Since the relative risk of
mortality of patients with diabetes and blind-
ness had not yet been reported and the main
causes of blindness in patients with DR were
from STDR [30], we therefore applied the rela-
tive risk of mortality in patients with STDR. The
compliance to follow-up treatment after true
positive screening results had not yet been sys-
tematically quantified in the Thai health sys-
tem. We therefore used 60% for both screening
modalities at baseline based on random sam-
pling from a few screening sites.

We used 50% as the screening uptake
according to data from the Ministry of Public
Health in the base case analysis. The age-specific
all-cause mortality, derived from the Thai pop-
ulation’s life table data, was used and integrated
with relative risks of mortality among patients
in the different health states.

Costs
Direct medical costs of the screenings included
the costs of fundus cameras, CFP capture, and

bFig. 1 Structure of the cost utility analysis model.
A Decision tree representing diabetic retinopathy screen-
ing options for patients with diabetes; B Markov model
structure representing the clinical progression of diabetic
retinopathy (Adapted from the Markov model of Ben
et al. [12]). BB bilateral blindness, DME diabetic macular
edema, DR diabetic retinopathy, STDR sight-threatening
diabetic retinopathy. Non-STDR includes mild and
moderate non-proliferative diabetic retinopathy (NPDR)
without DME. Severe NPDR and proliferative diabetic
retinopathy (PDR) including DME were defined as the
STDR health state
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Table 1 Input parameters used in the base case analysis

Parameters Distribution Mean SE Source

Transitional probability

No DR to non-STDR Beta 0.0524 0.0010 [11]

No DR to STDR Beta 0.0086 0.0010 [11]

Non-STDR to STDR Beta 0.0734 0.0010 [11]

No DR to BB Beta 0.0016 0.0002 [13, 14]

Non-STDR to BB Beta 0.0040 0.0004 [13, 14]

STDR to BB Beta 0.0080 0.0006 [13, 14]

Efficacy of treatment

Relative risk of DR progression

when patients were treated

Beta 0.4900 0.0689 [15]

Prevalence

Prevalence of diabetic patients

without DR

Dirichlet 0.7236 0.7236 [11]

Prevalence of diabetic patients with

non-STDR

Dirichlet 0.1537 0.1537 [11]

Prevalence of diabetic patients with

STDR

Dirichlet 0.1227 0.1227 [11]

Proportion of DME among STDR Beta 0.9247 0.0925 [11]

Relative risk of mortality in diabetic

patients

Gamma 1.8500 0.1850 [16]

Relative risk of mortality in diabetic

patients with non-STDR

Gamma 1.1300 0.1990 [17]

Relative risk of mortality in diabetic

patients with STDR

Gamma 2.2600 0.6633 [17]

Relative risk of mortality in diabetic

patients with blindness

Gamma 2.2600 0.6633 Assumed: using the risk of patients with STDR

as stated in text

Efficacy of screening

Sensitivity of screening by HG Beta 73.72% 1.66% [11]

Specificity of screening by HG Beta 98.59% 0.17% [11]

Sensitivity of screening by DL Beta 95.03% 0.82% [11]

Specificity of screening by DL Beta 97.97% 0.20% [11]

Uptake screening, HG Beta 50.00% 5.00% Primary data from Health Data Center (HDC)

of Ministry of Public Health in the Fiscal

year 2020
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Table 1 continued

Parameters Distribution Mean SE Source

Compliance to follow-up

confirmation after positive screening

result, HG

Beta 60.00% 8.00% Data from random sampling

Uptake screening, DL Beta 50.00% 5.00% Assumed: equal to HG based on model

purpose

Compliance to follow-up

confirmation after positive screening

result, DL

Beta 60.00% 8.00% Assumed: equal to HG based on model

purpose

Direct medical cost

Cost of screening

Unit cost of image grading by DL

per person (THB)

Gamma 32 3 Set for this study

Unit cost of image grading by HG

per person (THB)*

Gamma 56.11 5.6 [18]

Unit cost of image grading

(confirmation) by retina specialist

per person (THB)

Gamma 112.22 11.22 [18]

Unit cost of colour fundus image

capture (both eyes) (THB)

Gamma 194 19 Primary data

Unit cost of visual acuity

measurement (THB)

Gamma 40 4 [19]

Unit cost of mydriasis (THB) Gamma 73 7 [19]

Unit cost of OPD service per visit

in a primary facility (THB)

Gamma 109 11 [19]

Unit cost of OPD service per visit

in a tertiary facility (THB)

Gamma 309.50 30.95 [19]

Unit cost of IPD service per day of

admission (THB)

Gamma 1329 133 [19]

Cost of treatment

Cost of PRP (THB) Gamma 7000 700 Primary data

Cost of PPV in 2020 (2-day

admission or one-day surgery)

(THB)

Gamma 30,000 2968 Primary data

Unit cost of bevacizumab per one

injection (THB)**

Gamma 769 107 Primary data
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Table 1 continued

Parameters Distribution Mean SE Source

Unit cost of an intravitreal

administration and topical antibiotic

(THB)

Gamma 1719 172 Primary data

Unit cost of OCT (THB) Gamma 700 70 Primary data

Frequency of treatment using PPV Gamma 1.00 0.10 [20]

Proportion of the patients with

PDR who undergo PPV

Beta 0.33 0.03 [20]

Frequency of treatment using

PRP***

Gamma 2.00 0.20 [21]

Frequency of OP visit (per year) for

PRP in STDR without DME: 1st

year

Gamma 2.00 0.20 Assumed: according to screening and treatment

frequencies

2nd–5th year Gamma 1.00 0.10

Subsequent year Gamma 1.00 0.10

Frequency of IVB (per year) for

DME; 1st year

Gamma 10.00 1.00 [21, 22]

Frequency of IVB (per year) for

DME; 2nd–5th year

Gamma 1.75 0.18 [21, 22]

Frequency of OP visit (per year) for

DME; 1st year

Gamma 12.00 1.20 Assumed: according to screening and treatment

frequencies

Frequency of OP visit (per year) for

DME; 2nd–5th year

Gamma 5.25 0.53

Frequency of OP visit (per year) for

DME; Subsequent year

Gamma 2.00 0.20

Direct non-medical cost

Cost of travel for OPD per visit,

primary facility (THB)

Gamma 59 12 [19]

Cost of travel for OPD per visit,

tertiary facility (THB)

Gamma 156 31 [19]

Cost of food for OPD per visit,

primary facility (THB)

Gamma 15 3 [19]

Cost of food for OPD per visit,

tertiary facility (THB)

Gamma 57 11 [19]

Patient time spent for OP visit at

primary facility (min)

Gamma 69 14 [19]
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image interpretation. The first two costs were
the same in both arms. The average direct
medical cost for image interpretation by HG was
estimated at 56 Thai baht (THB) (* US$ 1.7) per
patient. Additional costs included setting up
certified training courses. The cost for image
interpretation and other related practice
expenses using DL was set at the price of 32 THB
(* US$ 1) per patient, a pricing estimate

comparable with HG interpretation. We probed
this price per patient further in threshold
analyses.

Total annual cost related to screening at
primary health centers using DL, HG, and con-
firmation of referrals at tertiary health centers
by retinal specialists were 375 (* US$ 11.7), 399
(* US$ 12.5), and 535 (* US$ 16.7) THB,
respectively. The details of these costs, includ-
ing the cost of outpatient service, fundus

Table 1 continued

Parameters Distribution Mean SE Source

Patient travel time spent for OP visit

at primary facility (min)

Gamma 18 4 [19]

Patient travel time spent for OP visit

at tertiary facility (min)

Gamma 60 12 [19]

Caregiver time spent for care to

patient with BB (hours/week)

Gamma 28 6 [13]

Gross National Income per capita

(THB/year)

Gamma 240,586 48,117 [23]

Utilities

Utility of patients with no DR Beta 0.748 0.026 [24]

Utility of patients with non-STDR

(mild to moderate NPDR)

Beta 0.752 0.037 [24]

Utility of patients with STDR

without DME

Beta 0.628 0.052 [24]

Utility of patients with DME**** Beta 0.628 0.052 Assumed

Utility of DR patients with blindness Beta 0.355 0.128 [24]

The relative risks of mortality among patients in the different health states were combined with age-specific all-cause
mortality derived from the Thai population’s life table data [25]. Direct medical costs of treatment for STDR and DME
were estimated by assuming 75% of patients have the bilateral DR. This cost of image grading by DL per patient should
cover practice expense of DL in Thailand considering the large population of patients screened in the national program. All
incurred costs were converted to 2020 values using the consumer price index for Thailand and were converted to US$ using
the exchange rate as of 1 July 2021 of 32.02 THB per US$ [26]
BB bilateral blindness, CVD cardiovascular disease, DL deep learning, DR diabetic retinopathy, HG human graders, IPD
inpatient department, IVB intravitreal bevacizumab, OCT optical coherence tomography, OP outpatient, OPD outpatient
department, PDR proliferative diabetic retinopathy, PPV Pars Plana vitrectomy, PRP panretinal photocoagulation, STDR
sight-threatening diabetic retinopathy, THB Thai baht, NHSO National Health Security Office
*Adjusted from the monthly salary of trained human graders at 26,000 THB; **according to Thai National Health Security
Office reimbursement policy, 1 vial of bevacizumab 100 mg/4 ml is divided into 30 doses; ***panretinal photocoagulation
was divided to be performed twice in an eye as a standard practice; ****patients with STDR with or without DME were
assumed to have the same utility
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photography, and visual acuity measurement,
are given in Fig. 2.

Cost of treatment for STDR without DME
included the cost of pan-retinal photocoagula-
tion (PRP), at the average of two sessions, at
7000 THB per patient. For PDR, the cost was the
weighted average between a proportion of
patients (two-third) treated with PRP and
another proportion (one-third) treated with
surgery [31], which was vitrectomy, at an aver-
age of 30,000 THB per patient. Patients with
DME were treated with 17 doses of beva-
cizumab, the number of intravitreal injections
during the first 5 years of treatment derived

from clinical trials [22]. Total cost of treatment
for DME was 59,503 THB in the first year,
11,388 THB in the second year, and 619 THB for
subsequent years. The cost of bevacizumab was
used since this medication is listed on Thai-
land’s National Essential List of Medicines and
used as the first-line treatment for DME in the
country.

Direct non-medical costs comprised costs of
food, transportation, accommodation, equip-
ment and facilities for patients, and productiv-
ity loss of caregivers, which was calculated
based on gross national income per capita,

Fig. 2 Summary of details of screening and treatment
costs. BB bilateral blindness, DL deep learning, DR
diabetic retinopathy, DME diabetic macular edema, HG
trained human graders, STDR sight-threatening diabetic
retinopathy, THB Thai baht. Unit cost of treatment of
DME includes cost of bevacizumab and intravitreal
administration listed in Table 1. Unit cost of treatment
of STDR includes cost of laser photocoagulation and

vitrectomy (not shown in this figure but shown in
Table 1). Treatment for DME includes cost of outpatient
service, bevacizumab, intravitreal injection, and macular
imaging by optical coherence tomography. Treatment for
STDR in the first year covers the cost of outpatient service
and cost of laser photocoagulation, or cost of vitrectomy
and inpatient service

1348 Ophthalmol Ther (2023) 12:1339–1357



assuming caregiving time at 4 h per day. These
costs per patient are the same for both arms.

Indirect costs were omitted to avoid double
counting in the CUA according to the recom-
mendation from the Thai Health Technology
Assessment guideline. All incurred costs were
converted to 2020 values using the consumer
price index for Thailand and were converted to
US$ using the exchange rate as of 1 July 2021 of
32.02 THB per US$. The cost of blindness is
comprised primarily of visual rehabilitation aids
and services, including residential and com-
munity care [32]. In Thailand, visual rehabili-
tation clinics are operated only in a few training
centers with low patient volumes [33]. There-
fore, this cost is minimal compared to the
treatment costs and is not considered in the
health provider perspective. Disaggregated costs
from both societal and provider perspectives are
shown in Fig. 3.

Health Utilities
Since the health utility weights for patients with
DR in Thailand or Asia are not available, we
applied those from the next closest match, i.e.,
those associated with patients with DR at a
primary care service in Brazil, another MIC [34].
In that study, the utility values were estimated
using the Brazilian EuroQol five dimension (EQ-
5D) tariffs from patients without DR, with non-
STDR, STDR, and bilateral blindness. Since DME
was not considered in that model, we assumed
that those who progressed into STDR with and
without DME had the same utility values.

All these input parameters are shown in
detail in Table 1 and Fig. 2.

Result Presentation

Total cost, life-years (LY), quality-adjusted life-
years (QALY), and disaggregated costs for each
screening strategy were reported. The incre-
mental cost-effectiveness ratios (ICERs) per
QALY gained in THB for DL and HG were cal-
culated by dividing the incremental cost by
incremental QALY. The Thai societal willing-
ness-to-pay (WTP) threshold was 160,000 THB
(* US$ 4997) per QALY gained [24].

Uncertainty Analyses

Parameter Uncertainty
To characterize the uncertainties of each input
parameter, a one-way sensitivity analysis was
performed and the percentage changes in the
incremental net monetary benefit (iNMB) from
the base case analysis were presented using a
tornado diagram. Net monetary benefit of each
screening method was calculated by multiply-
ing the incremental QALY by the Thai societal
WTP threshold at 160,000 THB/QALY and then
subtracting the incremental cost. Parameter
values were varied over the 95% confidence
interval (CI) for the general parameters. The
discount rates for costs and outcomes were
varied from 0 to 6%.

The robustness of the results was evaluated
by probabilistic sensitivity analyses (PSAs). All
potential influencing parameters were varied
simultaneously. The Monte Carlo simulation
was run for 1000 iterations, and the results of
PSA were shown as cost-effectiveness accept-
ability curves (CEACs) and a cost-effectiveness
plane (CEP).

Fig. 3 Total and disaggregated costs for the two screening
strategies (HG and DL). The costs are for the cost-utility
analysis at base case from both societal and provider
perspectives. BB bilateral blindness, DL deep learning,
DME diabetic macular edema, HG trained human graders,
STDR sight-threatening diabetic retinopathy. Costs of
treatment of DME and STDR without DME are
presented separately. We assumed no direct medical costs
for bilateral blindness; all the values are Thai baht in 2020

Ophthalmol Ther (2023) 12:1339–1357 1349



Scenario Analysis
We conducted a threshold analysis varying the
unit costs of DR screenings by both strategies at
the Thai societal WTP. We also analyzed the
effect of varying compliance to referrals for
treatment in terms of iNMB between both
strategies when the unit costs were fixed at base
case. All uncertainty analyses were performed
from a societal perspective over a lifetime hori-
zon of patients.

RESULTS

From both perspectives, we found equal effec-
tiveness in LY for HG and DL at 18.53, whereas
QALYs were 12.857 and 12.862, respectively.
From a societal perspective, DL was found to
have a slightly lower incremental cost at 87 THB
(* US$ 2.6) with an iNMB of 771.5 THB (* US$
24.1) and being a dominant option compared to
HG. From a provider perspective, DL was found
to have higher incremental cost at 2195 THB
(* US$ 66.7) and the ICER was 512,955 THB
(* US$ 16,020) per QALY gained (Table 2). The
CEP is shown in Fig. 4.

The reason for the difference between ICERs
from a societal and provider perspective is pre-
sented in Fig. 3. The provider perspective did
not incorporate the non-medical cost of

bilateral blindness, which represents a substan-
tial portion of lifetime costs (68.25% and
69.82% for DL and HG respectively from a
societal perspective).

For parameter uncertainty, the tornado dia-
gram (Fig. 5) demonstrates that the relative risk
of DR progression in patients who received
treatments was the most influential factor rela-
ted to the change in iNMB. The PSA conducted
from a societal perspective reinforces the
robustness of the base case results. The CEAC
(Fig. 6) illustrates that DL had the higher prob-
ability of being cost-effective at 84.6%, com-
pared to HG at 15.4%, at the Thai WTP
threshold.

Concerning the unit costs, in the base case,
when the unit cost of image interpretation by
HG was fixed at 56.11 THB (* US$ 1.7) per
person, DL remained cost-effective from the
societal perspective for its unit costs of image
interpretation up to 150.5 THB (* US$ 4) per
person at the Thai societal WTP threshold. We
found that screening by DL could remain cost-
effective even if compliance with referrals for
treatment were lower than that of HG. The
threshold of this compliance for treatment of
screening by DL was 43.57%. This means
screening by DL remained cost-effective when
at least 44% of referrals detected by DL received

Table 2 Total costs, quality-adjusted life-years, and incremental cost-effectiveness ratios between the screening modalities
from the base case analysis

Screening
modality

Total cost
(THB)

Total
effectiveness

Incremental
cost (THB)

Incremental
effectiveness

ICER (THB per
QALY gained)

iNMB
(THB)

LY QALY LY QALY

Societal perspective

HG 163,565.04 18.5325 12.8574

DL 163,478.16 18.5325 12.8617 - 86.88 0.0000 0.0043 Dominant 771.50

Provider perspective

HG 41,941.10 18.5325 12.8574

DL 44,135.95 18.5325 12.8617 2194.85 0.0000 0.0043 512,955.12 - 1510.24

BB bilateral blindness, DL deep learning, DME diabetic macular edema, ICER incremental cost-effectiveness ratio, iNMB
incremental net monetary benefit, LY life year, HG trained human graders, QALY quality-adjusted life year, STDR sight-
threatening diabetic retinopathy, THB Thai baht
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treatment compared to 60% compliance at base
case for screening by HG. If compliance to
referrals for treatment is even higher, screening
using either strategy could achieve greater cost-
savings with higher compliance to referrals for
treatment as shown in Fig. 7.

DISCUSSION

In this DR screening program, we found DL had
lower incremental costs compared to HG from a
societal perspective. From a provider perspec-
tive, DL could detect more referral cases and
therefore result in greater costs incurred from
treatments. However, when the societal cost
incurred from bilateral blindness, which impo-
ses both humanistic and economic burden [32],
was included, this model showed DL as a cost-
saving screening tool. The saving of this societal
cost, which mainly covers the costs of visual
rehabilitation service by caregivers and

community care, is hidden from the provider
perspective.

In settings like Thailand, where a well-
established screening program and allocation of
hardware equipment already exist, we antici-
pate that costs for adding DL software into the
screening workflow is minimal. Since the labor
cost is low and patients with STDR usually
comprise the minority of patients screened, the
additional labor of retinal specialists to confirm
the increased numbers of more positive cases of
STDR detected by DL should incur minimal
cost.

While the cost of AI for DR screening has not
yet been standardized, Scotland et al. proposed
that the cost should include costs of initial
implementation and maintenance with a lifes-
pan of 10 years. The authors estimated that the
server-based AI software used in Scotland under
universal healthcare should be charged at 0.14
pound (6.44 THB or * US$ 0.2) per patient
annually in 2006 [35]. In our study, we set the
price charge of DL, also server-based and used

Fig. 4 Cost-effectiveness plane (CEP). DL deep learning, HG human graders, ICER incremental cost-effectiveness ratio,
QALY quality-adjusted life-year, THB Thai baht
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under universal health coverage, at US$ 1 per
patient annually. In a recently published CUA
conducted in rural China, which found that AI-
based DR screening was more cost-effective
compared with ophthalmologist screening or
no screening, the AI was priced similarly at US$
1.447 per patient, based on market quotation of
the supplier [36].

Our CUA supports the lower incremental
costs of DL and extend the body of evidence in a
cost-minimization analysis [37] and cost-effec-
tiveness analyses [35, 38], which evaluated cost-
savings over a year of screening. Our finding
that greater patient compliance to referrals can
potentially augment cost-effectiveness for DL is
a motivation to explore additional strategies for
boosting this compliance, such as digital noti-
fications sent to patients. Ideally, a system for
monitoring compliance to referrals should be
built into a screening program to measure its

effectiveness. This compliance may be increased
by the capability of DL to provide screening
results immediately at the point of care [28]. Liu
et al. found that DL could increase this com-
pliance from 18.7% in the historical cohort to
55.4% [27]. Fuller et al. also found in a 5-year
CUA that, with 54.9% compliance to referrals
from pre-screening by DL compared to 11.5%
compliance without pre-screening, DL could
reduce costs by 23.3% [8].

A strength of our study is that our model
evaluated cost-savings over a lifetime horizon of
patients. Moreover, it was based on a nation-
wide screening program with data representing
all health regions. Another strength is the
inclusion of the cost of treatment of DME,
which has rarely been considered in previously
published economic evaluations of DL for DR
screening. This inclusion is pivotal because the
treatment of DME was the primary cost burden

Fig. 5 One-way sensitivity analysis. Tornado diagram
from one-way sensitivity analysis showing the percentage
changes in incremental net monetary benefit (iNMB) of
DL screening versus HG screening from the base case
attributable to the change of each parameter. ATB
antibiotics, BB bilateral blindness, CVD cardiovascular
diseases, DL deep learning, DM diabetic mellitus, DME

diabetic macular edema, DR diabetic retinopathy, HG
human grader, IVB intravitreal bevacizumab, STDR sight-
threatening diabetic retinopathy, THB Thai baht. Labels
on the chart (next to bars) indicate input values (minimum
and maximum) of each parameter; all the values of costs
are Thai baht in 2020
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of treatment of STDR in our model. In a US
study, the cost of treatment of DME using
ranibizumab, which is ten times more expen-
sive than bevacizumab, was included in this
5-year CUA comparing pre-screening of DR
using DL versus no pre-screening (refer all
patients) in low-income patients. Even with this
tremendous cost increase, DL for the pre-
screening of DR was still more cost-saving than
no pre-screening [8]. Another strength is our
economic evaluation followed the Consolidated
Health Economic Evaluation Standards.

There were some limitations to this study.
Certain data are not available for inclusion in
the analysis, such as national data on referral
compliance and the health utility weights of
patients with DR. Second, while the use of the
Markov model for capturing changes in clinical
health states and the use of health state utility
values are traditionally applied for economic
evaluations, these applications may have some
limitations. Different countries might utilize
different classifications of the clinical states of
DR. The utility values of each state might also
be varied among countries [39]. Therefore, the
utility values derived from the Brazil study may

not exactly reflect the utilities of DR in
Thailand.

Another limitation is that this model did not
consider the possibility that DL may flag more
ungradable patients than HG in real-world sce-
narios [40]. The patients with negative screen-
ing results (non-referrals) were not confirmed
by experts; therefore, false negatives were not
fully accounted for. DR screening programs in
some countries implement a system for random
sampling and review of 10% of negative
screening results [2, 38]. According to our pre-
vious analysis [11], the proportion of false neg-
atives by either DL or HG was a small fraction,
and they would be identified in the next
screening.

CONCLUSION

In conclusion, this CUA demonstrates that
adoption of DL for a DR screening program in
an MIC may result in lower societal costs over a
lifetime of patients, providing economic ratio-
nale to expand DL-based DR screening in other
MICs with similar prevalence of diabetes,

Fig. 6 Cost-effectiveness acceptability curves. The curves
compare the probabilities of being cost-effective at differ-
ent willingness to pay of screening using HG and DL in

the base case scenario; all the values are Thai baht in 2020.
DL deep learning, HG human graders, QALY quality-
adjusted life-year, THB Thai baht
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clinical specialist shortages, and low compli-
ance to referrals for treatment. However, policy
makers should be aware of budget impact of
treating more patients with STDR with clinical
deployment of DL. DR screening using DL or
HG could achieve greater cost-savings with
higher compliance to referrals for treatment.
This compliance rate should be monitored as
part of DR screening programs.
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